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ABSTRACT With the rise of intelligent and connected vehicles (ICVs), new vehicle applications continue
to emerge, while the computing capability of vehicles remains limited. Mobile edge computing (MEC) is
considered to be the most effective technique for mitigating vehicle computing pressure, with computation
offloading being a key technology for MEC. To solve the problem of excessive task processing delay and
energy consumption due to the vehicle-limited computing power in the vehicular network, we consider the
tasks and the characteristics of MEC, and divide the tasks into indivisible tasks and divisible tasks according
to the size of data (that is, whether it affects functionality after segmentation). Then, two computation
offloading algorithms are proposed named binary offloading and partial offloading separately. The binary
offloading unloads the task to the mobile edge computing server as a whole and selects only an optimal
offloading site; thus, an improved upper confidence bound algorithm is adopted. The partial offloading
divides the complex tasks with large data volumes through time slots processed by different MEC servers,
and uses the Q-learning algorithm to find the most effective offloading strategy. The simulation results
show that the total cost of delay and energy consumption of the binary offloading algorithm is lower
when processing computationally intensive tasks. When addressing divisible and complex tasks, the partial
offloading algorithm improves the real-time performance of the tasks significantly and conserves the energy
of the vehicle terminal.

INDEX TERMS Mobile edge computing, intelligent and connected vehicle, upper confidence bound
algorithm, Markov model, Q-learning.

I. INTRODUCTION
In the vehicle network, each vehicle is equipped with an on-
board unit (OBU) [1], which enables certain calculation and
storage functions. However, with an increasing number of
vehicle services emerging, such as augmented reality, driver-
less, intelligent identification, etc., which require complex
calculations, more complex computing power is required [2].
The limited computing and storage resources of a vehicle-
mounted terminal can no longer meet the needs of these
services, and the cost of improving the in-vehicle computing
capability is enormous. Therefore, we introduce the cloud
computing technology into the vehicle network, as the for-
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mation of vehicle cloud computing can meet these needs
to some extent. However, with the development of mobile
communication, the types and number of terminal devices
continue to increase. If ordinary cloud computing technolo-
gies (centralized computing) are still adopted, the demand
for cloud computing will increase dramatically, which will
easily cause network congestion. The high latency of cloud
computing also affects the user experience [3]. Therefore, this
paper combines mobile edge computing (distributed com-
puting) with the vehicle network. Because of the distributed
computing, this method can overcome the shortcomings of
the centralized processing of cloud computing and alleviate
the computational pressure of vehicle terminals more effec-
tively, as well as lower delay and energy consumption [4].
The mobile edge computing system consists of four basic
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units: the edge cloud infrastructure, the routing subsystem,
the capability open subsystem, and the platform management
subsystem. It offloads computing services to the edge of the
network, which not only expands the computing power of
vehicle equipment but also allows the transmission distance
from the vehicle terminal to the computation offloading sta-
tion to become shorter. Key technologies of the Mobile edge
computing system include computation offloading technol-
ogy, wireless data caching technology, and local offloading
technology. The calculation offloading technology [5] can
effectively reduce the processing delay of task execution,
reduce the energy consumption of vehicle terminals, and
improve the quality of the user experience. It is an important
means to realize real-time processing of terminal services in
the MEC system. The computation offloading includes three
steps: offloading strategy, cloud processing, and result return.
The offloading strategy is the fundamental basis for data
volume partitioning and migration, which is the core part of
computing the uninstallation. Cloud processing is performed
to determine the amount of data migrated to the cloud, relying
on the computing power of the cloud. The result return means
that the results of the task process will be delivered to the
user terminal after cloud processing. In summary, the com-
putation offloading task is an effective means to alleviate
the computational pressure of the vehicle network, but in
the calculation and offloading process, it is necessary not
only to detect the optimal MEC platform but also to detect
the transmission quality of the wireless channel at all times.
Therefore, research on the computation offloading algorithm
has become a hot yet difficult task in the current automotive
network application environment.

According to the characteristics of the task, these tasks are
divided according to the fine granularity. Compared with the
previous scheme, the algorithm proposed in this paper can
more effectively perform the calculation and offloading of
the vehicle task. In this paper, the MEC server is deployed
at the base station to reduce the burden on the vehicle, and
the vehicle is provided nearby. The theoretical foundation for
future intensive IoT technology, vehicle autopilot technology,
and the popularization of VR technology is then laid. The
overall process of the specific research program is shown in
FIGURE 1.

For tasks that need to be offloaded, considering the impact
of the amount of task data on the transmission delay and post-
offload calculation time and load balancing aswell as whether
the task itself can be divided and the integrity of the function
after partitioning, we divided all the tasks into two types.
One includes tasks that need to be directly offloaded without
division, that is, binary offloaded. The algorithm adopted
is based on the improved upper confidence algorithm of a
multi-arm gamingmachine. The other is a data-intensive task.
We divide it and then offload it separately, which is called
partial offloading in this paper. The algorithm used is based
on the Q-learning algorithm, which can make full use of the
computing resources of each node. A lower delay results in
better load balancing. The simulation results show that the

performance of offloading after task classification is better
than that of unclassified offloading.

