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ABSTRACT The pulse-modulated polar transmitter (PMPT) uses radio-frequency (RF) phase modulated
signal with pulse-width modulated envelope to drive a power amplifier (PA) as a switch to achieve high
linearity and high efficiency. However, as the signal bandwidth increases, various non-idealities limit the
performance of the PMPT architecture. In this paper, a Gibbs-phenomenon reduction filter is proposed with
a partial Fourier series of digital pulse-width modulation (PWM) such that the pulsed signal is more immune
to the distortion in nonlinear high-efficiency RF PAs. For validation, a prototype transmitter was tested with
a 20-MHz bandwidth 256-QAM 5G new radio (NR) signal at 2.14 GHz. The proposed method achieved
a drain efficiency of 28.3%, error vector magnitude (EVM) of 1.67%, and adjacent channel leakage ratio
(ACLR) of -45.4 dBc at an output power of 18 dBm using the prototype transmitter. Linearity requirements
for base stations were met without the use of any digital predistortion methods.

INDEX TERMS Power amplifiers, power amplifier linearization, polar transmitters, radio transmitters,
microwave amplifiers.

I. INTRODUCTION
The radio-frequency (RF) power amplifier (PA) has always
been the most power-consuming component in a wireless
communication system. As the need of high data-rate trans-
mission continued to grow rapidly in the recent years, modern
wireless communication standards such as 4G Long Term
Evolution (LTE) and 5G New Radio (NR) have been pro-
posed. Both 4G and 5G standards utilize variations of orthog-
onal frequency division multiple access (OFDMA), which
have very high peak-to-average power ratio (PAPR). It is
well known that signals with high PAPR would lead to low
PA efficiency since the PA would require more back off.
In recent years, a lot of research efforts have been focused
on improving PA efficiencies for OFDMAapplications where
PAPR is in the range of 10 dB.

Various linear high-efficiency architectures proposed in
[1]–[6] have been extensively studied in the past decades.
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Kahn’s envelope elimination and restoration (EER) is one
such method. The EER polar transmitter uses a nonlinear
but highly efficient PA to amplify the phase information and
modulates the supply with an efficient dynamic power supply
circuit, which contains the envelope information. This tech-
nique can ideally achieve 100% efficiency. However, as the
signal bandwidth increases, the efficiency of the dynamic
power supply drops significantly. Moreover, the delay align-
ment between the two paths becomes more difficult and may
corrupt the signal. Hence, modification of the EER was first
proposed in [7] by using delta-sigma modulation to modulate
the envelope into two-level pulses before applying the RF PA
where the duty cycle is proportional to the envelope magni-
tude. In [8], the pulse-modulated polar transmitter (PMPT)
was proposed where pulse-width modulation (PWM) was
used for ease of filtering the out-of-band emissions. The
block diagram is shown in Fig. 1. It avoided using a dynamic
power supply circuit which causes delay mismatch and high
modulator power overhead issues for a wideband signal.
Moreover, it operated the RF PA either in the on or off state.
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FIGURE 1. Block diagram of a pulse-modulated polar transmitter in
[9]–[13].

FIGURE 2. A comparison of finite number K of PFS.

The two-state operation of the RF PA can not only achieve
high efficiency, but also high linearity [9]–[14].

PMPTs using conventional digital pulse-width modulation
(DPWM) performed well up to 5 MHz of signal bandwidth.
As the bandwidth increased, the distortion caused by the finite
rise and fall times of the RF PA required predistortion to
be performed [9]. Furthermore, it was identified in [10] that
PWM signals suffer from aliasing effect and lead to degraded
adjacent channel leakage ratio (ACLR) that cannot be lin-
earized. Thus, the aliasing-free digital pulse-width modula-
tion (AFDPWM) technique was proposed in [10]. However,
the AFDPWM signal is no longer a two-level signal and
requires linear power amplification. In [11], it was identified
that AFDPWM is suitable for predistortion, which solved
both the linearity and aliasing problems concurrently. It was
further identified in [12] that using a wideband PA would
reduce the susceptibility of AFDPWM to PA nonlinearity
such that it would not require predistortion. Moreover, sev-
eral techniques have been proposed in [13], [14] to increase
coding efficiency and eliminate the PWM spurs, which are
generated at the harmonics of the PWM sampling frequency
without degrading the PA efficiency.

