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ABSTRACT Single image dehazing has always been a challenging problem in the field of computer vision.
Traditional image defogging methods use manual features. With the development of artificial intelligence,
the defogging method based on deep learning has developed rapidly. In this paper, we propose a novel
image defogging approach called NIN-DehazeNet for single image. This method estimates the transmission
map by NIN-DehazeNet combining Network-in-Network with MSCNN(Single Image Dehazing via Multi-
Scale Convolutional Neural Networks). In the test stage, we estimate the transmission map of the input hazy
image based on the trained model, and then generate the dehazed image using the estimated atmospheric
light and computed transmission map. Extensive experiments have shown that the proposed algorithm

overperformance traditional methods.

INDEX TERMS Single image dehazing, manual features, deep learning, NIN-DehazeNet, Network-in-
Network, multi-scale convolutional neural networks,atmospheric scattering model.

I. INTRODUCTION

Image dehazing is a challenging problem in the field of
computer vision. The purpose of Image dehazing is to recover
a clear image from one single noisy frame caused by haze,
fog or smoke. The dehazing algorithms have thus been widely
considered, as a challenging instance of (ill-posed) image
restoration [1] and enhancement [2]. Similar to other prob-
lems like image denoising and super-resolution [25], [26],
earlier dehazing work [27]-[30] assumed the availability of
multiple images from the same scene. However, the haze
removal from one single image has now gained the dominant
popularity, since it is more practical for realistic settings [5].
This paper focused on the problem of single image
dehazing.

With the development of the defogging field, many classic
defogging algorithms have been proposed [3], [5]-[10] in
recent years. Tan [3] proposed a method for defogging based
on statistical rule which based on the contrast between a
clear image and a foggy image. It successfully dehazed a
single image by using image contrast [4]. However, this is an
image enhancement method and does not restore the radiation
of the object (or scene) from the perspective of the imag-
ing mechanism. Thus, this method will cause the restored
color to be over saturated. Fattal [5] assumed that the target
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radiation and the medium transmission have local statistical
irrelevance. Then they estimated a scene by independent
component analysis (ICA), and finally they obtained the fog-
free image. However, this method is limited by the assump-
tion of statistical independence. In addition, the method is
based on color information and is not applicable to grayscale
images and dense fog weather. Meanwhile, a dehazing algo-
rithm which used dark channel prior(DCP) was proposed by
He et al. [6]. It plays an important role in the field of defog-
ging. The method is mainly based on the principle of dark
channels: some pixels always have at least one color channel
in most non-sky partial areas which has a very low value.
In other words, the minimum value of light intensity is in this
area.

All of the above are manual features [3], [5], [6]. Image
dehazing technology is also gradually developed along the
manual features. However, the human visual system does not
need to rely on these explicit feature transformations to esti-
mate the concentration of the fog and the depth of the scene.

DehazeNet [7] (an end-to-end system for single image
haze removal) is a specially designed deep convolutional
network that uses deep learning to learn the features of smog
and solves the difficulties and obstacles of manual feature
design. It can achieve a more positive effect of dehazing and
overcome some of the shortcomings of [6]. Moreover, as the
dataset increases in size, the performance of dehazing will
also increase. The idea of MSCNN [8] is very similar to
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that of DehazeNet [7], but has a multi-scale convolutional
network.

Dehazing by a CNN is needed to estimate the global atmo-
spheric brightness, but the key issue in dehazing is estimating
the transmission map. AOD-Net [9] is not a dehazing method
that estimates transmission, but its principle is similar to
that of MSCNN [8]. DCPDN [10] can simultaneously study
transmission maps and atmospheric illumination. The net-
work enables end-to-end learning by embedding atmospheric
scattering models directly into the network, ensuring that the
proposed method strictly follows the physical drive scattering
model for dehazing.

Il. RELATED WORK
The formulation of a hazy image can be modeled as:

1(x) = J(0)t(x) + A(l — 1(x)) ey

where I(x) is observed hazy image, J(x) is the scene radiance
to be recovered, A(x) denotes the global atmospheric light and
t(x) is the transmission matrix defined as:

t(x) = e PI )

where § is the scattering coefficient of the atmosphere and
d(x) is the depth map .

Early approaches for dehazing often require multiple
images to deal with this problem [29], [30], [27], [33],
[34], [28]. These methods [29], [30], [27], [33], [34], [28]
need to assume that these images are multiple images from
the same scene. However, in practical applications, many
images are unique to a given scene.