II. RELATED WORK
Mobile edge computing and computation offloading tech-
nologies are mostly applied to mobile terminal tasks. In the
past two years, with the rapid development of vehicle net-
works and vehicle applications, the task offloading model
of mobile terminals has been gradually applied to the task
offloading of vehicle terminals. To minimize the mobile
energy consumption and the waiting time of calculation,
a general offloading model for determining the offloading
decision is developed, and the number of calculations of the
task is represented by w (CPU cycle) [6], [7]. fm indicates the
CPU speed of the vehicle,d indicates the input data size, and
fs indicates the CPU speed of the cloud server. Efficient com-
putational offload processing has a significant impact on the
performance of user services. The literature [8] investigates
the average transmission power minimization problem while
stabilizing all transmission and computation queues under
tasks QoS requirement constraints, in which the influence
of time-varying channel on the resource allocation strategies
is considered. The literature [9] explores the basic trade-
off between energy consumption and service delay when
providing mobile services in a vehicle network. When the
available resources in a mobile vehicle are scarce, a novel
model is proposed to describe the user’s willingness to pro-
vide resources to other devices. Then, the Markov decision
progress (MDP) framework is used to formulate the cost
minimization problem, and the dynamic reinforcement learn-
ing scheduling algorithm and the deep dynamic scheduling
algorithm are proposed to solve the offloading decision prob-
lem. In [10], a reliability-oriented stochastic optimization
model based on dynamic programming is proposed to per-
form computational offloading under the delay constraint of
application execution. Zhou et al. first deduce the theoret-
ical lower bound for calculating the expected reliability of
offloading and then consider the randomness of vehicle-to-
infrastructure communication; they then propose an optimal
data transmission scheduling mechanism to maximize the
lower bound. The design of a computing offloading system
framework is studied in [11] to achieve a seamless offload-
ing task without affecting the normal use of vehicle ser-
vices. The system framework dynamically makes decisions
based on network information at different times, reducing
the response time of in-vehicle services. The MEC is intro-
duced into the vehicle network in [12] and the contract prob-
lem between the vehicle user and the service provider is
solved regarding the calculation and offloading by contract
theory. The literature [13] refers to vehicle edge computing
(VEC), which constructs an intelligent offloading system
for vehicular edge computing by leveraging deep reinforce-
ment learning to execute computing-intensive applications on
resource-constrained vehicles. A vehicle-based cloud relay
(VCR) scheme is proposed for mobile computing offloading
in literature [14]. The goal is to effectively utilize the com-
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FIGURE 1. Overall process of the specific research program.

puting resources available in the surrounding smart vehicles
of the mobile device in a highly dynamic network environ-
ment, where each vehicle-based cloud may be used only
to help each mobile device perform a small portion of the
application. The fog cloud computing offloading algorithm
in the internet of vehicles (IoV) is proposed in literature [15].
With the goal of minimizing the power consumption of
vehicles and computing facilities, the predictive combined
transmission mode of the vehicle is designed, and the deep
learning model of the computing facility is established to
obtain the best offload allocation strategy. To investigates
the computation offloading problem of the coexistence and
synergy between fog computing and cloud computing, and
achieve the allocation of computation resource and transmit
power, jointly optimizing the offloading decisions was pro-
posed in literature [16]. In order to satisfy heterogeneous
requirements of communication, computation and storage in
IoVs, literature [17] constructs an energy-efficient scheduling
framework for MEC-enabled IoVs to minimize the energy
consumption of RSUs under task latency constraints, and
focus on the energy consumption control issues of MEC-
enabled RSUs for the first time. The resource allocation for
a multiuser Mobile-Edge Computation Offloading (MECO)
system based on time-division multiple access (TDMA) and
orthogonal frequency-division multiple access (OFDMA)
was proposed in literature [18]. Some researchers develop
an optimal auction based on deep learning for the edge
resource allocation. Specifically, they construct a multi-layer
neural network architecture based on an analytical solution
of the optimal auction [19]. There are also some schol-
ars propose a distributed joint computation offloading and
resource allocation optimization (JCORAO) scheme in het-
erogeneous networks with mobile edge computing [20], [21].
An optimization problem is formulated to provide the optimal
computation offloading strategy policy, uplink sub-channel
allocation, uplink transmission power allocation, and com-
putation resource scheduling [22]. To enhance the system-
wide performance, maximize the use of the social tie structure
among mobile users to achieve mutually beneficial compu-

