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ABSTRACT This paper addressed the vessel segmentation and disease diagnostic in coronary angiography
image and proposed an Encoder-Decoder architecture of deep learning with End-to-End model, where
Encoder is based on ResNet, and the deep features are exacted automatically, and the Decoder produces the
segmentation result by balanced cross-entropy cost function. Furthermore, batch normalization is employed
to decrease the gradient vanishing in the training process, so as to reduce the difficulty of training the
deep neural network. The experiment results show that the algorithm effectively exacts the feature and
edge information, therefore the complex background disturbance is suppressed convincingly, and the vessel
segmentation precision is improved effectively, the segmentation precision for three typical vessels are
0.8365, 0.8924 and 0.6297 respectively; and the F-measure are 0.8514, 0.8786 and 0.7298, respectively.
In addition, the experiment results show that our proposed can be generalized to the angiography image
within limits.

INDEX TERMS Coronary microvascular, cross-entropy, cost function, encoder-decoder, deep learning,
batch normalization.

I. INTRODUCTION
Cardiovascular disease is very common and one of the
diseases with the highest morbidity in the world [1]. With
the development of medical imaging technology, doctors
can have a intuitive understanding of the cardiovascular
disease through medical imaging. Nowadays, many imag-
ing techniques for the diagnosis and treatment of coronary
heart disease have been developed. Computed Tomography
Angiography (CTA) has the advantages of low price, sim-
ple operation and non-invasive imaging and is one of the
most commonly used diagnostic methods for coronary heart
disease [2].

With the development of the economy and the increase
of life pressure, the prevalence of cardiovascular disease
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is rising, it is one of the most common causes of death in
the world, which is a serious threat to human health [3].
Studies have shown that coronary vascular stenosis is the
main cause of coronary heart disease. In the human body, the
coronary artery is the only way to supply blood to the cardiac
muscle, and its health determines whether the cardiac muscle
has enough nutrients/energy to maintain the rhythmic beat
of the heart. Stenosis of the coronary arteries usually causes
stenosis or obstruction of the vascular lumen by certain pre-
cipitates in blood vessels or chronic thickening of the vessel
wall, which impedes the normal flow of blood and leads to
myocardial ischemia or necrosis [4]. Figure 1 is myocardial
ischemia caused by coronary atherosclerosis. There are many
diagnostic methods for coronary vascular stenosis. Coronary
angiography is a safe, reliable and effective non-invasive
diagnostic method, as shown in Figure 2. It is still the gold
standard for the diagnosis of coronary heart disease at home
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FIGURE 1. Myocardial ischemia caused by coronary atherosclerosis.

FIGURE 2. Coronary angiography.

and abroad. At present, the diagnosis method of coronary
angiography image is that the doctor analyzes the blood
vessel tree structure in the image, analyzes the contrast of
the pixel, and determines the disease condition based on
experience [5]. Due to the limitation of imaging quality and
personal experience, the results of manual reading are sus-
ceptible to subjective factors, and have the disadvantages of
time-consuming and labor-intensive, low reliability and poor
repeatability.

With the development of computer technology, medical
image processing and analysis technology is increasingly
used in clinical practice so as to achieve an auxiliary diag-
nosis of the disease, help doctors reduce repetitive work,
improve diagnostic efficiency and accuracy, and develop opti-
mal treatment options. Recently, the effective method for
judging angiographic stenosis is to locate the location of
stenosis based on the blood vessel diameter parameter in the
image [6]. Therefore, the stenosis detection and recognition
based on blood vessel diameter measurement is of great sig-
nificance. Extracting the contour (or edge) of the blood vessel
and the centerline of the blood vessel to calculate the diameter
of the blood vessel is a common method for determining
the stenosis of blood vessels. Methods for extracting blood
vessel contours include mathematical morphology methods,
parametric model methods, and statistical methods. The com-
mon methods for extracting centerlines are based on vas-
cular region tracking and geometric feature methods. When
calculating the diameter of blood vessels, the more widely
used algorithms mainly include edge intersection method and
parametric model method [7]. The edge intersection method
is a relatively simple diameter measurement method, and

the accuracy of the edge point position directly affects the
diameter measurement result. The parametric model method
estimates the matching degree between the model parameters
and the actual blood vessel. In addition, Kalman filtering is
used to detect areas of sudden changes in vessel diameter for
analysis of vascular stenosis. This method treats the diameter
of the blood vessel as a series of signals, and the abnormal
region of the signal obtained by the analysis is the stenosis
region of the blood vessel. The stenosis area detected by
this method has a certain hysteresis in space. At present,
most researchers focus on blood vessel contour extraction,
centerline extraction, and diameter calculation [8].

Therefore, our works aim to provide a new model for
clinical diagnosis by combining the deep learning technique
and the balanced Cross-entropy cost function to achieve
automatic segmentation and stenos is assessment in coro-
nary angiography image. This paper builds Encoder-Decode
framework based on deep residual network (ResNet), com-
pletes the automatic extraction of image features and the
learning of segmentation models, thus achieving end-to-end
segmentation result from input image to the segmentation
result. In addition, the normalization processing of data
is implemented by Batch Normalization technology before
each convolution operation, thus discarding the traditional
convergence strategies such as Dropout and Weight Decay,
and improving the training precision of the neural network.
Finally, a verification experiment was carried out for the
blood vessels in the angiographic image database.