Dark channel prior(DCP) [6] plays an important role in
the field of defogging. Many methods about defogging are
based on DCP [35]-[38]. But, these methods about dehazing
computationally expensive [39]-[41].

MSCNN [8] combines convolutional networks with multi-
scale features. So, compared with the ordinary convolutional
network, MSCNN [8] could extract more features of image
and get better effect about defogging. Therefore, in this
paper, we improve the MSCNN [8] to get better effect about
defogging.

Following,we will discuss the method of using deep learn-
ing to estimate the transmission map. In this paper, we design
a improved network about dehazing to estimate the trans-
mission map. We combining Network-in-Network [11] with
MSCNN(Single Image Dehazing via Multi-Scale Convolu-
tional Neural Networks) [8]. In other words, we use the
mlpconv layer which was proposed in 2014 to instead of the
normal linear convolution layer. With this method, a higher
quality map about dehazing can be obtained.

The contributions of this work are summarized below:

1) A method about dehazing for estimating a transmis-
sion map by combining Network-in-Network with
MSCNN(Single Image Dehazing via Multi-Scale Con-
volutional Neural Networks) [8] is proposed.

2) The method for estimating a transmission map by
combining Network-in-Network with MSCNN(Single
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Image Dehazing via Multi-Scale Convolutional Neural
Networks) [8]. So we have adopted several different
feature extraction methods for MSCNN [8] and com-
pared them with the method we proposed in this paper.
Finally, we showed that the MSCNN [8] with Mlp-
conv layer [11] to extraction features is better than the
MSCNN [8] with other convolutional layer to extrac-
tion features.

3) We analyzed some existing methods of dehazing
by 2019 and compared them with the method we pro-
posed. Finally, we proved that the algorithm about
defogging we proposed can achieve better defogging
effect.

Next, we will introduce the algorithm we proposed in detail.

Ill. NIN-DEHAZENET FOR TRANSMISSION MAPS

In this section, we propose a novel image defogging approach
that estimates the transmission map by combining Network-
in-Network with MSCNN(Single Image Dehazing via Multi-
Scale Convolutional Neural Networks). We call this method
NIN-DehazeNet.

For each scene, we propose to estimate the scene transmis-
sion map t(x) based on a multi-scale CNN [8]and MlIpconv
layer [11]. The coarse structure [8] of the scene transmission
map for each image is obtained from the coarse-scale net-
work and we add the Mlpconv layer [11] to the coarse-scale
network [8]. And then refined by the fine-scale network [8].
We also add the Mlpconv layer [11] to the fine-scale net-
work [8]. Both coarse and fine scale networks are applied to
the original input hazy image. And, the output of the coarse
network is passed to the fine network as additional informa-
tion. By Mlpconv layer [11], almost all fog-related features
could be extracted, such as dark channels, hue disparity, and
color attenuation.

The main steps of the proposed algorithm are shown
in Figure 1.

A. NIN-DEHAZENET
A single foggy image was given, our goal is to obtain a
fog-free image by estimating the transmission map. We refer
to the structure of Network-in-Network and add the mlp-
conv layer to MSCNN(Single Image Dehazing via Multi-
Scale Convolutional Neural Networks) to instead of the
ordinary linear convolution layer. We call this method
NIN-DehazeNet. By NIN-DehazeNet, we could get a more
accurate transmission map. And then substitute it into the
atmospheric scattering model to obtain a image about dehaz-
ing. The overall architecture of the model is shown in the
Figure 2. The details of the procedure are described below.
1)Mlpconv layer:”Network In Network’ (NIN) [11] is a
novel deep network structure to enhance model discrim-
inability for local patches within the receptive field. The
conventional convolutional layer uses linear filters followed
by a nonlinear activation function to scan the input. But in
NIN [11], the rdinary linear convolution layer is replaced with
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FIGURE 1. Main steps of the proposed single-image dehazing algorithm. We estimate the transmission map of the input hazy image based
on the trained model, and then generate the dehazed image using the estimated atmospheric light and computed transmission map.
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FIGURE 2. The overall architecture of the model. The network named NIN -DEHAZENET includes Coarse-scale and Fine-scale network. And
mipconv layers (the purple dashed rectangle) are put in MSCNN. Given a hazy image, the coarse- scale network (the black dashed rectangle)
predicts a holistic transmission map and feeds it to the fine-scale network (the red dashed rectangle) in order to generate a refined transmission

map.
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structure which is a general nonlinear
function approximator. And it was called mlpconv layer. The
resulting structure of mlpconv layer is compared with CNN

Both the linear convolutional layer and the mlpconv layer
map the local receptive field to an output feature vector. The
mlpconv maps the input local patch to the output feature

vector with a multilayer perceptron(MLP) [11] consisting
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(a) Linear convolution layer

(b) Mipconv layer

FIGURE 3. Comparison of linear convolution layer and mlpconv layer.

of multiple fully connected layers with nonlinear activation
functions. The MLP is shared among all local receptive fields.
The feature maps are obtained by sliding the MLP over the
input in a similar manner as CNN and are then fed into the
next layer.