tation offloading decision making was proposed in litera-
ture [23]. To solve the non-convex optimization problem,
an iterative algorithm for clock frequency control, transmis-
sion power allocation, offloading ratio and power splitting
ratio was proposed in literature [24]. Some scholars study
the matching problem between the MEC SPs and the UEs
in a multi-MEC and multi-UE scenario. Within this scenario,
MEC SPs are equipped with limited wireless and computa-
tional resources [25]. Features of Mobile edge computing are
leveraged to propose a novel resource allocation approach
over both communication and computation resources. The
approach, implemented via successive convex approxima-
tion, is seen to yield considerable gains in mobile energy con-
sumption as compared to conventional independent offload-
ing across users [26]. Focusing on minimizing a cost func-
tion that depends on the latencies experienced by the users,
an algorithm to minimize the latency experienced by the
worst case user, under a target energy saving constraint per
user was proposed in literature [27]. A low-complexity online
algorithm was proposed in literature [28], namely, the Lya-
punov optimization-based dynamic computation offloading
algorithm, which jointly decides the offloading decision,
the CPU-cycle frequencies for mobile execution, and the
transmit power for computation offloading. Considering a
multi-mobile-users MEC system, a reformulation - lineariza-
tion - technique - based Branch - and - Bound (RLTBB)
method was proposed in literature [29], which can obtain
the optimal result or a suboptimal result by setting the solv-
ing accuracy. The tradeoff between energy efficiency and
spectral efficiency in multi-cell heterogeneous networks is
investigated, objective is to maximize both energy efficiency
and spectral efficiency of the network, while satisfying the
minimum rate requirements of the users [30]. To transform
the computation offloading problem into a convex problem
and then decompose it in order to solve it in a distributed and
efficient way, an alternating direction method of multipliers-
based algorithm was proposed in literature [31]. To solve
the optimization problem in a distributed and efficient way.
An integrated fog and cloud computing (FCC) approach
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was proposed in literature [32], and develop alternating
direction method of multipliers based algorithms. A low-
complexity suboptimal algorithm was proposed in litera-
ture [33], where the offloading decisions are obtained via
semidefinite relaxation and randomization, and the resource
allocation is obtained using fractional programming theory
and Lagrangian dual decomposition. A multiservice resource
optimization model for heterogeneous access to the internet
of vehicles was proposed in literature [34]. The [35] proposed
Q-learning-algorithm-based communication and computing
joint resource allocation algorithm jointly dispatches various
types of vehicle-linked fog resources, which enables efficient
processing of intelligent transportation applications.

The above literatures optimize the delay or energy con-
sumption of the offloading by different methods but does not
consider the characteristics of the task itself and gives the
corresponding solution.

III. OFFLOADING STRATEGY
A. BINARY OFFLOADING
Through the computational offloading network established
for the actual network scenario, the optimization strategy
of the binary offloading model can be used to solve some
algorithms for solving the multi-arm gaming machine prob-
lem, such as the greedy algorithm, softmax algorithm and
upper confidence bound (UCB) algorithm [36]. This section
describes the problem of a multi-armed gambling machine
and the application of a design confidence algorithm in a
binary offloading model.

Binary offloading is a computational offloading strategy
where the offloading task is a computationally intensive small
task that is often inseparable [37]. The purpose of this paper
is to determine whether the task is processed only locally on
the vehicle or migrated to theMEC system for processing and
which MEC server is selected for offloading.

Assume that a vehicle terminal has N MEC server cover-
ages, respectively labeled N = {1, 2, . . . ,N }, and that this
MEC server is recorded as a collection A, each with different
computing capabilities.

Each of the computational tasks m (m ∈ M ) is described
by three basic parameters: the input data length λm (bit) that
needs to be offloaded, the calculation amount per bit of data
γm, and the time limit Dm. The maximum CPU frequency
at which the MEC server processes traffic is Fn (n ∈ N )
and can be shared using processors while providing comput-
ing services for multiple tasks from multiple vehicles. Use
computing power fm,n to describe the CPU frequency that the
MEC server can assign to a task, which depends on several
factors on the MEC server side, such as the maximum CPU
frequency Fn, current total workload strength, etc. The partial
offloading model is shown in FIGURE 2.

Suppose that a certain amount of data λm is used and that
the task has a calculation amount per bit of data γm. TheMEC
server n is selected for the business calculation, and the CPU
frequency allocated by the MEC server n to the task is fixed

FIGURE 2. Coarse-grained task offloading model.

in the course of processing the task fm,n and, therefore, in the
MEC server n. The computational delay in processing this
task is shown in (1).

dc(m, n) =
λmγm

fm,n
. (1)

Processing the service on the MEC server does not con-
sume the energy of the vehicle terminal, so it is not necessary
to calculate the energy consumed to process the service on
the MEC server.

