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ABSTRACT Plant species recognition using leaf images is a highly important and challenging issue in
botany and pattern recognition. A center problem of this task is how to accurately extract leaf image charac-
teristics and quickly calculate the similarity between them. This article presents a new shape description
approach called triangle-distance representation (TDR) for plant leaf recognition. The TDR descriptor
is represented by two matrices: a sign matrix and a triangle center distance matrix. The sign matrix is
used to characterize the convex/concave property of a shape contour, while the triangle center distance
matrix is used to represent the bending degree and spatial information of a shape contour. This method
can effectively capture the detailed and global characteristics of a leaf shape while keeping the similarity
transformations (translation, rotation, and scaling) unchanged. In addition, this method is quite compact and
has low computational complexity. We tested our method on four standard plant leaf datasets, including the
famous Swedish, Smithsonian, Flavia, and ImageCLEF2012 datasets. The results confirm that our approach
exceeds the prior state-of-the-art shape-based plant leaf recognition approaches. An extra experiment on the
MPEG-7 shape dataset further shows that our method can be applied to general shape recognition.

INDEX TERMS Plant species recognition, shape matching, triangle-distance representation, shape
descriptor.

I. INTRODUCTION
Plants provide us with oxygen and fuel, and they also play
a significant role in maintaining the balance of the Earth’s
ecosystem. Thus, it is necessary to identify plant species
to maintain biodiversity. There are a large number of plant
species present on Earth [1], and accurate identification of
these large numbers of plant species is a very challenging
task because plant species identification requires specialized
knowledge and in-depth training related to botany. Therefore,
there is an urgent need to develop an automatic plant leaf
recognition system. This is not only useful for general use,
but also helpful to experienced botanists and plant ecologists.

Plant species identification usually involves observation of
some morphological characteristics of plants, such as stems,
leaves, fruits, flowers, and embryos. A review of several
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existing plant species recognition methods can be found in
the literature [2], [3]. Among these features, leaves are con-
sidered to be very valuable clues in identifying plant species.
This is because the leaves will remain on the plants for at
least several months. Other organs, such as flowers and fruits,
will change greatly in a short time. Thus, there has been a
large amount of work carried out in identifying plant species
using leaf images in recent years [4]–[14]. Leaves are usually
described by shape, color, or texture, while the color of leaves
changes by season or geographical location, and different
plant species usually have the same leaf color, such as green
or yellow. As a result, the color of a leaf is not a reliable factor
in the identification of plant species. Thus, only shape and
texture information are usually considered in similarity based
plant leaf recognition schemes. Compared with the texture
information of leaves, shape is a high-level visual feature
and remains constant for illumination and object deformation.
This article focuses on the shape of leaf images for plant

178108 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4340-506X
https://orcid.org/0000-0003-2696-0707
https://orcid.org/0000-0003-1869-2116


C. Yang, H. Wei: Plant Species Recognition Using TDR

species identification, because the shape of leaf images con-
tains a significant amount of valuable information that can be
used to distinguish different types of plant species. Therefore,
the shape of leaf images is often used as an important feature
of plant species recognition. However, it is a highly chal-
lenging problem for retrieving similar leaf shapes from a leaf
image database. There are two main difficulties: (1) Nowa-
days, image databases are becoming increasingly larger, and
efficient retrieval from such large-scale leaf image databases
has become very challenging (e.g., there are approximately
40 million plant species on Earth, and millions of plant leaf
images are stored in such databases); (2) The shapes of leave
images have large intra-class changes and small inter-class
similarities, thus affecting the accuracy of retrieval. Fig. 1(a)
shows that the shapes of different plant species have smaller
inter-class differences, and Fig. 1(b) shows that the same
species of leaves exhibit large intra-class changes.

FIGURE 1. Shape of plant leaves having a large deformation: leaf sample
images with (a) smaller inter-class distance and (b) larger intra-class
differences.