The aliasing problem was identified in [10] as a result
of infinite series in DPWM and could be solved by using
partial Fourier series (PFS) or the first few terms of a Fourier
series. However, the use of PFS would lead to Gibbs phe-
nomenon [15], which makes the modulated signal no longer
a two-level signal that requires linear power amplification.
Memoryless digital predistortion (DPD) was performed in

[11] and [14] such that the linearity requirement of base sta-
tions were achieved. In this paper, the nonlinearity of PMPTs
caused by Gibbs phenomenon is discussed. The solutions of
reducing the ripples were extensively discussed in [16]–[20].
Among the various proposed methods, the spectral filter
described in [16] is adapted for this work because of its
simplicity even though Gibbs phenomenon cannot be fully
avoided. By filtering after AFDPWM or PFS of DPWM, the
bandlimited signal can be closer to a two-state waveform and
be more immune to PA nonlinearity. Moreover, the additional
power required for computation is negligible compared to a
memoryless DPD implementation, which requires an addi-
tional RF receiver.

II. NON-IDEAL CHARACTERISTICS OF GIBBS
PHENOMENON
A complex modulated baseband signal can be expressed in
the polar form of

vbaseband (t) = E (t) · ejθ(t), (1)

where the normalized amplitude is E(t) and phase is θ (t).
In PMPTs, the nonconstant amplitude information E(t)
is pulse-width modulated into two-level pulses EPWM (t)
using DPWM. After up-conversion to the carrier frequency,
the pulse-modulated RF signal will be in the form of

vRF (t) = Re{EPWM (t) · ej(2π fct+θ(t))}, (2)

where the RF carrier frequency is fc. The conventional
PMPTs using DPWM is linear enough to pass the spectral
mask when the bandwidth of the baseband signal is narrow.
As the bandwidth increases, the baseband signal after DPWM
cannot achieve sufficient dynamic range unless oversampling
ratio (OSR) is maintained because of the increase in quanti-
zation noise and aliasing error mentioned in [10]. If OSR is
to be maintained for wideband signals, the PWM sampling
frequency may be greater than the carrier frequency and
makes this architecture useless. The spectral performance of
DPWM has been well discussed in [21]–[23]. The aliasing-
problem which cause poor spectral performance was identi-
fied and solved in [10] by usingAFDPWMor PFS of DPWM.
According to the analytical Fourier expression of [21], asym-
metric double edge DPWM is utilized in this work because
of the least in-band distortion. The PFS of the asymmetric
double edge DPWM representation of an envelope signal
using only the first K terms in the Fourier series has been
well-derived in [10] and can be written as

EPFS,K (t) =
K∑

k=−K

1
πk

sin(πkE(t))e−jπkej2π fpkt (3)

where fp is the PWM sampling frequency.
Since the imaginary part of (3) is an odd function,

EPFS,K (t) is purely real. The finite number of terms used
in the PFS can make the modulated amplitude a bandlim-
ited signal and reduce the aliasing error. The unfiltered PFS
of DPWM has excellent frequency-domain behavior as the
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FIGURE 3. Comparison of conventional DPWM and PFS of DPWM with
PWM sampling frequencies fp = 100 MHz.

dynamic range is significantly increased leading to excellent
ACLR as shown in Fig. 2. It can also be seen that increasing
the number of terms K used in the PFS, which increases
the bandwidth beyond the sampling frequency, would cause
aliasing error as discussed in [10]. PFS of DPWM would
become conventional DPWM in the frequency domain as K
approaches infinity. The time-domain waveforms of conven-
tional DPWM and PFS of DPWM are compared in Fig. 3.
It can be seen that PFS of DPWM has ripples in the time
domain and is no longer a two-level waveform. Those ripples
are the result of Gibbs phenomenon and leads to distortion
during nonlinear power amplification as shown in [11].More-
over, the ripples may exceed unity which is normalized to the
maximum PA input and requires back off of the PA leading
to lower output power and efficiency.

In [15], it was stated that Gibbs phenomenon occurs near
the discontinuity while using PFS to approximate a non-
periodic or discontinuous function. It was shown by Gibbs in
[24] that the peak amplitude does not decrease with increased
terms in the Fourier series. It can be expressed as the form

lim
K→∞

|f (t)− fK (t)| 6= 0, (4)

where fK (t) is K -term PFS of a discontinuous function
f (t) such as a DPWM signal. An example is illustrated
in Fig. 4 while f (t) is a square wave with period Tp. It can be
seen that PFS is not a good approximation of a discontinuous
function because of Gibbs phenomenon. It can be proven
that the ripples appear not because of limiting harmonics to
finite numbers, but actually because of using Fourier series to
approximate the original function.