Input data are transmitted from the vehicle to the MEC
server over the wireless uplink channel. This is expressed
as the channel gain between the vehicle at the location lm
and the base station n ∈ A. Given the transmission power
of the vehicle information, the maximum achievable uplink
transmission rate is as shown in (2).

r(m, n) = W log2(1+
PtxHm,n
σ 2 + Im,n

). (2)

Among them, w is the channel width, σ 2 is the channel
noise, and Im,n is the inter-cell interference when the task
offloads m to the server n. Therefore, the transmission delay
and the transmission energy consumption are as shown in (3)
and (4), respectively.

dt (m, n) =
λm

r(m, n)
. (3)

et (m, n) =
λmPtx
r(m, n)

. (4)

Assuming that the computing power of the vehicle terminal
is strong and that the computing power of all MEC servers
covering the vehicle terminal is weak, when a certain amount
of data γm is calculated and the calculation amount of each
bit of data λm is selected, the vehicle terminal performs local
service calculation, and the data are transmitted. The delay
and transmission energy consumption cost are zero, and the
calculation delay and the calculation energy consumption
when calculating the vehicle terminal processing service need
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to be calculated as shown in (5) and (6).

dc(m, n) =
λmγm

fL
. (5)

ec(m, n) =
λmγmPL

fL
. (6)

where fL is the CPU frequency at the time of processing the
service for the vehicle terminal and PL is the power when the
vehicle terminal processes the service.

In summary, the overall delay and total energy consump-
tion of the m service processing are the objective func-
tions, and each service delay and energy consumption are
the respective constraints. The optimization function can be
expressed as shown in (7)-(9).

min
M∑
m=1

υ1[dc(m, n)+dt (m, n)]+υ2[ec(m, n)+et (m, n)].

(7)

s.t.
M∑
m=1

E(m, n) ≤αB (8)

dc(m, n)+ dt (m, n) ≤ Dm (9)

where α ∈ (0, 1] represents the proportion of the energy
consumed by performing tasks in the vehicle terminal to the
total energy and Dm represents the time m takes when the
terminal performs the task. According to the analysis of the
binary computing offloading model, we propose a binary
offloading algorithm. The specific steps of the algorithm are
as follows:

First, test the set of MEC servers covering the terminal
vehicle in turn with the training samples, and record the first
revenue of each MEC server. The training process flow chart
is shown in FIGURE 3.

Second, according to the empirical conclusion of the upper

confidence algorithm, ucb (i) = 1
t

t∑
j=1

hi (j)+ c
√

log t
n , calcu-

late which MEC server the terminal should be offloaded to
when the next task arrives, where hi(j) is the benefit of the
number i server when offloading the calculation numbered
j. t is the number of times the server with the number i
is offloaded in total, n is the total number of iterations of
training, and c is a constant.

Third, we regard the benefits of each training as a function
of latency and energy consumption. Since the computing
service is different, according to the requirements of the
business processing for the delay and energy consumption,
different weights are assigned υ1 and υ2, and the average
income function is as shown in (10).

zm,i,t = υ1[dc(m, i, t)+ dt (m, i, t)]+ υ2e(m, i, t) (10)

Fourth, through training, the accumulated regrets are con-
stantly updated, and the accumulated regrets tend to be fixed.
It can be considered that the performance of the current
MEC server is optimal, and the cumulative regret calculation

FIGURE 3. Training process flow chart.

formula is as shown in (11).

Rm = E[z(m, i)− z∗(m, n)] (11)

where z∗(m, n) is selected as the highest income of a certain
MEC. Rm is the level of training, and the training ends when
it reaches a certain value. The MEC server is obtained by
selecting the MEC on the basis of the training iterations and
making the accumulated regrets reach a balance.

In this algorithm, we added the exploration probability ε
to explore the newly added MEC service, and the probability
of 1 − ε is used to optimize the utilization of the MEC with
the best benefit so far. According to the introduction of the ε
greedy algorithm, it is unreasonable for it to be a fixed value.
Therefore, the value of ε is expressed by (12).

εn
def
= min

{
1,

cK
d2n

}
, c > 0&&0 < d < 1 (12)

where K is the number of the MEC server in the MEC set,
n is the number of tasks performed so far, and ε is adjusted
according to the reward value of this MEC. Calculate the
revenue of the current task to be offloaded to the MEC server,
and update its average revenue and the accumulated regret
value. If the cumulative regret value changes greatly, discard
the uninstallation plan and restart the offloading decision
for this task; if the decision is correct, proceed to the next
task, which is to make a decision plan, until all the tasks are
offloaded.

B. PARTIAL OFFLOADING
Since the vehicle terminal has mobility and the performance
of the wireless channel of the terminal to the MEC server
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FIGURE 4. Markov state transformation model.

changes greatly, the binary offload can support only services
with small calculation tasks and less computation time. For
some high-intensity tasks, the transmission delay is high,
which increases the requirements of the transmission quality
of the wireless channel. Therefore, in response to these prob-
lems, this section divides these tasks into data by different
processing time slots, abstracts the processing of the business
into the state transition process of the Markov model, and
uses the enhanced learning algorithm to calculate the Markov
model problem for an optimal strategy to offload. The net-
work model established according to the Markov process
and the computational offloading requirement is shown in
FIGURE 4. A mobile application is divided into time slots,
which are considered to be composed of linear topology com-
ponents. Each time slot task can bemigrated to an offload site.
Suppose that these n time slots offload tasks to k offloading
sites. Regard the vehicle terminal as the number 0 site, and
define the k th execution point state as qk . The total execution
status is denoted by Q, and Q = {q0, q1, q2, . . . , qk−1, qk},
where qk is the number i offloading site and q0 is the vehicle
device itself. We consider that each offloading site has a dif-
ferent computing power and network bandwidth. Therefore,
the computing service size of different time slots of each
node varies, and the performance of the offloading strategy
is measured by the total time cost and energy cost. Define
Tυ = {tυ0 , tυ1 , tυ2 , . . . , tυk−1 , tυk } to represent the time cost
of the component when the first time slot is executed on each
offload site.