In this article, a new shape description approach called
triangle-distance representation (TDR) is presented for plant
leaf recognition. This method can maintain retrieval effi-
ciency while achieving better retrieval accuracy, so that the
two above-mentioned difficulties can be well handled. The
proposed TDR descriptor is described by two matrices: a sign
matrix and a triangle center distance matrix. The sign matrix
is used to characterize the concave and convex properties of
the leaf shape, while the triangular center distance matrix is
used to characterize the curvature and spatial information of
the shape. The TDR descriptor can combine the global and
detailed features of a leaf shape well, and it is invariant to
similarity transformations (translation, rotation, and scaling).
In addition, the TDR has a lower feature dimension and is
a compact shape descriptor. In the stage of shape matching,
we only use the L1 distance to calculate the dissimilarity
between shapes, and the shape matching efficiency is very
high. Therefore, our method is very suitable for the tasks of
large-scale image retrieval and real-time application. We per-
formed experiments on four standard plant leaf datasets,
including the well-known Swedish, Smithsonian, Flavia,
and ImageCLEF2012 datasets. The results confirm that our
approach exceeds the prior state-of-the-art shape-based plant
leaf recognition approaches. An extra experiment on the
MPEG-7 shape dataset further shows that our method can be
applied to general shape recognition.

The rest of this article is structured as follows: In Section 2,
we review several existing shape-based plant leaf recogni-
tion methods. In Section 3, we introduce the proposed TDR
method in detail. The experimental results of our method on
several datasets are given in Section 4. Section 5 concludes
the article.

II. RELATED WORK
Plant species recognition using leaf images has recently
attracted great attention from researchers in pattern recogni-
tion and botany [7], [10], [15]–[22]. This task can be regarded
as a special case of the more general image classification
problem and has been extensively studied in botany and pat-
tern recognition. There are already some works that use only
shape information for plant species identification. Below,
we briefly review several important methods for shape-based
plant leaf recognition.

Most shape-based plant species identification methods use
geometric features and descriptors to describe the shape
information of leaf images. The first class of methods
extracts the morphological characteristics of plant leaves,
such as aspect ratio, solidity, and convex area ratio. For
example, Wu et al. [23] used aspect ratio, narrow fac-
tor, form factor, and rectangularity as features and adopted
probabilistic neural network as a classifier for the identi-
fication of plant leaf. Belhumeur et al. [15] presented a
plant leaf classification framework using complicated back-
ground. In their method, the Hu and Zernike moments
serve as shape features, and then the moving center hyper-
sphere (MCH) classifier is employed to identify plant species.
Caballero and Aranda [24] combined geometric features
with contour descriptors for efficient plant leaf identifica-
tion. Cerutti et al. [25] presented a model-based approach
for plant species recognition using high-level geometrical
features and a mobile plant species identification application
was implemented. Aptoula and Yanikoglu [26] proposed two
morphological leaf descriptors: the first is a morphological
covariance matrix based on leaf contours, and the second is
a circular covariance histogram based on leaf vein structure.
They combined these two descriptors and achieved very good
recognition performance on the imageCLEF2012 dataset.
Kalyoncu and Toygar [8] first proposed some new shape
features to characterize the margins of plant leaves, and
then combined this feature with geometric features and
other shape descriptors for plant leaf classification. However,
the drawback of this type of the method is that it is difficult
to accurately extract the details of plant leaves, especially for
plant leaves with large deformations. Thus, the accuracy of
these methods in identifying plant leaves is relatively low.