II. RELATED WORKS
The use of statistical region fusion method for blood vessel
segmentation is currently the most common method. This
method was first proposed by Nock et al. The main idea is
to determine the similarity of adjacent pixels and regions
in the image through statistical criteria so as to realize the
integration. This method not only considers the difference
in gray scale between different areas in the image, but also
specifies the actual meaning of the corresponding label in dif-
ferent areas. For example, there are differences in gray value,
contrast in an angiographic image, but they are all blood
vessel region. Therefore, themethod can accurately fuse these
different regions into the same blood vessel region [9]. The
segmentation method consists of three steps: (1) statistical
description of the image region: the image is regarded as
a series of statistical features; (2) statistical description of
region fusion: regional fusion is done according to the statis-
tical characteristics of the image. (3) regional fusion: judging
all the pixels one by one according to the obtained criterion,
finding the regions with the same attributes and merging
them. Although statistical region fusion method performs
well when extracting dim-small blood vessels, it is easy to
cause false detection under CTA images.

With the continuous development of deep learning tech-
nology, it has shown outstanding advantages in the field of
computer vision and image processing. More experts and
scholars have begun to apply deep learning technology to
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the field of vessel segmentation in angiogram. In [10], ves-
sel segmentation based on deep learning combined with
semi-supervised adaptive support vector machine is used to
improve the segmentation accuracy in CTA images, and the
vessel center line and the microvessel with low contrast are
positioned by radial projection, and the improved complex
wavelet is used to enhance the blood vessel. Deep learning
is applied to the enhanced images to generate deep feature
vectors, and then semi-supervised support vector machine is
performed to extract the main structure of the blood vessels.
Finally, the segmented image is a combination of tiny blood
vessels and main blood vessels.

From the research of 2D sequence image segmentation,
literature [11] proposes an improved particle filter algorithm
based on multi-features, which realizes the tracking and seg-
mentation of vascular in coronary CTA sequence images, and
render the 3D model of vascular by surface rendering algo-
rithm. In the tracking algorithm, firstly, the bifurcated coro-
nary vessels are tracked by the feature matching algorithm;
secondly, the multi-features are combined and the particle
resampling rules are improved to realize the tracking of small
vascular with topological structure and positional changes;
Finally, the center of the tracking target is used as a seed point
to achieve sequence segmentation of vascular [12]. Through
experimental data analysis, the accuracy of coronary target
tracking in this algorithm reaches 97.84%, and compared
with other tracking methods, the superiority of the algorithm
in this paper is verified.

In order to realize automatic segmentation, from the
research of 3D volume data segmentation, this paper proposes
a 3D W-Net with adaptive weight loss function (3D W-Net
With Adaptive Weighted Loss [13], AWL-W-Net). In this
process, the W-Net network structure training segmentation
model is established; Secondly, combined with the character-
istics of coronary CTA images and W-Net network training
results, the adaptive weight loss function layer is proposed,
which enhances the network learning ability and achieves the
goal of improving the segmentation accuracy of the vascular
model and repairing the fracture of the 3D model. AWL-
W-Net can complete the high-precision segmentation, and
compare the results with W-Net and 3D U-Net network,
which proves that AWL-W-Net network is not only improved
the accuracy of segmentation, and the fracture of the model
can be repaired, providing doctors with a high-precision 3D
model of coronary vessels that is more in line with clinical
needs.

In summary, the vessel segmentation based on deep neural
network in coronary angiography shows that the feature space
construction is the process of extracting image features by
deep neural network. The accuracy is determined by the
structure of deep neural network, and it will also affect
the accuracy of blood-vessel segmentation. In order to fur-
ther approximate the strong nonlinearity of the segmentation
model, the depth of the deep network is generally set deeper.
This often leads to gradient vanishing or gradient explosion
of error back propagation during network training, making

FIGURE 3. Flow diagram of vessel segmentation in angiographic image.

deep neural networks difficult to train. Therefore, the key to
achieving end-to-end high-precision segmentation of blood
vessels is to construct a reasonable and well-trained deep
learning framework and structure.

III. PROBLEM DESCRIPTION
Given the angiographic image I , the pixel point is gh× gw =
g, where gh is the height of I , gw is the width of I , and the
number of information channels is C; if the image matrix
is transformed into vector, there is I =

{
x1, x2, · · · xg

}
⊂

Rg×c; the blood vessel segmentation result of angiographic
image [13] is Is =

{
y1, y2, · · · yg

}
⊂ Rg×2. And the segmen-

tation process is shown in Figure 3.
The essence of vascular segmentation is to establish an

end-to-end mapping relationship between the angiographic
image I and the segmentation result Is. Because of the high
dimension of the input image I , the complex background
and the complex and changeable vascular structure, generally
f (·) is a high-dimensional nonlinear model, it is difficult to
establish the mapping relationship Is = f (I ), f : g × c →
g × 2 at one time. Therefore, the process is divided into
two steps: first, extract features and establish feature space;
then, build the reasonable segmentationmappingmodel fH (·)

based on the feature space to complete the segmentation of
blood vessels [13].