III. GIBBS PHENOMENON REDUCTION FILTER
When using PFS ĝK (t) to represent a 2π -periodic analytic
function ĝ(t), it is well known that the approximation error
|ĝ(t)− ĝK (t)| approaches zero with increasing K .
In contrast to perfect estimation of periodic analytic func-

tion, the PFS of discontinuous function suffers from Gibbs

FIGURE 4. An illustration of Gibbs phenomenon in square wave that
shows the approximation error would not reduce with higher order of
Fourier series.

phenomenon because of poor convergence. To resolve this
problem, adding an even function filter σ which has contin-
uous 1st to (p-1)th-order derivative can accelerate the rate of
convergence. Any real and even function σ (f ) which meets
the following properties (5)-(7) can be defined as a pth-order
filter.

σ (f ) = 0, |f | > 1 (5)

σ (0) = 1, σ (1) = 0 (6){
σ (n)(0) = 0
σ (n)(1) = 0

, ∀1 ≤ n ≤ p− 1 (7)

Note that the superscript n in (7) indicates the nth-order
derivative of σ . The filter that only suffices (5) cannot
improve the convergence since it is just the reduction of terms
of a PFS. Because of (6) and (7), the filter is a continuous
waveform that is essential for the filter to enhance approxi-
mation accuracy to higher orders. The filtered PFS of a 2π-
period discontinuous function f (t) with α discontinuity points
ξ1∼ξα can be redefined as

FK (t) =
K∑

k=−K

ck (f (t)) · σ (
k
K
)ejkt (8)

where ck (f (t)) is the FS coefficients of f (t). The impulse
response of filter σ in the time domain is defined as ψ0

K (t)
and can be expand to higher order as

ψ0
K (t) =

K∑
k=−K

σ (
k
K
)ejkt , (9)

where {
(ψn

K )
′
= ψn−1

K∫ 2π
0 ψn

K (t)dt = 0
, ∀n ≥ 1 (10)

while the superscript n of ψn
K (t) means the n-th integral of

ψ0
K (t), which would be later utilized for further analysis of

(15). According to (8) and (9), the approximation FK (t) can
be transformed into the convolution sum as

FK (t) =
1
2π

∫ 2π

0
f (x)ψ0

K (t − x)dx, (11)
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Moreover, (9) can also be expressed with Fourier transform
through the periodic property as

ψ0
K (t) = K

∞∑
m=−∞

σ̂ (Kt + 2mKπ ), (12)

where σ̂ (t) is the inverse Fourier transform of the filter σ (f )
and

σ̂ (t) =
∫
∞

−∞

σ (f )ejxtdf =
∫ 1

−1
σ (f )ejxtdf

=
j
t

∫ 1

−1
σ (f )(1)ejxtdf

=

(
j
t

)2 ∫ 1

−1
σ (2)(f )ejxtdf ...

=

(
j
t

)p ∫ 1

−1
σ (p)(f )ejxtdf . (13)

Note that the integral boundary of (13) can be modified to
[−1, 1] because of the filter property defined in (5). The inte-
gral result can be integrated by parts to higher-order derivative
order p. It is easier to estimate the bounded value in the
Fourier transform form, which would be derived later. Addi-
tionally, ripples appear in the time domain due to Gibbs phe-
nomenon. For the bounded value calculation, ripples would
not affect the result. For the convolution in (11), the ripples
of ψ0

K (t) grow inversely to f (t) near discontinuities which
would suppress the approximation error. The condition in
(10) defines the zero mean value to every order of integration.
Because of (5) and (7), the FS in (9) can be rewritten as

ψ0
K (t) = 1+

∑
k 6=0

σ (
k
K
)ejkt . (14)

Subsequently, all the other integrations can be derived from
ψ0
K (t) as

ψ1
K (t) = t − π +

∑
k 6=0

1
jk
σ (

k
K
)ejkt

ψ2
K (t) =

1
2
t2 − π t +

π2

3
+

∑
k 6=0

1
(jk)2

σ (
k
K
)ejkt

ψn
K (t) = Bn(t)+

∑
k 6=0

1
(jk)n

σ (
k
K
)ejkt , ∀n ≥ 1 (15)

where Bn(t) is the Bernoulli polynomial of degree n and can
be expressed in FS as