DehazeNet [7] uses the maxout method to extracts features.
The maxout unit is a simple feedforward nonlinear activation
function used in a multi-layer perceptron or CNN framework.
After feature extraction by maxout, almost all fog-related
features (dark channels, hue disparity, and color attenuation)
can be extracted.

The maxout layers in the maxout network [12] performs
max pooling across multiple affine feature maps. The feature
maps of maxout layers are calculated as follows:

m

fijk = max(wy, xi) 3)

Here (i, j) is the pixel index in the feature map, x; j stands for
the input patch centered at location(i, j), and k is used to index
the channels of the feature map.

However, maxout network [12] imposes the prior that
instances of a latent concept lie within a convex set in the
input space, which does not necessarily hold. It would be
necessary to employ a more general function approximator
when the distributions of the latent concepts are more com-
plex. Mlpconv layer [11] differs from maxout layer in that the
convex function approximator is replaced by a universal func-
tion approximator, which has greater capability in modeling
various distributions of latent concepts.

The calculation performed by mlpconv layer [11] is shown
as follows:

1 1
Jijk = max(wy xij + by, 0)

£, = max(w] x;j + by, 0) 4)

Here n is the number of layers in the multilayer percep-
tron [11]. Rectified linear unit is used as the activation func-
tion in the multilayer perceptron [11]. From cross channel
(cross feature map) pooling point of view, equation 4 is
equivalent to cascaded cross channel parametric pooling on
a normal convolution layer [11]. Each pooling layer per-
forms weighted linear recombination on the input feature
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maps [11], which then go through a rectifier linear unit.
The cross channel pooled feature maps are cross channel
pooled again and again in the next layers. This cascaded cross
channel parameteric pooling structure allows complex and
learnable interactions of cross channel information. And the
cross channel parametric pooling layer is also equivalent to a
convolution layer with 1 x 1 convolution kernel.

2)Coarse-scale and Fine-scale network: This network is
designed to estimate the transmission map in MSCNN [8] as
that improve the prediction results. For this reason, we adopt
the Coarse-scale and Fine-scale network in the subsequent
network structure. The task of the coarse-scale network is to
predict a holistic transmission map of the scene. Then we
make refinements using a fine-scale network. The network
mainly includes max-pooling, an up-sampling [31] layer and
a linear combination layer. In this final layer, the feature
channel from the last upsampling layer is integrated by linear
combination,and the final output is obtained by the sigmoid
activation function.

Max-pooling: a maximum pooling layer is used after each
convolutional layer.

Up-sampling: an up-sampling layer [31] is used after each
pooling layer to ensure a transmission map of the output and
an input foggy pattern equal in size.

Linear combination: In this final layer, the feature chan-
nel from the last up-sampling layer is integrated by linear
combination [31] and the final output is obtained by the
sigmoid activation function.

B. TRAINING

For training the NIN-DehazeNet, we synthesize hazy images
and the corresponding transmission maps based on REalistic
Single Image DEhazing (RESIDE) training set [17].

When training the neural network, it is necessary to set the
learning rate to control the speed of the parameter update.
The learning rate determines the amplitude of update step
of the parameters. If the amplitude is too large, the param-
eters may be at an excellent value. It can move back and
forth on both sides; However, if the amplitude is too small,
it will greatly reduce the speed of optimization. So, in this
paper we have chosen a more flexible method to set learn-
ing rate, named Adam algorithm [14]. The Adam algo-
rithm sets of advantages for two stochastic gradient descent
extensions:

The adaptive gradient algorithm (AdaGrad) [15] preserves
a learning rate for each parameter to improve performance
on sparse gradients (the problem of natural language and
computer vision).

Root mean square propagation (RMSProp) [16] adaptively
preserves the learning rate based on the mean of the nearest
magnitude of the weight gradient for each parameter.