If the feature space of the segmentation model is set as
H = h1, h2, · · · , hn ⊂ Rn×m, there is a mapping relationship
fc (·) , fc : g× c→ n×m between I and H; then complete the
feature extraction of the image, and there is H = fc (I ) [15].
Obviously, the mapping model between the feature space and
the segmentation result is fH (·) , fH : n×m→ g×2, and the
segmentation of blood vessel Is = fH (H) is realized.
With the continuous improvement of resolution on angio-

graphic images, there are two challenges in establishing the
mapping model between image feature space and blood ves-
sels:
(1) The dimension of the feature space has been greatly

improved. For the same blood vessel, the improvement of res-
olution on the angiographic image means that the number of
pixels representing the target will increase. If I ⊂ Rg×c only
represents blood vessel, then Gmust increase with resolution.
This will inevitably make the mapping relationship Is = f (I )
between the angiographic image and the segmentation result
show high-dimensional characteristics [16].
At the same time, with the improvement of resolution, the

structure, texture, spectrum and other information of angio-
graphic image are more abundant, and the number of features
that can be used to effectively represent blood vessels is
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FIGURE 4. Deep learning framework.

bound to increase, that is, the dimension of feature space H
of angiographic image is greatly increased. So this inevitably
makes it more difficult to build fc (·) and fH (·)manually. This
is also one of the main reasons for the low accuracy, low
generalization ability and even failure of traditional image
segmentation methods [17].

(2) The non-linear relationship of the mapping model is
more complex. In low-resolution angiographic images, a ves-
sel may only be represented by a few or dozens of pixels,
and the simple segmentation model fH (·) can be directly
established through specific spectral information (or gray-
scale information). In high-resolution angiographic images,
the dimension of feature space H increases, and feature vari-
ables (such as gray scale, information entropy, edge infor-
mation, etc.) are often coupled with each other, and the
relationship between feature variables and segmented targets
is strong nonlinear. This will inevitably lead to the manual
segmentation model fH (·) cannot accurately describe the
relationship between the image and the 0bject.

IV. OUR PROPOSED MODEL ARCHITECTURE
A. THE GENERAL FRAMEWORK
Deep learning is to train a large number of samples to make
the trained deep neural network approach the real model Is =
f (I )without intermediate process, so that the end-to-end task
mode from the input image to the segmentation result can be
realized [18]. In this paper, the high-resolution angiographic
image segmentation based on deep learning framework is
shown in Figure 4.

Each batch contains two parts: angiographic image and
vascular label. The feature image (from which the feature
space H is expanded) is obtained by making angiographic
image go through the deep residual neural network, and
the function of encoding vascular features is realized [19].
Then, a deconvolution decoder is used to segment the blood
vessels through the up-sampling of the feature image, and the
output size is restored to the original size of the angiographic
image. And this process realizes the function of decoder. The
decoding results are sent to the optimizer together with the

FIGURE 5. Deep learning framework; (a) Conventional framework; (b)
Residual model framework (c) our proposed framework.

vascular label, and the weights of the residual neural network
and the deconvolution network are optimized by using the
random gradient descent method [20]. When the training
is over, the weight of the fixed neural network remains
unchangeable, and the output result is the segmentation result
of the blood vessel.

Residual neural network is a network structure proposed
to reduce the difficulty of deep neural network training. The
training object is no longer the real model R (x), but the
difference R (x) − x between the real model and the input
sample. The frame structure of residual neural network is
shown in Figure 3 (b). where the trained model is residual
model F (x) = R (x) − x, and the feed-forward channel of
the sample is introduced at the output end of the model to
form a closed loop, which makes y = F (x) + x = R (x),
so the final output is still the real model. In this framework,
the weight convergence of neural network is more effective.

B. ENCODER STRUCTURE BASED ON RESIDUAL DEEP
NEURAL NETWORK
Suppose the sample input is x; the training output is
y = R (x); and the conventional convolutional neural network
is shown in Figure 5(a); the training result directly approxi-
mates the real model. In order to make the output model more
approximate to the real model, the deep learning network
is usually designed deeply to obtain high-dimensional and
strong non-linear mapping. But it often makes the network
training difficult, which leads to the decrease of prediction
accuracy and even training failure. For this reason, He et al.
proposed a residual neural network [21], which can better
approximate the real model of the system, and its principle
is shown in Figure 5(b).
The implementation framework of single-layer residual

neural network is shown in Figure 5(c). The activation lay-
ers are after the front-end convolution layer, and the output
of the last convolution layer and the feed-forward signal
are superposed to activate the output. In the closed loop of
the feed-forward channel, there are many convolution layers
and activation layers, but in this paper, a typical two-layer
convolution is used.
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Under the guidance of the core idea of Literature [23],
this paper uses the deep residual neural network as the basis
to build the encoder structure to automatically extract the
features needed for vascular segmentation. However, the level
of the typical residual neural network is generally designed
deeper, and usually there are 50, 101, 200 or more layers.
The deeper the network structure is, the more computation
will be required. After a lot of experiments, on the premise
of ensuring the segmentation accuracy, a 31 layer residual
neural network is designed to reduce the calculation. The
deep residual network is divided into five convolution types,
and the number of each convolution layer is set to 1, 6, 8,
8, 8, respectively. The number of convolutions can not only
accurately extract the features needed for vascular segmenta-
tion, but also significantly reduce the amount of calculation.
Except for the convolution layer of the first type, the differ-
ence of other convolution types mainly lies in the number of
convolution kernels.

In literature [24], the residual model framework is
described, where K is the convolution kernel size; S is the
convolution step; and C is the number of convolution out-
put channels. Each convolution layer includes convolution,
Relu activation and batch normalization processing. And the
‘‘same’’ mode is used for padding in the convolution process.