If fi is expressed as the CPU clock speed (cycles/sec) of
the offload site, and ωυ is expressed as the total number of
CPU cycles required for the instruction of component υ, then
the calculation time of executing component υ on site qi is as
shown in (13).

tυi =
ωυ

fi
(13)

Define Tuυ = {tu0υ0 , tu0υ1 , . . . , tu0υk , tu1υ0 , . . . , tukυk } to
indicate the communication time from which the data are
passed, where the transmission time of the components u to
qj depends on the site qi. The data are transferred from u
to v, where tuiυj represents the time it takes to transfer data
from component u of site qi to component υ on site qi. The
communication time depends on the number of data bytes
transferred and the network bandwidth used between sites.
Suppose du,υ represents the data size passed to component υ
by component u and that ri,j represents the channel bandwidth

between sites qi and qj. Then, the communication time is as
shown in (14).

tuiυj =
du,υ
ri,j
∀(u, v) ∈ n, ∀i, j ∈ [0, k] (14)

Similarly, the definition of pc is the calculated power of
the vehicle terminal, and ps and pr are the data power of the
vehicle terminal and the power of the received data, respec-
tively. Therefore, the calculated energy and the transmitted
energy of the vehicle terminal are as shown in (15) and (16),
respectively.

eυi = tυi × pc, (i = 0) (15)

euiυi =

{
ps × tuiυi , ∀(u, υ) ∈ ni = 0, j ∈ [1, k]

pr × tuiυi , ∀(u, υ) ∈ ni = 0, j ∈ [1, k]
(16)

The goal of task offloading is to determine the offloading
decision to assign n components to k + 1 sites so that the
energy consumption on the vehicle equipment is within an
acceptable range and the time cost is the smallest when the
service is processed. This problem can be simulated as a delay
optimization problem, which has a constraint on energy costs.
The formulation minimization problem is shown in (17).

min {
∑
υ∈V

k∑
i=0

tυi+
∑

(u,υ)∈n

k∑
i=0

k∑
j=0

tuiυj}

st.
∑
υ∈V

k∑
i=0

eυi+
∑

(u,υ)∈n

k∑
i=0

k∑
j=0

euiυj ≤ 1energy (17)

Aiming at the optimality function of the Markov model,
the time difference method based on enhanced learning is
studied. The off-policy or on-policy algorithm is used to solve
the utility function by means of value iteration and strategy
iteration.

According to the analysis of the partial calculation offload-
ing model, a partial offloading algorithm based on Q-learning
is proposed. The specific details of the algorithm are as
follows:

In the Q-learning algorithm, the agent makes the state
transition decision through the instantaneous action value
and the cumulative reward value. For the partially unloaded
Markov model, this paper sets the minimum processing unit
of MEC to 50 kb. When the vehicle intelligent terminal
task is uninstalled, the channel state and computing power
of the surrounding MEC are monitored, and (mi, ωtotal) is
the processing state of the task, where mi represents the
number of the MEC of the current processing task and ωtotal
represents the task that has been processed until the current
state. Take (mi, ωi) as the next action to be performed by
the task, where ωi is the amount of data to be unloaded
in the next action. We set the initial reward function to 0,
and the instantaneous reward function for each step of the
vehicle intelligent terminal offloading task is calculated with
an equation using the total delay and the reciprocal of the total
energy consumption linear expression. dti is the amount of
data unloaded by the vehicle intelligent terminal at time t ,
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fi is the service processing frequency of the unloaded MEC
station, ci is the channel bandwidth of the slave terminal
and the MEC station to be uninstalled, ps represents the
transmission power of the vehicle intelligent terminal, and
eti represents the service processing. The energy consumed
at the time is not consumed by the terminal when processing
at the MEC end; thus, only the energy consumption at the
terminal processing is calculated. Hence, only when t = 0
is added is eti added to the reward function, and the reward
function is as shown in (18).

rt = 1/[k1(
dti
fti
+
dti
ci
)+ k2(

dti
ci
ps + eti )] (18)

Set at time t , the vehicle intelligent terminal selects action
at , the environment moves from state st to st+1, and the
given award is rt . Then, rt = r(st , at , st+1). The probability
distribution with st+1) and rt is determined by st and at ,
and Qt is the action estimation value of the state action pair
at the beginning of time t . In the process of Q-learning,
the optimal function can be approximated by optimizing the
computational Q(s, a) function; the basic update rules are
shown in (19).