The second class of methods makes use of shape descrip-
tors for the identification of plant leaves. Soderkvist [27]
built a tree-structured plant leaf classification system by com-
bining curvature scale space, moment features and Fourier
descriptors. They then tested this system on Swedish the leaf
dataset and obtained a good recognition accuracy. Ling [28]
first presented a new inner-distance shape context (IDSC)

VOLUME 7, 2019 178109



C. Yang, H. Wei: Plant Species Recognition Using TDR

descriptor, which takes the place of the Euclidean distance
used in the shape context (SC) [29] descriptor with the
inner distance. They then used the IDSC descriptor for plant
leaf recognition and achieved good recognition accuracy.
Since the dynamic programming method is used for shape
matching, the computational complexity of the approach
is extremely high. Mouine et al. [30], [31] proposed an
extended SC approach for plant species recognition. They
first considered two sources of information about the leaf:
the leaf margin and leaf salient points. Then, two shape
context descriptors are separately built for the leaf boundary
and the leaf salient points. Finally, they combined these two
shape description methods for plant leaf recognition. In [32],
a shape-tree shape descriptor was proposed that represents
the hierarchical geometric propensities of a shape. They then
employed this descriptor for plant leaf classification, and
obtained a higher recognition rate on Swedish leaf dataset.
Similarity, this method also has a very high computational
complexity. Hearn [33] presented an automated plant leaf
recognition method by combining the Fourier descriptor and
Procrustes analysis. Hu et al. [4] proposed a shape descriptor
called the multiscale distance matrix (MDM) and applied
it for the identification of plant leaves. This method is
very efficient at characterizing the geometric properties of a
shape and remains unchanged for translation, rotation, scale,
and bidirectional symmetry of a shape. Kumar et al. [16]
built a mobile app for automatic plant species recognition
and obtained good performance on real-world leaf images.
Zhao et al. [7] proposed a pattern counting approach for
the identification of plant leaves. They first proposed a
counting-based shape descriptor, and then used it for plant
leaf recognition. However, the downside of this method is
that it must use specialized training set learning to generate
codebooks or dictionaries, and then uses them to generate
shape descriptors. Zhang et al. [12] presented a plant species
identification approach by combining sparse representation
and singular value decomposition. This method requires nei-
ther the construction of specific classification features nor a
training process. At the same time, this method has a higher
efficiency. However, the recognition accuracy of this method
is relatively low.

Recently, Yang et al. [10] proposed an efficient
shape-based plant leaf recognition method using a multiscale
triangular centroid distance (MTCD) descriptor. This method
has obtained good recognition results on many standard
leaf datasets and has very high retrieval efficiency at the
same time. However, this method still has a high feature
dimension and a low recognition accuracy. To further enhance
the performance of plant leaf recognition and reduce the
dimension of the shape features, the current work expands the
MTCD method [10] from the following three perspectives.
(1) Unlike the MTCD method, which uses many scale levels
(b(N −1)/2c), our method uses only the logarithmic distance
as the scale level (log2(N/2)), where N denotes the number
of sample points of a leaf shape. The advantage of this
improvement is to reduce the dimension of the feature and

increase the speed of convergence, thereby improving the
efficiency of retrieval. (2) Our method modifies the distance
in the MTCD method to a signed distance. The sign of the
distance is used to reflect the concavity and convexity of the
shape contour, and the size of the distance can reflect the
bending degree and spatial information of the shape contour.
Based on these two kinds of information, we constructed
two matrices to represent the shape, that is, a sign matrix
and a triangle center distance matrix. The advantage of this
improvement is that it can enhance the distinguishing ability
of different types of shapes and improve the accuracy of plant
leaf recognition. (3) In the shape matching stage, we use a
simple L1 distance instead of the cosine distance to measure
the difference between the two shapes. These enhancements
can be seen from our experimental results.

III. PROPOSED TDR METHOD
In this section, the proposed TDR approach for plant species
identification is presented in detail. First, we give the defini-
tion of the proposed TDR. Second, we describe the shape sim-
ilarity measure used for shape matching. Third, we analyze
the computational complexity of TDR for the identification
of plant leaves. Finally, the properties of the proposedmethod
are discussed.