In order to further reduce the amount of calculation,
the improved method of feed-forward closed loop in
Literature [25] is used to replace the two-layer convolution
whose convolution kernel size is 3 with three-layer convo-
lution whose convolution kernel size is 1, 3 and 1 respec-
tively. In addition, the approximation precision is ensured by
increasing the number of input and output channels. Take
conv2_2 and conv2_3 as examples, and the replacement
method is shown in deep model.

When the output channel of the convolution layer in the
residual neural network changes, for example, the number
of output channels from conv2_4 to conv3_1 changes from
64 to 128, the input and output of the feed-forward channel
are inconsistent. And as shown in Figure 5, the input channel
of T1 is 64, the output channel is 128. Therefore, the feed-
forward channel and the tail convolution output cannot be
added and activated directly, so the output channel needs to be
expanded during the convolution operation of feed-forward.
Take layer T1 as an example, the replacement of feed-forward
closed loop and channel expansion structure is analyzed. And
its similar structural replacements also include T2 and T3.

Compared with the two kinds of replaced structures,
the number of input and output channels of the feed-forward
convolution operation is 256. The input channel of the feed-
forward convolution operation is 256, but the output channel
is 512. Only after the channel is expanded, the output channel
is the same as that of the Conv3_1_3.

C. DECODER STRUCTURE CONSTRUCTED BY
DECONVOLUTION
The feature image is extracted from the angiographic image
by deep residual neural network, which realizes the function

of encoder. A convolution kernel of 2×2 is used on the image
of 3×3, and the convolution process of stride S = 1 is easily
dscribed, which will not analyze in detai [26].

The input image is vector X = x1, x2, · · · , xT9 and the
output feature image is Y = y1, y2, y3, yT4 . The convolution
process can be expressed as follows:

CX = Y (1)

C =


ω1 ω2 0 ω3
0 ω1 ω2 0
0 0 0 ω1
0 0 0 0

ω4 0 0 0
ω3 ω4 0 0
ω2 0 ω3 ω4
ω1 ω2 0 ω3

0
0
0
ω4


(2)

In deep neural network, the process of deconvolution is the
inverse of convolution. Therefore, the deconvolution of Equa-
tion (1) can be regarded as the propagation process from
Y to X. Set the output loss function as Q, and calculate
the back propagation of convolution according to BP (back
propagation) algorithm [27], which is shown as follows:

∂Q
∂x
=

(
∂Q
∂x1
· · ·

∂Q
∂x9

)T
(3)

According to Eq. (1), we can obtain:

∂Q
∂xi
=

4∑
j=1

∂Q
∂yj
· · ·

∂yj
∂xi

= C1i
∂Q
∂y1
+ C2i

∂Q
∂y2
+ C3i

∂Q
∂y3
+ C4i

∂Q
∂y4

= CT
all,i

∂Q
∂y

(4)

where Cji represents the element of row J and first column in
the matrix; CT

alli = C1i · · ·C4j. Therefore, the equation can be
rewritten as follows

∂Q
∂Y
=

(
∂Q
∂y1
· · ·

∂Q
∂y4

)T
∂Q
∂X
= CT ∂Q

∂Y
(5)

According to Eq. (4), the essence of deconvolution is to
multiply the input by CT , so deconvolution is also called
transposed convolution.

Deconvolution is used to realize decoder function [27].
Decoder not only needs to segment the blood vessels through
the extracted features, but also needs to restore the segmenta-
tion results to the original size of the input image. Therefore,
the information source of deconvolution can’t be limited to
the feature output of encoder. On the basis of ensuring the
accuracy of segmentation, in order to reduce the amount of
calculation, the information source of decoder is determined
as the output feature image of en-coder and the output result
of conv4_4 after a large number of experiments. [29] And the
two deconvolutions are fused to realize the segmentation of
blood vessels. The implementation scheme of deconvolution
to realize decoder function is shown in Fig. 6.

Firstly, deconvolution is performed on the output feature
image of encoder, and the output channel is set as 2
(corresponding to 2 segmentation types); the output
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FIGURE 6. Decnnvnlutinn for decoder in deep model.

size corresponds to the output feature size of Conv4_4
convolution layer. Before the fusion of Conv4_4 feature
output, a convolution operation with convolution kernel k =
1, s = 1, C = 2 is introduced to change the channels of the
feature image into 2. After fusing the two feature information,
deconvolution is performed again. And the output channel is
set as 2, the output size is the original size of the angiographic
image. At this time, the output specification is [ghgw2], that
is, two matrices with the same size as the input image. If Soft-
max operation is introduced on this basis, the two matrices
respectively represent the probability that each pixel belongs
to the blood vessels and the background. When the training
is over, the two channels of the output results are processed
by Argmax operation to get the segmentation results of the
blood vessels.

D. BATCH NORMALIZATION
The process of deep neural network training is to make the
weight converge to the optimal value through error back
propagation and random gradient descent method. With the
increasing number of neural network layers, gradient disper-
sion or explosion, over-fitting and weight oscillation may be
caused, which makes the training of neural network more
difficult. The residual neural network used in Literature [26]
can not only approximate the real model more accurately, but
also restrain the gradient dispersion or explosion to a certain
extent. To solve the over-fitting problem of training model,
technology Dropout is usually used. In each training process,
a certain proportion of weights are randomly selected not to
participate in the training, so as to reduce the over-fitting.
To deal with the problem of weight oscillation, the step length
in the gradient descent process is gradually attenuated by
using the weight decay technology, so as to approximate the
optimal value of the weight accurately.