Q(s, a)= r + γ max
a∈A

Q(s′, a′)

= (1− λt )Q(s, a)+ λt {r + γ max
a∈A

Q(s′, a′)} (19)

where λt is the learning rate, which represents the learning
speed. The larger the value is, the faster the convergence, but
if the value is too large, it may cause immature convergence
and affect the optimal result. Through the above analysis,
the partial offloading algorithm based on Q-learning is as
shown in Table 1.

Algorithm 1 Coarse-Grained Task Offloading
Algorithm Based on Q-Learning
1: Initialize the state action value, and read the task amount;
2: Repeat (for each task amount);
3: Carry out data dicing based on each MEC performance

to detect the MEC performance and quantity;
4: Repeat (for each step in a training cycle);
5: Calculate the state of each action by selecting each state;
6: Select at from st according to the greedy algorithm strat-

egy;
7: Execute at , and obtain the returns rt and st ;
8: Iteratively update the action value function;
9: Q(st , at ) ← Q(st , at ) + α[rt + γ max

a∈A
Q(st+1, a) −

Q(st , at )];
10: st ← st+1;
11: Until the task processing result is passed back to the

terminal;
12: Until all task data processing is completed.

As can be seen from the table, each learning process of the
vehicle intelligent terminal is the entire task of completing the
state from the initial state to the target state. In the iterative

FIGURE 5. Qualification trace impact diagram.

process of each learning of the vehicle intelligent terminal,
the reward value of the current state and the estimated value of
a certain action are affected only by the previous state. That is,
the training of the algorithm transmits data only once, so it is
also called a one-step iterative algorithm. That is, the reward
function of the enhanced learning has the drawback of hys-
teresis. This means that if the agent is unsuccessful in the
development of the step n, it can only be the state of the n
step state s, and the action a can calculate the current instant
return r(sn, an) = −1. The immediate returns for all states in
which the previous n − 1 step is cleared. Therefore, for any
previous state S and action a, the immediate return function
r(s, a) does not indicate the quality of the strategy.
In the Q-learning algorithm studied in this paper, the

election degree in the instantaneous difference method is
introduced, which is called the qualification trace, such that et
represents the number t qualification trace, and the qualifica-
tion trace can be used to indicate each action and state before
the number t step. To determine the weight of this, such that
the lag of the data can be solved, the mathematical expression
of the qualification trace is as shown in (20).

e(s, a) =


λγ et−1(s, a)other
1s = st , a = at
0t = 0

(20)

The expression of the qualification trace means that when
a certain state value is repeatedly utilized and a new action is
selected, the qualification of the new action is set to 1. As the
number of iterations increases, the weight of this state decays
exponentially, as shown in (21); its specific effect is shown in
FIGURE 5.

δt+k=rt+k+γ max
a∈A

(Q(st+k+1, a)−Q(st+k , at+k )) (21)

The introduction of the qualification trace makes the
Q-learning algorithm memory-recognizable. Therefore,
the accumulated state of the stored Q-state through the itera-
tion of the corresponding Q-value is as shown in (22).

Q(st , at ) = Q(st , at )+
n−1∑
k=1

et+k (st , at )δt+k

= Q(st , at )+
n−1∑
k=1

(λγ )kδt+k (22)

After the above analysis, this paper proposes an improve-
ment in the partial offloading algorithm after introducing the
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qualification traces for Q-learning. The specific algorithm
flow is shown in Algorithm 2.

Algorithm 2 Partial Offloading Algorithm Based on
Q-Learning
1: Initialize the state action value, and read the task amount;
2: Repeat (for each task amount);
3: Carry out data dicing based on each MEC performance

to detect the MEC performance and quantity;
4: Repeat (for each step in a training cycle);
5: Calculate the state of an action selected for each state;
6: Select at from st according to the greedy algorithm strat-

egy;
7: Execute at , and obtain the returns rt , st and δ = r +
γ max

a∈A
(Q(s′, a)− Q(s, a));

8: Until the task processing result is passed back to the
terminal;

9: Q(st , at ) ← Q(st , at ) + α[rt + γ max
a∈A

Q(st+1, a) −

Q(st , at )];
10: st ← st+1;
11: Until the task processing result is passed back to the

terminal;
12: Until all task data processing is completed.

Read the data amount from the text, and perform data dic-
ing according to the task execution performance of the MEC
monitored by the terminal. When the state value function of
the current state and the predicted action value function of
the next action are calculated, the action value is performed
using the value of the state and the action. The update of the
function, after multiple iterations, forms an optimal offload
strategy.