B1(t) =
∑
k 6=0

j
k
ejkt

B2(t) =
∑
k 6=0

1
k2
ejkt

Bn(t) =
∑
k 6=0

j2−n

kn
ejkt = −

∑
k 6=0

1
(jk)n

ejkt , ∀n ≥ 1 (16)

Therefore, ψn
K (t) can be rewritten as

ψn
K (t) =

∑
k 6=0

1
(jk)n

[
σ (

k
K
)− 1

]
ejkt , ∀n ≥ 1 (17)

Integrating the convolution sum in (11) by parts with the
impulse response (9), the approximation error can be derived
as

FK (t)− f (t) =
1
2π

α∑
m=1

p−1∑
k=0

Dk,m(t)ψ
k+1
K (t − ξm)

+
1
2π

∫ 2π

0
vp(x)ψ

p
K (t − x)dx (18)

with Dk,m(t) defined as the discontinuous difference of dis-
continuous points (ξ1 ∼ ξα) in 0∼2π period of f (t) in the
form of

Dk,m = lim
t→ξ+m

f (k) (t)− lim
t→ξ−m

f (k) (t). (19)

The first term in the right-hand side of (18) can be defined
as the discontinuity error. It can be seen that the impulse
response of the filter can recover the singularity in every order
derivative of f (t). The second term in the right-hand side of
(18) is the convolution of vp(t) and ψ

p
K (t), which is the pth-

order derivative of f (t) without considering singular points
and the p-th integration of ψ0

K (t), respectively. It is easy to
prove that the convolution of vp(t) and ψ

p
K (t) is bounded by

K 1−2p where the detailed derivation is shown in Appendix A.
Since the second term in the right-hand side of (18) can be

bounded by power of K 1−2p, the discontinuity error plays a
dominant role in the convergence of the approximation error.
To estimate the convergence of the discontinuity error, it is
important to find the boundary of ψn

K (t) for n > 0, which
should start from ψ0

K (t) such that∣∣∣ψ0
K (t)

∣∣∣≤C0 ·K 1−p
∥∥∥σ (p)

∥∥∥
L2(0,1)

{
t−p+(2π−t)−p

}
(20)

where C0 is a constant independent of K , p, σ , t and the norm
of σ is defined as∥∥∥σ (p)

∥∥∥
L2(0,1)

=

[∫ ∣∣∣σ (p)(t)
∣∣∣2 dt] 1

2

. (21)

The derivation of (20) is detailed in Appendix B. It is also
proved that ψ0

K (t) has the most significant influence on the
convergence compared to other integrations ψn

K (t), ∀n ≥ 1.
The approximation error can then be derived as

|FK (t)− f (t)| ≤
α∑

m=1

C · K 1−p (1t)1−p,

1t =

{
t − ξm, t ≥ ξm
t + 2π − ξm, t < ξm

(22)

The result can be regarded as: for any filter satisfying the
definition from (5)-(7) with p ≥ 2, it can let FK (t) converge
to f (t) uniformly with powerK 1−p in the set such that the dis-
tance to the discontinuous points 1t are greater than K−1+ε
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FIGURE 5. A comparison of two approximations with and without the
Gibbs phenomenon reduction filter with K = 8.

FIGURE 6. The approximation error of PFS with different K .

for every ε > 0. The minimum error can be achieved by
minimizingC in (22). In [16], a possible filter σ was proposed
as

σ (f ) = 1−
(2p− 1)!
(p− 1)!2

∫ f

0
[t(1− t)]p−1dt (23)

such that the norm in (21) and C in (22) are minimized.
For the case of square waves, since our application is

PWM, (18) can be reduced to the following form

FK (t)− f (t) =
1
2π

[
ψ1
K (t − ξ1)− ψ

1
K (t − ξ2)

]
(24)

Since there is onlyψ1
K in (24), there is no need to approximate

the original function to higher-order derivative. Hence the
minimum value of p = 2 should be selected to minimize
the approximation error in (24). The Gibbs phenomenon
reduction filter implemented for square waves and PWM can
then be derived from (23) as

σGR (f ) = 1− 3 f 2 + 2f 3. (25)

To examine the effect of the Gibbs phenomenon reduction
filter, simulations of a 50% duty cycle square wave with
period Tp and two different approximations both usingK = 8
are performed. The comparison of three types of waveforms
are shown in Fig. 5 and the approximation error of the PFS
and FK (t) with increasing K are shown in Figs. 6 and 7,

FIGURE 7. The approximation error of FK (t) with different K .