In the process of training neural network, the data flow is
transferred layer by layer, and the change of the weight of
the low-level network will inevitably cause the change of the
distribution of the output data, which is one of the reasons

for the difficulty of deep neural network training. Before
inputting each convolution operation, the batch normalization
technology is introduced to normalize the data, replacing
dropout, weight decay and other technologies, which reduces
the difficulty of neural network training.

Set all samples as X = {x1, x2, · · · , xN }; if all samples are
normalized before per training, there is:

x̂i =
xi − E (X)
√
Var (xi)

(6)

where, E (·) is the mean value, and Var (·) is the variance.
In each convolution operation, all training samples obey the
same distribution. However, for the huge training samples of
deep neural network, it is a very large calculation to calcu-
late the mean and variance of all samples. Therefore, batch
normalization is used instead of global mean and variance.
That is, calculate themean and variance of each training batch
samples, and then take the mean of all mean and variance,
and replace the global mean and variance. Set the number
of training samples per time as m, and the implementation
process of batch normalization is done, where only several
lines of code are needed in TensorFlow framework.

V. EXPERIMENTS AND RESULTS ANALYSIS
A. DATA RESOURCES AND EXPERIMENTAL PLATFORM
In this paper, we use the coronary angiography image
database as the object to carry out verification experiments.
The angiographic image database has been accurately labeled
for blood vessels and can be used as a training sample.
Each sample pixel is 512 × 512. Due to the limitation of
the GPU memory unit, each sample is cropped to a size of
64×64 pixels, and there are 4 500 samples in total, where 4
480 are used as training samples and 20 are used as test
samples [23].

The experimental platform is equipped with
Intel-i7-7700K quad-core CPU processor, 32G memory,
ASUSSTRIX-GTX1080TI-11G graphics card, deep learning
framework using Google’s Tensor Flow.

B. DATA PREPROCESSING AND EVALUATION INDICATORS
Sample data is pre-processed before training the neural
network. In order to quantitatively evaluate the segmenta-
tion results, Recall Rate, Precision Rate, and F-measure are
adopted as evaluation indicators to analyze the segmentation
results. Their equations are written as follows:

Recall =
Bseg

Bseg + Iunseg
(7)

Pr ecision =
Bseg

Bseg + Iwseg
(8)

F_measure =
2Recall × Pr ecision
Recall + Pr ecision

(9)

where Bseg is denoted as the number of pixels with the correct
blood vessel in the segmentation result, Iunseg is denoted the
number of pixels in the image that are blood vessels but not
recognized as blood vessels, Iwseg indicates the number of
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pixels in the image that incorrectly recognize the background
as blood vessels.

The recall rate represents the ratio of the pixel points that
are segmented into blood vessels to the true blood vessel pix-
els, characterizing the accuracy of the blood vessel segmen-
tation without considering the background of the coronary
angiography image. The accuracy rate represents the ratio of
pixels that are correctly segmented into blood vessels to all
pixels that are segmented into blood vessels. A high accuracy
rate means that the blood vessels can be fully extracted.
The F value is an evaluation index of the two indicators of
comprehensive recall rate and accuracy rate, which is used to
reflect the overall index.

According to the existing deep learning frameworks, there
are two typical network structures: VGG-based full con-
volution neural network and deep network based on VGG
and fully connected conditional random field. In order to
verify the effectiveness of our proposed model in this paper,
a comparative experiment with VGG full convolution neu-
ral network (VGG) and VGG conditional random field net-
work (VGGCRF) was carried out on the iaild database. For
the sake of simplicity, our proposed model in this paper is
written by RESNET. In the experiment, VGG adopts the
structure shown in literature [33], and the convolution kernel
parameters in the first 13 layers of neural network uses the
trained values. The convolution kernels of F6, F7 and F8
in the full connection layer are set to [16, 16, 512, 1024],
[1, 1, 1024, 2048], [1, 1, 2048, 2], respectively. Finally,
the multi-layer deconvolution results are fused to achieve the
output of blood vessel segmentation results. VGGCRF is the
fully connected conditional random field in the last layer of
the VGG model. The specific structure is described in the
literature [25].

C. COMPARATIVE EXPERIMENT AND RESULT ANALYSIS
The training process of deep neural network is to make the
weight of network converge by learning the sample data.
The three network structures all use the cross-entropy as the
loss function, and the training process is shown in Figure 7.
Because of the special structure of residual neural network
and batch normalization technology, the weights of neural
network are easier to train and the convergence performance
of weights is better.

It should be noted that VGGCRF training is still difficult
even when batch normalization technology is used. We think
that VGGCRF can be trained in two steps to make the weight
of the network converge. First of all, VGG network training
is used directly to realize the rough segmentation of blood
vessels, and then the full connection condition is introduced
to participate in the training until the training stop condition
is met. The training time of the three networks is shown in
Table 1.

Because RESNET network structure is more complex
than VGG and VGGCRF, the network training time is the
longest, but the training time of a single sample is the short-
est. In VGGCRF, full connection conditional random fields

FIGURE 7. Qualitative results for different model. (a) Raw coronary
arteriography image; (b) Benchmark image; (c) VGG model; (d) VGGCRF
model (e); Proposed model.