IV. SIMULATION AND ANALYSIS
A. BINARY OFFLOADING SIMULATION AND ANALYSIS
The binary offloading task represents some inseparable
tasks or tasks that can be processed only at the terminal.
For the processing of inseparable tasks, an upper confidence
algorithm that addresses the problem of multi-arm gam-
ing machines is proposed. Then, this algorithm is slightly
improved to make it more suitable for network scenarios.
The text is designed for the parameters of the simulation
scenario, considering that there are five detectable base sta-
tions around the terminal, with each base station having one
MEC server. The calculation frequency and the maximum
calculation amount of each MEC server are set, and each task
can be involve one of theMEC servers or the terminal itself to
process the task at a certain time. The size of the uploaded task
volume is read from the terminal and saved in a text document
for queuing because the simulation is for binary operation
offloading; thus, the task volume is relatively small. This
paper is specified below 50 kb, and the specific simulation
network scene parameters are shown in Table 1.

In addition to the above network scene parameters, this
paper also sets the calculation frequency and the maximum

TABLE 1. Network parameters.

TABLE 2. Network parameters.

FIGURE 6. Cumulative regret value.

calculation amount of each MEC server and tests the per-
formance of the vehicle terminal. The parameters are shown
in Table 2.

The cumulative regret value of the algorithm is simulated
by taking the calculation task volume of 30 kb as an example.
The relationship between the cumulative regret and the num-
ber of iterations is shown in FIGURE 6. It can be seen from
the beginning that the terminal recognizes the performance
of the external MEC system. When the amount of knowledge
is relatively small, the regret value increases rapidly. As the
number of iterations increases, the vehicle terminal continu-
ously learns and explores the surrounding environment, and
the search strategy tends to optimize the strategy. Accord-
ingly, the unfortunate increase is reduced. Among them, most
of the binary offloading tasks are services with high real-
time requirements. This experiment verifies the cumulative
regret value of the binary computing offloading caused by
different values of the benefit function of the delay function
and the energy of the income function, where υ1 represents
the coefficient of total delay for business processing and υ2
represents the coefficient of energy consumption for business
processing.
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FIGURE 7. Comparison of delay costs for different tasks.

FIGURE 8. Comparison of energy costs for different tasks.

In the comparative simulation experiment of the binary
offloading algorithm, the comparison of the delay between
the 0 bit and 80 bit tasks and the energy consumption is
taken. This paper compares the greedy offloading algorithm
proposed by [38] for the binary offloading algorithm with
the classical computing offloading algorithm based on the
upper confidence bound algorithm and the ε−UCB algorithm
proposed in this paper. FIGURES 7 and 8 show that the upper
confidence algorithm is adopted. When the MEC server is
trained first to obtain a certain prior knowledge by the upper
confidence algorithm, the delay and energy consumption of
the task processing are low, and the ε − UCB algorithm pro-
posed in this paper has lower cost in terms of delay and energy
consumption; thus, this offloading algorithm works better.
In addition, binary offloading is mainly proposed for delay-
sensitive intensive small tasks, while small tasks are based
on 50kb. As shown in the figure, the effect of the offloading
algorithm works best at 50 kb. The effect is weakened.
Since the energy consumption of the task of performing

the calculation and offloading on the MEC server mainly
comes from the transmission consumption of the request
data, when the task selection is performed at the terminal,
the energy consumption of the terminal is derived from the

energy consumption of the task execution; thus, the energy
consumption is slightly higher; see the two spikes in the
figure for proof.

In summary, the performance of the binary offloading
algorithm is mainly analyzed from the accumulated regret
value, the delay of business processing and the cost of
energy consumption. These analyses are mainly based on
the selection of the reward function. The simulation analysis
mainly compares the accumulated regret value and the cost
of energy consumption and delay when performing binary
offloading. Although the other factors are not considered,
the upper confidence bound algorithm can, through training
to establish the computing power function of each MEC
server, reduce the delay of the task execution and the cost of
energy consumption. To better adapt to the mobility problem
of a device, the proposed ε − UCB algorithm is adopted in
the upper confidence algorithm. The exploration probability
is increased to explore the computing power of the unknown
MEC server, and the influence of the movement of the vehicle
equipment on the task offloading algorithm is solved.

B. PARTIAL OFFLOADING SIMULATION AND ANALYSIS
Part of the task represents a large amount of data and can be
divided. For this kind of task, a partial offloading algorithm
based on Q-learning is proposed. By analyzing the instan-
taneous difference method, the qualification trace is used
to improve the hysteresis of Q-learning, and the algorithm
is simulated and analyzed. Since this section is aimed at
partial analysis, the task set in this paper is more than 50 kb.
Therefore, the specific simulation network scene parameters,
except the task size, are as described in the above section
of this chapter. The table shows and sets the calculation fre-
quency and the maximum calculation amount of each MEC
server, and the performance of the vehicle terminal is tested.
The parameters are shown in Tables 1 and 2.

We compare the convergence speed and strategy of the
Q-learning algorithm and the improvedQ-learning algorithm.
The results are shown in FIGURE 9. The state point Q-value
of the training in the Q-learning is continuously iterated and
trained to reach the optimal state. The already converged
state can affect the correct choice of the latter. After the
qualification trace is added, the memory matrix is generated,
the relationship between states is established, the efficiency
of the traditional Q-learning is improved, and the update
speed of the Q-value is accelerated. Therefore, after fewer
iterations, the optimal strategy can be achieved, and the con-
vergence speeds up.