FIGURE 8. Comparison of conventional DPWM, unfiltered and filtered PFS
of an envelope signal in the time domain with PWM sampling frequencies
fp = 100 MHz.

respectively. As shown in Fig. 6, the PFS suffers from poor
convergence and the ripples will always exist regardless of
the order. On the other hand, it is shown in Figs. 5 and
7 that the proposed FK (t) has decent approximation in the
set K−1+ε away from the discontinuity for every ε > 0.
Although the set {1t ≤ K−1} does not converge uniformly,
it is either strictly increasing or decreasing from the point of
discontinuity. In other words, the approximation error in the
set {1t ≤ K−1} would not decrease with the increase of K
while the maximum error occurs at the discontinuity whose
approximate value is the average of both sides.

The Gibbs-phenomenon-reduced digital pulse-width mod-
ulation (GRDPWM), which reduces the time-domain ripples
in PFS of DPWMby adding the proposed Gibbs phenomenon
reduction filter in (25), has the form of

EGRDPWM (t) =
K∑

k=−K

{
1
πk

sin(πkE(t))e−jπkej2π fpkt

·

[
1− 3

(
k
K

)2

+ 2
(
k
K

)3
]}

(26)
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FIGURE 9. Comparison of the wideband spectra for a 20-MHz 5G NR
signal between conventional DPWM, unfiltered and filtered PFS of DPWM
with PWM sampling frequencies fp = 100 MHz and a span of 2 GHz.

FIGURE 10. Comparison of the spectra for a 20-MHz 5G NR signal
between conventional DPWM, unfiltered and filtered PFS of DPWM with
PWM sampling frequencies fp = 100 MHz and a span of 100 MHz.

It is obvious that the computational resources of adopting
the filter is negligible compared to the calculation of PFS,
which is only multiplying K constants. Fig. 8 compares the
three types of PWM all using fp = 100 MHz for a 20-MHz
5G NR signal with K = 8 for unfiltered and filtered PFS
of DPWM as in [10] and [11]. It can be seen in Fig. 8 that
with the addition of the Gibbs phenomenon reduction filter,
voltage ripples are significantly reduced. In Figs. 9 and 10,
wideband and narrowband spectral performances are com-
pared, respectively. From (26) and Fig. 10, it can be seen
that the Gibbs phenomenon reduction filter only reduces the
amplitude of the harmonics. Therefore, ACLR performances
of unfiltered and filtered PFS of DPWM are identical. For the
results in Fig. 10, both unfiltered and filtered PFS of DPWM
achieved ACLR performance of −53.4 dBc while the ACLR
of conventional DPWM was only −39.9 dBc.
To demonstrate the benefits of using the proposed

GRDPWM, a static polynomial model based on characteri-
zation of the PA reported in [25] was used for simulation.
The AM-AM characteristics of the PA reported in [25] is

FIGURE 11. The measured AM-AM characteristics of the RF PA reported
in [25].

FIGURE 12. Simulated normalized envelope of unfiltered PFS of DPWM
before and after the AM-AM model.

FIGURE 13. Simulated normalized envelope of proposed GRDPWM or
filtered PFS of DPWM before and after the AM-AM model.

shown in Fig. 11. The PA was designed for high efficiency
and not for linearity. Therefore, the PA has low gain for small
inputs because of under biasing and is compressed for large
inputs. Simulations were carried out for both unfiltered and
filtered PFS of DPWM, which are shown in Figs. 12 and 13,
respectively. It is clear that time-domain ripples become
distorted for unfiltered PFS of DPWM while the proposed
GRDPWM appears to be more immune to PA distortion.
The calculated rms errors for unfiltered and filtered PFS of
DPWM are 4.57% and 3.60% after distortion from nonlinear
amplifications, respectively.

VOLUME 7, 2019 178793
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TABLE 1. Performance Comparison of Conventional IQ signal, DPWM, PFS and GRDPWM.

FIGURE 14. Basic block diagram of the implemented PMPT system.