TABLE 1. Time for training the deep neural networks.

are introduced. It is necessary to iteratively calculate the pair
potential function between all pixel-pairs, so the training time
is the longest.

The experiment selected three kinds of typical angio-
graphic blood vessels including complex blood vessels with
low contrast, complex blood vessels with fuzzy image and
regular distributed dim-small blood vessels. The above-
mentioned deep neural network models are used for seg-
mentation experiments, and the experimental results were
compared and analyzed, where the angiography image shown
in Fig. 8 contains a complicated background.

According to the segmentation results, all three networks
can segment blood vessels, and VGG can roughly determine
blood vessels within a certain range, but the accuracy of
blood vessel edge information is not high. VGGCRF has
improved the extraction of blood vessel edges compared
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FIGURE 8. Convergence performance for different models.

TABLE 2. Quantitative result.

to VGG. ResNet can better extract the block information and
edge features of blood vessels. At the same time, the three
networks have a certain degree of mis-segmentation, where
VGG is dominated by image contour information, and the
misclassification result is dense information; VGGCRF miti-
gates the occurrence ofmisclassification on the basis of VGG;
ResNet can process the patch information of blood vessels.
As shown in Figure 9, RESNET can significantly improve the
recall rate, accuracy rate and F value of vascular segmentation
in complex angiographic image.

In Figure 10, the distribution of blood vessels is relatively
regular, and the interference of blood vessel segmentation
mainly comes from the influence of background. RESNET
network structure is more accurate to detect the contour of
blood vessels, and it can segment the smaller vessels effec-
tively [30]. According to the segmentation result evaluation
index shown in Figure 10, the recall rate, accuracy rate and F
value of RESNET have been greatly improved.

Figure 10 is the angiographic image of a single vessel
with complex structure and large area of shadow. In addi-
tion, the gray level of some blood vessels is similar to its
background, so the influence of background is more obvious.
It can be seen from the segmentation results that there are
large areas of mis-segmentation in the three network structure
segmentation results. However, RESNET successfully avoids
the influence of uneven background, and the edge detection of
blood vessels is more accurate [30]. However, compared with
VGG, RESNET is not robust to shadow interference. It mis-
takenly recognize the large staggered shadow as background,
resulting in low segmentation accuracy and low F value.

Comparing the segmentation results of three different net-
works, it can be seen that VGG can roughly recognize the

FIGURE 9. Qualitative results for different model.(a)Raw coronary
arteriography image; (b) Benchmark image; (c) VGG model; (d) VGGCRF
model (e); Proposed model.

FIGURE 10. Performance index of building segmentation.

range of blood vessels, and also can better extract the edge
of vessels with less interference; VGGCRF is very accurate
to extract the edge of vessels with straight line and no inter-
ference, but there is obvious missegmentation for other types
of edges. RESNET is more accurate in the edge extraction of
blood vessels, and the segmentation results are patch shape.
Compared with VGG and VGGCRF, RESNET is more accu-
rate in the segmentation of blood vessels.

VI. CONCLUSION
Aiming at the problem of automatic and accurate segmen-
tation of blood vessels in angiographic images, this paper
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proposes a framework of encoder-decoder feature extrac-
tion and vessel segmentation based on deep residual neu-
ral network, and carries out experimental verification on
angiographic database by means of batch normalization tech-
nology. The experimental results show that the proposed
algorithm in this paper has high efficiency, and the train-
ing time for a single sample is 0.23 s, and the training
time for a sample set is 1418.862 s. In the experimental
results of complex blood vessels, regular blood vessels and
single complex blood vessels, the segmentation accuracy
is 0.837, 0.892 and 0.630 respectively; the F values are
0.851, 0.879 and 0.730 respectively. However, for complex
vessels with low contrast and large area shadow, the pro-
posed algorithm still has the problems of edge detection error
and low segmentation accuracy. In the future work, we will
focus on how to eliminate the interference in complex blood
vessels and further improve the accuracy of blood vessel
segmentation.

REFERENCES
[1] S. Takashio, M. Yamamuro, Y. Izumiya, S. Sugiyama, S. Kojima,

E. Yamamoto, K. Tsujita, T. Tanaka, S. Tayama, K. Kaikita, S. Hokimoto,
and H. Ogawa, ‘‘Coronary microvascular dysfunction and diastolic load
correlate with cardiac troponin t release measured by a highly sensitive
assay in patients with nonischemic heart failure,’’ J. Amer. College Car-
diol., vol. 62, no. 7, pp. 632–640, 2013.

[2] F. C. Ciftci, M. Caliskan, O. Ciftci, H. Gullu, A. Uckuyu, E. Toprak, and
F. Yanik, ‘‘Impaired coronary microvascular function and increased
intima–media thickness in preeclampsia,’’ J. Amer. Soc. Hypertension,
vol. 8, no. 11, pp. 820–826, 2014.

[3] G. Tsujimoto, ‘‘Impaired coronary microvascular function in diabetics,’’
Ann. Nucl. Med., vol. 14, no. 3, pp. 165–172, 2000.

[4] G. Niccoli, G. Scalone, A. Lerman, and F. Crea, ‘‘Coronary microvascular
obstruction in acute myocardial infarction,’’ Eur. Heart J., vol. 37, no. 13,
pp. 1024–1033, 2016.