A. DEFINITION OF TDR
A shape boundary S can be represented by N sample points
S = {Pi(xi, yi), i = 1, . . . ,N }, which is obtained by tracking
and uniformly sampling the outer contour of a leaf shape in an
anti-clockwise direction. P1 is the starting point of the shape
contour, and the x and y coordinates of point Pi are xi and
yi, respectively. As the shape boundary is closed, we have
Pi = Pi+N . For each point Pi(xi, yi), we can find its two adja-
cent points Pi−l(k)(xi−l(k), yi−l(k)) and Pi+l(k)(xi+l(k), yi+l(k)),
where l(k) is the logarithmic distance between sample points
of S, with 1 ≤ k ≤ T , while l is an increasing function where
l(k) ≤ N/2. T denotes the number of scales and N represents
the number of sampling points. We set T = blog2(N/2)c and
h(k) = 2k−1 in the experiment. The above three consecutive
points can form a triangle

a
Pi−l(k)PiPi+l(k). We can then

compute the coordinates of the center point gik (xgik , ygik ),
which is given by{

xgik = (xi−l(k) + xi + xi+l(k))/3
ygik = (yi−l(k) + yi + yi+l(k))/3

(1)

For each sample point Pi of the boundary S, T triangles are
obtained in the above way. Next, we can compute the distance
between Pi and the center point gik (i ∈ [1,N ], k ∈ [1,T ]) of
all triangles. Therefore, we can obtain the TDR of the sample
point Pi, which is defined as follows:

TDR(Pi) = (|TCD(Pi, gi1)|, . . . , |TCD(Pi, giT )|), (2)

where |TCD(Pi, gik )| =
√
(xi − xgik )2 + (yi − ygik )2. The

sign of TCD(.) is determined by the following method: Con-
sider a vector the starting point of which is Pi−l(k) and the
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FIGURE 2. Two triangles of boundary points Pi and Pj , and their triangle
center distances (shown in green color), where ‘‘+’’ and ‘‘−’’ are symbols
of the triangle center distances.

ending point of which is Pi+l(k). When the point Pi is located
on the right-hand side of the vector, TCD(.) has a positive
value. When the point Pi is located on the left-hand side of
the vector, TCD(.) has a negative value. Fig. 2 graphically
illustrates the definition of signed distances. The size of TCD
value can reflect the bending degree and spatial information
of the shape contour, while the sign of the TCD value can
capture the concave and convex characteristics of the shape
contour. By extracting the TDR of all the contour points,
we acquire the TDR of the shape S, which is given by

TDR(S) = (TDR(P1), . . . ,TDR(PN ))

=

|TCD(P1, g11)| . . . |TCD(PN , gN1)|
...

. . .
...

|TCD(P1, g1T )| . . . |TCD(PN , gNT )|

. (3)

We can see thatMTCD(S) is a T×N matrix, where column
i is the shape descriptor TDR(Pi) of Pi of S. Next, we derive
two matrices: a triangle center distance matrix TCDM and a
symbol matrix SignM , which are respectively given by

TCDM (S) = |TDR(S)|, (4)

and

SignM (k, i) =

{
1 if TCD(Pi, gik ) > 0
0 otherwise .

(5)

According to the above definition, we observe that TCDM
represents the absolute value of the TDR, which is used to
characterize the bending degree and spatial information of the
shape contour, and SignM is a binary matrix, which is used to
characterize the concave and convex properties of the shape
contour.

From the definition of the TDR, we can see that the TDR
has an inherent translation invariance to the shape contour.
Thus, according to Eqs. (4) and (5), TCDM and SignM
have the same translation invariance to the shape contour.
By analyzing the properties of the TCDM and SignM with
regard to the scaling changes of a shape, we find that SignM
remains unchanged in shape scale, while TCDM changes
with scale. To make the TCDM scale unchanged, we perform

local normalization by dividing by the maximum value per
row. In addition, when the shape contour is rotated, the start-
ing point of the TDR descriptor changes, and a displacement
h occurs, such as TDR(Pi) = TDR(Pi+h). Thus, we have
TCDM (Pi) = TCDM (Pi+h) and SignM (Pi) = SignM (Pi+h).
To keep the rotation of the shape contour constant, we use
a Fourier transform for TCDM and SignM and only use the
amplitude information of the Fourier coefficient to describe
the shape. Meanwhile, the feature dimension of the proposed
descriptor is further reduced after the Fourier transformation,
thereby improving the efficiency and effectiveness of shape
matching. To facilitate the interpretation of discrete Fourier
transforms, we use ck and dk to represent the characteristics of
each row of the TCDM and SignM descriptors, respectively.
Thus, the amplitudes of their Fourier transform are computed
by