IV. SYSTEM IMPLEMENTATION AND MEASUREMENT
For validation of the proposed GRDPWM, a prototype trans-
mitter was implemented. The basic block diagram of the
implemented PMPT is shown in Fig. 14. The PFS signal
filtered with the proposed Gibbs phenomenon reduction filter
is generated and up-converted to the desired carrier frequency
digitally and loaded into an arbitrary waveform generator
(AWG). To achieve the goal of reducing envelope and phase
distortion caused bymatching bandwidth as discussed in [11],
A broadband matching PA that was designed in [25] was
utilized in this work. Using the ATF-511P8 enhancement-
mode pHEMT transistor, the PA was designed with 1.2 GHz
bandwidth from 1.4 to 2.6 GHz with efficiencies of over
57% throughout the designed bandwidth. The measured char-
acteristics with varying input power at a center frequency
of 2.14 GHz is shown in Fig. 15. It can achieve a maxi-
mum output power of 26.0 dBm with a peak drain efficiency
of 63.9%.

The test signal used in this work is a 256-QAM 5G
NR signal with a 20-MHz bandwidth and a 8.5 dB PAPR,
which is the most challenging signal currently defined by the
sub-6-GHz 3GPP 5G NR standard. To compare the distor-
tion after nonlinear power amplification, different types of

FIGURE 15. The measured output power and efficiency with varying input
power.

DPWM with 100 MHz PWM frequencies and conventional
IQ data without PWM were used in the proposed PMPT
system with a carrier frequency of 2.14 GHz. The mea-
sured spectral performances of conventional IQ, DPWM, PFS
and GRDPWM are measured with a spectrum analyzer and
compared in Fig. 16. The measured AM-AM and AM-PM
performances are shown in Figs. 17 and 18, respectively.
Table 1 summarizes the detailed performances of different
setups of the prototype transmitter and the works proposed
in [10]–[12] and [26]. To compare the linearity fairly, peak
power is set to same level in each technique in this work and
measured with an RF power meter. Therefore the average
output power varies in Table 1. Moreover, all methods are
tested under the same bias condition for the measurements
of AM-AM characteristics shown in Figs. 11 and 17. The

178794 VOLUME 7, 2019
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FIGURE 16. The measured output spectrum comparison of conventional
IQ signal, DPWM, PFS and GRDPWM.

FIGURE 17. The measured AM-AM comparison of conventional IQ signal
DPWM, PFS and GRDPWM.

results validate our hypothesis that PMPT can obtain better
linearity performance than conventional IQ which benefits
from overdriving and operating the PA as a switch. Among
the various DPWM methods, conventional DPWM suffers
from aliasing and can be clearly seen from the higher noise
floor away from the carrier frequency. Unfiltered PFS alle-
viates the aliasing problem as seen from the lowered noised
floor. However, from the spectral regrowth in the adjacent
channels, the unfiltered PFS signal has linearity issues. More-
over, back off has to be performed on the unfiltered PFS
signal to avoid hard-clipping of the ripples in the signal.
As a result, the output power is reduced and efficiency is
degraded. The proposed GRDPWM or filtered PFS signal
is more immune to PA nonlinearity and shows the best lin-
earity performance among all cases. Without the ripples,
the RF PA can be driven harder and thus have higher output
power and efficiency. Since the proposed GRDPWM is more
immune to PA nonlinearity, the PMPT is able to achieve an
ACLR of−45.4 dBc, which exceeds the base station linearity

FIGURE 18. The measured AM-PM comparison of conventional IQ signal,
DPWM, PFS and GRDPWM.

FIGURE 19. Location of (t + 2mπ).

specifications for the 5GNR standard without using any DPD
techniques. Moreover, an error vector magnitude (EVM) of
1.67% is achieved, which exceeds the 3.5% specification for
256-QAM modulation.

V. CONCLUSION
In this paper, the problems raised by using PFS of DPWM
in PMPTs because of Gibbs phenomenon are discussed. The
analysis results show that by adding a proposed low-pass
filter in the baseband, time-domain ripples are reduced effec-
tively while not altering the performance in the frequency
domain. For validation, the proposed GRDPWM signal for
a 20-MHz 256-QAM 5G NR signal is tested on a wideband
PMPT system. Compared to using unfiltered PFS of DPWM,
the measured ACLR improves by 10 dB and can achieve
the spectral requirements of 5G NR base stations. The mea-
sured drain efficiency is also improved from 23.3% to 28.3%
because back off is no longer required. Moreover, the pro-
posed filter needs very little computational resources, which
can be negligible compared to other linearization techniques
and can be easily implemented in hardware.