The Adam algorithm takes advantage of the AdaGrad and
RMSProp algorithms. Adam not only calculates the adaptive
parameter learning rate based on the first-order moment mean
such as the RMSProp algorithm, but also makes full use of the
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gradient’s second-order mean variance (uncentered variance).
Therefore, it can achieve excellent results very quickly.

Learning the mapping between hazy images and corre-
sponding transmission maps is learned by minimizing the
loss function between the predicted transmission map and
the corresponding ground truth map. And finally, a map-
ping between the foggy image and the transmission map is
obtained. The loss function is as follows:

1 N
loss = - 3, (i = (1))’ )

i=1

where y; is the reconstructed transmission map and y(x) is the
corresponding ground truth map. Where N is the number of
hazy images in the training set. We minimize the loss using
the Adam algorithm. In this paper,we first train the coarse-
scale network, and then use the coarse-scale output transmis-
sion maps to train the fine-scale network [8]. The training loss
is used in both coarse-scale and fine-scale networks.

C. DEHAZING WITH THE NIN-DEHAZENET

In the test stage, we estimate the transmission map of the input
hazy image based on the trained model, and then generate
the dehazed image using the estimated atmospheric light and
computed transmission map.

Atmospheric light (A) is also estimated before using the
atmospheric scattering model. In this paper, we estimate the
atmospheric light by selecting the darkest pixel of 0.1% in
the transmission map and then choose the brightness of the
corresponding position of the foggy original image.

IV. EXPERIMENTAL RESULTS

To train the NIN-DehazeNet, we generate a dataset with syn-
thesized hazy images and their corresponding transmission
maps. We randomly sample 10500 images from the REal-
istic Single Image DEhazing (RESIDE) training set [17] to
construct the training set. The REISDE training set contains
13, 990 synthetic hazy images, generated using 1, 399 clear
images from existing indoor depth datasets NYU2 [18] and
Middlebury stereo [19], [32], [33].

A. EXPERIMENTAL SETTING
In this paper, we did two sets of comparative experiments.
And we all use 100 images(225%225) in testing at two exper-
iments. The computer configuration used in this experiment
is Core 17-7700CPU @2. 80GHz, 8GB memory. We did this
through tensorflow(GPU).

This experiment is mainly compared in the following two
directions:

1) Because different feature extraction methods has an
effect on the result, we compare the defogged images
obtained when different feature extraction methods
is used. In this paper,we use MSCNN,improved
MSCNN which extracting features by maxout unit and
NIN-DehazeNet to compare.
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TABLE 1. Average PSNR and SSIM result.

Metrics MSCNN MSCNN( NIN-
maxout DehazeN
unit) et
PSNR 18.2213 18.3668 18.4827
SSIM 0.8331 0.8559 0.8623

2) The optimal dehazing method obtained after the com-
parison above was compared with other advanced
dehazing methods.

B. EVALUATION INDEX

To evaluate the quality of defogging results, we must first
evaluate the indicators. This paper mainly uses peak signal
to noise ratio (PSNR) [20] and structural similarity (SSIM)
[21] to evaluate the images after dehazing.

PSNR is a full-reference image quality evaluation index.
The unit of PSNR is dB, and the larger the value, the smaller
the distortion.

SSIM (structural similarity) is also a full-reference image
quality evaluation index, and it measures image similar-
ity from three aspects: brightness, contrast, and structure.
The SSIM value range is [0, 1], and the larger the value,
the smaller the image distortion.

C. QUANTITATIVE EVALUATION ON DATASET

The testset used for the deep learning based de-fogging
method is mainly a synthetic dehazing image with known
basic facts. So we take the 100 images from the related videos
and use them to synthesize foggy images as the TestSet .

1) EXPERIMENT A

Because different feature extraction methods has an effect on
the result, we compare the defogged images obtained when
different feature extraction methods is used. In this paper,we
use MSCNN,improved MSCNN which extracting features by
maxout unit and NIN-DehazeNet to compare.

The conventional convolutional layer uses linear filters
followed by a nonlinear activation function to scan the input.
The maxout unit is a simple feedforward nonlinear activation
function used in a multi-layer perceptron or CNN framework.
After feature extraction by maxout, almost all fog-related
features (dark channels, hue disparity, and color attenuation)
can be extracted. However, maxout network impoes the prior
that instances of a latent concept lie within a convex set in the
input space [11], which does not necessarily hold.

Table 1 displays the average PSNR and SSIM results on
TestSets .

According to Table 1, it can be concluded that when differ-
ent feature extraction methods is used, NIN-DehazeNet could
get the best defogging effect .