[5] K. Kakuta, K. Dohi, Y. Sato, T. Yamanaka, M. Kawamura, S. Nakamori,
R. Okamoto, E. Fujii, N. Yamada, and M. Ito, ‘‘Coronary microvascu-
lar dysfunction and coronary artery calcification in patients with sys-
temic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis,’’
J. Amer. College Cardiol, vol. 65, no. 10, p. A1674, 2015.

[6] S. S. Dhawan, R. P. A. Nanjundappa, P. Eshtehardi, M. Corban, L. Golub,
L. Timmins, M. McDaniel, A. Quyyumi, and H. Samady, ‘‘Impaired
coronary microvascular function is associated with features of plaque
vulnerability,’’ J. Amer. College Cardiol., vol. 59, no. 13, p. E408,
2012.

[7] P. M. Elliott, H. Kindler, J. S. Shah, B. Sachdev, O. E. Rimoldi,
R. Thaman, and P. G. Camici, ‘‘Coronary microvascular dysfunction
in male patients with Anderson–Fabry disease and the effect of treat-
ment with a galactosidase A,’’ Heart, vol. 92, no. 3, pp. 357–360,
2006.

[8] H. Nakashima, Y. Akiyama, H. Tasaki, Y. Honda, T. Katayama, and
K. Yano, ‘‘Coronary microvascular dysfunction in coronary artery disease
associated with glucose intolerance,’’ J. Cardiol., vol. 30, no. 2, pp. 59–65,
1997.

[9] G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve,
M. Coosemans, W. Desmet, and J. D’hooge, ‘‘Automatic segmentation of
in-vivo intra-coronary optical coherence tomography images to assess stent
strut apposition and coverage,’’ Int. J. Cardiovascular Imag., vol. 28, no. 2,
pp. 229–241, Feb. 2012.

[10] F. Lugauer, J. Zhang, Y. Zheng, J. Hornegger, and B. M. Kelm, ‘‘Improv-
ing accuracy in coronary lumen segmentation via explicit calcium exclu-
sion, learning-based ray detection and surface optimization,’’ Proc. SPIE,
vol. 9034, pp. 22–38, Mar. 2014.

[11] Y. Wang and P. Liatsis, ‘‘An automated method for segmentation of coro-
nary arteries in coronary CT imaging,’’ in Proc. Develop. E-Syst. Eng.,
Sep. 2010, pp. 2652–2668.

[12] D. Han, H. Shim, B. Jeon, Y. Jang, Y. Hong, S. Jung, S. Ha, and
H.-J. Chang, ‘‘Automatic coronary artery segmentation using active search
for branches and seemingly disconnected vessel segments from coronary
CT angiography,’’ PLoS ONE, vol. 11, no. 8, 2016, Art. no. e0156837.

[13] M. M. Jawaid, B. S. Chowdhry, and G. Slabaugh, ‘‘Automated framework
for CTA coronary segmentation and quantitative validation,’’ in Proc. Int.
Conf. Innov. Elect. Eng. Comput. Technol. (ICIEECT), Apr. 2017, vol. 24,
no. 15, pp. 6–18.

[14] G. Santini, D. D. Latta, N. Martini, G. Valvano, A. Gori, A. Ripoli,
C. L. Susini, L. Landini, and D. Chiappino ‘‘An automatic deep learning
approach for coronary artery calcium segmentation,’’ in Proc. Eur. Med.
Biol. Eng. Conf., 2018, vol. 24, no. 15, pp. 52–68.

[15] M. Pazdernik, Z. Chen, H. Bedanova, J. Kautzner, V. Melenovsky,
V. Karmazin, I. Malek, A. Tomasek, E. Ozabalova, J. Krejci, J. Franekova,
A. Wahle, H. Zhang, T. Kovarnik, and M. Sonka, ‘‘Detecting early cardiac
allograft vasculopathy using highly automated 3D coronary optical coher-
ence tomography segmentation analysis,’’ J. Heart Lung Transplantation,
vol. 37, no. 4, pp. S105–S106, 2018.

[16] M. Schaap, T. van Walsum, L. Neefjes, C. Metz, E. Capuano,
M. de Bruijne, and W. Niessen, ‘‘Robust shape regression for super-
vised vessel segmentation and its application to coronary segmentation
in CTA,’’ IEEE Trans. Med. Imag., vol. 30, no. 11, pp. 1974–1986,
Nov. 2011.

[17] U. Sivalingam, M. Wels, M. Rempfler, S. Grosskopf, M. Suehling, and
B. H. Menze, ‘‘Inner and outer coronary vessel wall segmentation from
CCTA using an active contour model with machine learning-based 3D
voxel context-aware image force,’’ Proc. SPIE, vol. 9785, pp. 99–108,
Mar. 2016.

[18] Y. L. Yong, L. K. Tan, R. A. Mclaughlin, K. H. Chee, and Y. M. Liew,
‘‘Linear-regression convolutional neural network for fully automated coro-
nary lumen segmentation in intravascular optical coherence tomography,’’
J. Biomed. Opt., vol. 22, no. 12, pp. 1052–1065, 2017.

[19] M. Breeuwer, P. Ermes, and B. Gerber, ‘‘Clinical evaluation of automatic
whole-heart and coronary-artery segmentation,’’ J. Cardiovascular Magn.
Reson., 2009, vol. 11, no. 1, pp. 1–12.