APPENDIXES
APPENDIX A
According to the Cauchy-Schwarz inequality, the convolution
of vp(t) and ψ

p
K (t) can be bounded as

∣∣∣∣∫ 2π

0
vp(x)ψ

p
K (t − x)dx

∣∣∣∣ ≤ [∫ 2π

0

∣∣ψp
K (t)

∣∣2 dt] 1
2

×

[∫ 2π

0

∣∣vp(t)∣∣2 dt] 1
2

(27)
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According to the (17),
∫ 2π
0

∣∣ψp
K (t)

∣∣2 dt can be derived as∫ 2π

0

∣∣ψp
K (t)

∣∣2 dt = 2π
K∑

k=−K

[
σ ( kK )− 1

]2
k2p

+ 2π
∑
|k|>K

1
k2p

= 2π

K 1−2p
K∑

k=−K

A2
1
K
+

∑
|k|>K

k−2p

,
A =

{[
σ ( kK )− 1

]( k
K

)p
}

(28)

The first term of (28) is the Riemann sum of function and can
be derived as an integral

K 1−2p
∫ 1

−1

[
σ (x)− 1

xp

]2
dx (29)

with x = k/K . This term can be bounded by K 1−2p if and
only if the function has finite energy as∫ 1

−1

[
σ (x)− 1

xp

]2
dx <∞, (30)

which can be proved easily from the filter’s properties. The
second term of (28) can be bounded by the same power of K
as ∑

|k|>K

k−2p ≤ 2
∫
∞

K
k−2pdk =

K 1−2p

p− 0.5
(31)

According to the results from (27)-(29) and (31), the second
term in the right-hand side of (18) can be bounded by power
of K 1−2p and has exponential convergence as

1
2π

∣∣∣∣∫ 2π

0
vp(t)ψ

p
K (x − t)dx

∣∣∣∣
≤ C0 · K

1
2−p

[∫ 2π

0

∣∣vp(t)∣∣2 dt] 1
2

. (32)

APPENDIX B
From (12), |ψ0

K (t)| can be bounded as∣∣∣ψ0
K (t)

∣∣∣ ≤ K ∞∑
m=−∞

∣∣σ̂ (K (t + 2mπ ))
∣∣, (33)

where the boundary of
∣∣σ̂ (t)∣∣ can be derived from (13) as

|σ (t)| ≤
∥∥∥σ (p)

∥∥∥
L2(−1,1)

|t|−p = 2
∥∥∥σ (p)

∥∥∥
L2(0,1)

|t|−p (34)∥∥∥σ (p)
∥∥∥
L2(0,1)

=

∫ [∣∣∣σ (p)(t)
∣∣∣2 dt] 1

2

(35)

so (33) can be rewritten as∣∣∣ψ0
K (t)

∣∣∣≤K {2 ∥∥∥σ (p)
∥∥∥
L2(0,1)

∞∑
m=−∞

|(K (t+2mπ ))|−p
}

(36)

Since t is the point inside the open interval between 0 and 2π ,
the location of (t+2mπ ) of each valuem can be illustrated as
Fig. 19. As shown in Fig. 19, it can be divided into pairs Ph

bounded in the open interval (2(h− 1)π , 2hπ ). Each pair has
maximum value with the following situations t → 0 or t →
2π . For every pair (Ph, h > 1), the maximum value can be
bounded as |(Ph)−p| ≤ (2(h−1)π )−p+ (2hπ )−p. So the (36)
can be rewritten as∣∣∣ψ0

K (t)
∣∣∣≤ 2K 1−p

∥∥∥σ (p)
∥∥∥
L2(0,1)

{
t−p+(2π−t)−p+C

}
(37)

C =
∞∑
h=2

(Ph)−p = (2π)−p + 2
∞∑
h=2

(2hπ)−p (38)

Other n-th integrals can be derived from (37) as∣∣ψn
K (t)

∣∣ ≤ 2Cn · K 1−p
∥∥∥σ (p)

∥∥∥
L2(0,1)

{
tn−p + (2π − t)n−p

}
,

∀n ≥ 1 (39)

which has a lower maximum boundary compared to |ψ0
K (t)|.
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