αk (i) = |
1
N

N∑
u=1

ck (u)exp(
−j2π (u− 1)i

N
)|, i = 1, 2, . . . ,N

(6)

and

βk (i) = |
1
N

N∑
u=1

dk (u)exp(
−j2π (u−1)i

N
)|, i = 1, 2, . . . ,N ,

(7)

where j2 = −1. It can be easily proved that αk (i) and βk (i) do
not change with the rotation of a shape. Thus, we employ the
amplitude information of the Fourier coefficients to charac-
terize the shape of an object. To obtain a more compact and
robust shape descriptor, the lowest M order coefficients are
employed to describe the shape, where M � N . Therefore,
we can obtain the final TDR for plant leaf recognition, which
is defined as follows:

TDR={αk (v), βk (v)|k = 1, 2, . . . ,T ; v=1, 2, . . .M}. (8)

According to the definition of the final TDR, we observe
that the size of the descriptor is becoming smaller. The dimen-
sion of the TDR changes from T × N to T × 2M , where
M � N . Hence, the TDR can further enhance the efficiency
and reduce the storage space for the identification of plant
leaves.

B. SHAPE DISSIMILARITY MEASURE
Given two shapes A and B, their TDRs are denoted TDRA =
{αAk (v), β

A
k (v)|k = 1, . . . ,T ; v = 1, . . .M} and TDRB =

{αBk (v), β
B
k (v)|k = 1, . . . ,T ; v = 1, . . .M}, respectively. The

dissimilarity measure between their TDRs is computed by

Dist(A,B)=
T∑
k=1

M∑
v=1

(|αAk (v)−α
B
k (v)|+λ|β

A
k (v)−β

B
k (v)|), (9)

where λ (λ ∈ [0, 1]) is a weight parameter. We apply the
L1 distance to calculate the degree of dissimilarity between
the two shapes. A smaller distance value indicates that the
two shapes are more similar. At the same time, we also note
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that the TDR descriptors of the two shapes are compared at
each scale. Therefore, the calculation of L1 is quite simple
and efficient for plant leaf recognition.

C. COMPUTATIONAL COMPLEXITY
In this subsection, we analyze the computational cost of our
method for plant leaf recognition. The time consumption
of the entire identification process is mainly composed of
two parts. The first part is the time to calculate the TDR
descriptor, and the second part is the time for shape matching.
In the stage of calculating the TDR descriptor, the time cost
of calculating the triangular center distance of all sampling
points of the contour is O(N ) for each scale k = 1, 2, . . . ,T .
Thus, the computational cost of extracting the TDR isO(NT ),
where N and T represent the number of sampling points and
scales, respectively. Subsequently, to maintain the rotational
invariance of the shape boundary, we perform a discrete
Fourier transform on each scale of the sign matrix SignM
and the triangle center distance matrix TCDM , respectively.
The time cost of the Fourier transform of SignM and TCDM
is O(Nlog2(N )). As a result, the total time to calculate the
TDR descriptor is O(NT )+O(2TNlog2N ) = O(TNlog2N ) =
O(blog2(N/2)cNlog2N ).
In the stage of shape matching, the time consump-

tion is mainly employed to compute the distance between
shapes. The time to calculate Eq. (9) is O(2MT ) =
O(Mblog2(N/2)c), where M � N represents the number
of Fourier coefficients employed to describe the TDR. In the
experiment, the values of T andM are small. Thus, the com-
putation of L1 distance is extremely fast. Our current imple-
mentation only needs about 0.4 ms to compute a matching
on a 3.7 GHz computer. Thus, the proposed method is very
efficient for the identification of plant leaves.