[20] D. Lesage, E. D. Angelini, G. Funka-Lea, and I. Bloch, ‘‘Adap-
tive particle filtering for coronary artery segmentation from 3D CT
angiograms,’’ Comput. Vis. Image Understand., vol. 151, no. 8, pp. 29–46,
2016.

[21] C. Feng and Y. Hu, ‘‘Segmentation of coronary artery using region based
level set with edge preservation,’’ J. Med. Imag. Health Informat., vol. 6,
no. 7, pp. 1727–1731, 2016.

[22] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang, ‘‘Deep learning Markov
randomfield for semantic segmentation,’’ IEEE Trans. Pattern Anal.Mach.
Intell., vol. 40, no. 8, pp. 1814–1828, Aug. 2018.

[23] C. F. Baumgartner, L. M. Koch, M. Pollefeys, and E. Konukoglu, ‘‘An
exploration of 2D and 3D deep learning techniques for cardiac MR image
segmentation,’’ in Statistical Atlases and Computational Models of the
Heart. ACDC and MMWHS Challenges (Lecture Notes in Computer Sci-
ence), vol. 10663, M. Pop et al., Eds. Cham, Switzerland: Springer, 2018.

[24] G. Santini, D. D. Latta, N. Martini, G. Valvano, A. Gori, A. Ripoli,
C. L. Susini, L. Landini, and D. Chiappino, ‘‘An automatic deep learning
approach for coronary artery calcium segmentation,’’ in Proc. Nordic-
Baltic Conf. Biomed. Eng. Med. Phys., 2018, pp. 374–377.

[25] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, ‘‘A survey on deep learn-
ing techniques for image and video semantic segmentation,’’ Appl. Soft
Comput., vol. 70, no. 61, pp. 253–266, 2018.

[26] A. King, S. M. Bhandarkar, and B. M. Hopkinson, ‘‘A comparison of
deep learning methods for semantic segmentation of coral reef survey
images,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2018, pp. 123–133.

[27] M.Wang, L.-L. S. Ong, J. Dauwels, and H. H. Asada, ‘‘Multicell migration
tracking within angiogenic networks by deep learning-based segmenta-
tion and augmented Bayesian filtering,’’ J. Med. Imag., vol. 12, no. 5,
pp. 25–33, 2018.

[28] M. Li, Q. Yin, and M. Lu, ‘‘Retinal blood vessel segmentation based on
multi-scale deep learning,’’ in Proc. Federated Conf. Comput. Sci. Inf.
Syst., Sep. 2018, pp. 698–708.

[29] M.-X. Li, S.-Q. Yu, W. Zhang, H. Zhou, X. Xu, T.-W. Qian, and
Y.-J. Wan, ‘‘Segmentation of retinal fluid based on deep learning: Appli-
cation of three-dimensional fully convolutional neural networks in opti-
cal coherence tomography images,’’ Int. J. Ophthalmol., vol. 12, no. 6,
pp. 1012–1020, 2019.

VOLUME 7, 2019 178005



S. Pan et al.: Diagnostic Model of Coronary Microvascular Disease Combined With Full Convolution Deep Network

SHIWEN PAN received the Master of medicine
degree in imaging medicine and nuclear medicine
with The Second Affiliated Hospital of Soochow
University, China. His research interest includes
imaging diagnosis.

WEI ZHANG received the Master of medicine
degree in imaging medicine and nuclear medicine
from The Second Affiliated Hospital of Soochow
University, China. His research interest includes
imaging diagnosis.

WANJUN ZHANG received the Master of
medicine in imaging medicine and nuclear
medicine degree from The Second Affiliated Hos-
pital of Soochow University, China. His research
interest includes imaging diagnosis.

LIANG XU received theDoctor ofmedicine degree
in clinical medicine, from the Second Affiliated
Hospital of Soochow University, in China. His
research interest includes imaging diagnosis.

GUOHUA FAN received the Doctor of medicine
degree in clinical medicine fromThe SecondAffil-
iated Hospital of Soochow University, China. His
research interest includes imaging diagnosis.

JIANPING GONG received the Doctor of
medicine degree in majoring in clinical medicine
from The Second Affiliated Hospital of Soochow
University, China. His research interest includes
imaging diagnosis.

BO ZHANG received the Master of medicine
degree in imaging medicine and nuclear medicine
from The Second Affiliated Hospital of Soochow
University, China. His research interest includes
imaging diagnosis.

HAIBO GU received the Master of medicine
in cardiology degree from The Second Affili-
ated Hospital of Soochow University, China. His
research interest includes cardiovascular disease.

178006 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	PROBLEM DESCRIPTION
	OUR PROPOSED MODEL ARCHITECTURE
	THE GENERAL FRAMEWORK
	ENCODER STRUCTURE BASED ON RESIDUAL DEEP NEURAL NETWORK
	DECODER STRUCTURE CONSTRUCTED BY DECONVOLUTION
	BATCH NORMALIZATION

	EXPERIMENTS AND RESULTS ANALYSIS
	DATA RESOURCES AND EXPERIMENTAL PLATFORM
	DATA PREPROCESSING AND EVALUATION INDICATORS
	COMPARATIVE EXPERIMENT AND RESULT ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	SHIWEN PAN
	WEI ZHANG
	WANJUN ZHANG
	LIANG XU
	GUOHUA FAN
	JIANPING GONG
	BO ZHANG
	HAIBO GU