When the linear convolutional layer,maxout unit and
the mlpconv layer map were used, the effect diagrams
are shown in Figure 4. Three pictures are respectively
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(a) Inputimage

(b)MSCNN

(c)MSCNN(maxout unit)

(d)NIN-DehazeNet (e)Clear image

FIGURE 4. Three images were selected from 100 images, and we obtained a fog-free image with MSCNN,improved MSCNN which

extracting features by maxout unit and NIN-DehazeNet.

selected from 100 images, the foggy image is shown
in Figure 4(a). We note that the dehazed results by MSCNN in
Figure 4(b), the dehazed results by MSCNN(maxout unit)
in Figure 4(c), and dehazed results by the proposed algo-
rithm in Figure 4(d). And fog-free original images are shown
in Figure 4(e).

2) EXPERIMENT B

We compare the proposed algorithm with the state-of-the-art
dehazing methods [6]-[10] using the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM) metrics.

The Dark Channel Prior (DCP) algorithm, which was pro-
posed by He er al. [6], plays an important role in image
defogging. In this paper, we use the DCP [6] dehazing algo-
rithm modified by the steering filter [22]. And the improved
algorithm can achieve finer transmission.

DCPDN [10] dehazing algorithms proposed in CVPR
in 2018. And it is one of the best algorithms for defogging
at present.

The experiment mainly uses DCP [6] which was
improved, Dehaze-Net [7], MSCNN [8], AOD-Net [9] and
DCPDN [10] compared with the dehazing method we pro-
posed in this paper.

In order to ensure the requirements of the qualitative and
quantitative, the 100 images which were used in the above
tests would still be used at this time.

The effect diagrams are shown in Figure 5. Three identical
pictures are respectively selected from 100 images. We note
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TABLE 2. Average PSNR and SSIM result.

Metric DCP Dehaz | AOD- | MSCN | DCPD | Ours
S e-Net Net N N
PSNR | 17.81 18.03 18.25 18.22 18.46 18.48
74 72 32 13 28 27
SSIM 0.792 0.821 0.832 0.833 0.853 | 0.862
2 5 6 1 2 3

that the dehazed results by [6] in Figure 5(a), the dehazed
results by [7] in Figure 5(b), the dehazed results by [9]
in Figure 5(c),the dehazed results by [8] in Figure 5(d),the
dehazed results by [10] in Figure 5(e),and dehazed results by
the proposed algorithm in Figure 5(f).

Tables 2 display the average PSNR and SSIM results on
TestSets .

According to Table 2, it can be concluded that the
method we proposed has higher PSNR performance than
others and it gains even greater SSIM advantages over all
competitors.

D. RUNING TIME COMPARISON
We select 50 images from TestSet for all models to run, on the
same machine(Intel(R) Core(TM) i7-7700 CPU@2. 80GHz
and 8GB memory), with GPU acceler-ation.

The per-image average running time of all models are
shown in Table 3. Despite the speed of the algorithm is not
the fastest, it could be used for real-time dehazing, and it
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(a)DCP

(b)Dehaze-Net (c)AOD-Net

(d)MSCNN (e)DCPDN (f)Ours

FIGURE 5. We use the evaluation index about dehazing to get the evaluation of the effect about dehazing.

TABLE 3. Comparison of average model running time (in seconds).

DCP Dehaz | AOD- | MSCN | DCPD | Ours
e-Net Net N N
Run 0.92 0.051 0.032 0.037 0.076 | 0.039
ing
time

has the best effect about dehazing. Therefore, considering
the algorithm comprehensively, it could be applied to video
defogging.

According to Table 3, it can be concluded that the method
we propose is fast, and it can be applied in real scenarios of
video during foggy weather [23].

Generative Adversarial Networks [24] (GAN) is a deep
learning model and one of the most promising methods for
unsupervised learning in complex distribution in recent years.
In the future, we are going to combine NIN-DehazeNet (the
method about defogging we proposed) with GAN to get a
algorithm with better effect about defogging.

V. CONCLUSION

In this paper we propose NIN-DehazNet, which estimates the
transmission map by combining Network-in-Network with
MSCNN(Single Image Dehazing via Multi-Scale Convolu-
tional Neural Networks). And we compare it with some
methods which could get good effect about dehazing. The
experiments show that the method we propose perform best
and it has the best effect about dehazing than other dehaz-
ing algorithms . The PSNR increased as well as the SSIM
improved. The experiments also show that our method is fast,
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and therefore it can be applied in real scenarios of video
during foggy weather. The work can facilitate the automatic
monitoring in Smart City applications.
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