The idea of calculating the offloading is to process the vehi-
cle terminal task upload until the end of the task, to complete
the processing of a task, and to perform a state transition in
each time slot. In this paper, the task quantity is changed from
100 bits to 100 steps, and eight tests are performed. The two
algorithms are tested for optimal policy state transition.

In this experiment, data of size 100800 bits are selected,
and the classical offloading algorithm based on the Lyapunov
function, improved Q-learning algorithm and traditional
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FIGURE 9. Convergence comparison.

FIGURE 10. Comparison of delay costs for different tasks.

FIGURE 11. Comparison of energy costs for different tasks.

Q-learning offloading algorithm proposed in [39] are
compared and analyzed. As shown in FIGURES 10 and 11,
the time delay and energy cost of the offloading by the
MEC are lower than those of the Lyapunov-function-based
offloading algorithm, and the delay and energy consumption
of the improved Q-learning offloading algorithm are less than
those of the conventional Q-learning algorithm.

FIGURE 12. Relationship between energy consumption and time delay.

Because the energy of the vehicle terminal is lim-
ited, the simulation experiment is also carried out on the
relationship between the energy consumption and the delay
consumed by the task execution. The algorithm satisfies the
adjustment of the optimization strategy when the energy level
is fixed. Now the task volume is fixed to 500 bits. Under
the premise of limiting the energy budget, the experimen-
tal comparison of the algorithm is shown in FIGURE 12.
When there is no offloading algorithm, the energy con-
sumption is a fixed value. When considering the energy
consumption, the Q-learning offloading algorithm and the
improved Q-learning offloading algorithm experience a grad-
ual decrease as the energy consumption increases until the
energy budget reaches the energy consumed only by the ter-
minal, and the link between latency and energy consumption
is subsequently weakened. It is true that under the premise
of a constant energy budget for the same task, the improved
partial offloading algorithm is better than the traditional
Q-learning offloading algorithm

After analyzing the index delay and energy consumption of
the offloading calculation, the proportion of the task quantity
offloading can also directly reflect the offloading strength
of the calculation offloading. In this paper, the offloading
ratio is analyzed by the histogram, and the different tasks
are counted according to the offloading result. Under the
two algorithms, the size of each task is downloaded. The
result is shown in FIGURE 13. Overall, the improved partial
offloading algorithm is more powerful, and the traditional
Q-learning offloading is performed for 100 bit and 700 bit
tasks. The algorithm chooses not to perform the offloading,
only performing the service in the terminal, and the improved
partial offloading algorithm performs a small part of the
offloading calculation. Combined with the comparison of
the graph delay results, the delay of the improved partial
offloading algorithm is lower than that of the traditional
Q-learning offloading algorithm, while at 300 bits, the tra-
ditional Q-learning offloading algorithm has a slightly higher
offloading ratio than that of the improved partial offloading
algorithm. However, when compared with the graph delay,
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FIGURE 13. Offloading ratio.

the partial offloading algorithm proposed in this paper has a
better performance.

In the simulation experiment of the partial offloading algo-
rithm, the convergence speeds of the two algorithms are
analyzed separately, and in different offloading algorithms,
the strategy selection of the offloading MEC system accord-
ing to the values of different Q-learning functions varies;
thus, the final optimal offloading strategy is very different.
In this respect, for the offloading strategy presented for the
two algorithms, the delays in taking the respective offloading
strategies, the delay analysis under different energy con-
straints, and the offloading ratio of the two algorithms,
a comparative analysis was conducted.

V. CONCLUSION
This paper is devoted to designing amore efficient calculation
and offloading algorithm for vehicle terminals, making the
processing of services more efficient and improving the qual-
ity of service for users. Through the analysis of the principle
of computing offloading, the offloading task is further divided
according to the size of the traffic volume, and the algo-
rithm is divided into two types: binary offloading and partial
offloading. For the binary offloading algorithm, the total cost
of delay and energy consumption of the service processing
by the upper confidence algorithm is lower than that of the
traditional binary offloading algorithm, and the addition of
the exploration probability further compensates for the defect
of the traditional binary offloading for the mobile service
processing. For the partial offloading algorithm,we simulated
the proposed Q-learning partial offloading algorithm and the
traditional Q-learning algorithm. It can be seen from the com-
parison results that in the tasks process under the same task
amount, the processing delay and the energy consumption of
the vehicle terminal of the Q-learning algorithm that joins
the qualification trace are lower than those of the traditional
Q-learning algorithm; meanwhile, the convergence speed is
fast. It is thus proved that the existence of the MEC system
is necessary in response to the explosive growth in traffic,
and effective computation offload can significantly improve

the processing speed of a task and the user experience. At the
same time, it also provides a powerful proof for the role of the
MEC system in producing low-latency and high-efficiency
services for users.
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