D. SUMMARY OF TDR PROPERTIES
The proposed TDR description method possesses the follow-
ing characteristics whichmake it quite suitable for the tasks of
real-time application and large-scale image retrieval. Below,
we expound the merits of the TDR descriptor.

1) INVARIANCE TO SIMILARITY TRANSFORMATIONS
Similarity transformations include translation, rotation, and
scaling, which is a basic requirement of the MPEG-7 stan-
dard [34]. Since we use relative distances, the proposed
TDR has an inherent translational invariance. Subsequently,
we employ a local normalization method to obtain the scaling
invariance. Finally, we apply the discrete Fourier transforms
for each scale of the TDR tomaintain the rotational invariance
of the shape.

2) COMPACTNESS OF THE TDR
Since the feature dimension at each scale k = 1, . . . ,
blog2(N/2)c is 2M , the total feature dimension of the pro-
posed TDR descriptor is 2Mblog2(N/2)c. We set N = 512
andM = 6 in the experiment, which makes the dimension of
the TDR descriptor 96. Accordingly, only a small amount of

memory is required to store the descriptor. We also compared
the size of the TDR with the other three shape descriptors:
IDSC [28], pattern counting [7], and MTCD [10]. The IDSC
method is a very important and classic shape descriptor, and
pattern counting is a recently proposed method for plant
leaf recognition. The MTCD method is the most relevant to
the proposed TDR method. Table 1 presents the comparison
results of these shape descriptors. All experimental parame-
ters are strictly in accordance with the requirements in their
original paper. We can see from Table 1 that the proposed
TDR descriptor has the lowest feature dimension and only
requires less storage space. Therefore, the TDR is a quite
compact shape description method.

TABLE 1. Feature dimensions of TDR, IDSC, pattern counting, and MTCD
descriptors, where N and M denote the number of sampling points of the
shape boundary and Fourier coefficients, respectively. Nd and Nθ are the
number of inner-distance bins and inner-angle bins, respectively. In [7],
the parameters of S and K represent the number of scales and number of
dictionary atoms, respectively.

3) LOW COMPUTATIONAL COMPLEXITY
According to the analysis of the time complexity of
our approach in Section III-C, the time complexity
of our approach in the feature extraction phase is
O(blog2(N/2)cNlog2N ) and the time complexity of our
approach in the shape matching phase is O(Mblog2(N/2)c).
For the well-known IDSC method, the time complexity of
computing the IDSC isO(N 3) and that of the shape matching
phase is O(KN 2), where K represents the number of possible
starting points for shape alignment. For the MTCD method,
the time complexity of the feature extraction and shape
matching stages are O(b(N − 1)/2cNlog2N ) and O(Mb(N −
1)/2c), respectively. The proposed TDR method has lower
computational complexity in the feature extraction and shape
matching stages than the IDSC and MTCD methods. There-
fore, the proposed TDR method is very suitable for the tasks
of real-time application and large-scale image retrieval.

4) MULTISCALE REPRESENTATION STRUCTURE
The proposed TDR descriptor can well describe the local
and global features of a leaf shape. We use the logarithmic
distance as the scale to represent the shape. From the defi-
nition of the TDR, we find that larger scales can represent
the global information of a shape, while smaller scales can
represent the details of a shape. From the large scale to the
small scale, a multi-scale TDR can be obtained. It can be
seen from the experimental results that this multi-scale rep-
resentation structure contains rich information on the shape
of an object, thereby improving the ability to distinguish the
shape.
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IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
We evaluated the performance of our approach on four
popular leaf datasets: the Swedish [27], Smithsonian [28],
Flavia [23], and ImageCLEF2012 [35] datasets. In addition,
we also studied the potential of the proposed method for gen-
eral shape recognition on theMPEG-7 shape dataset [36]. The
same parameters (N = 512,M = 6,T = blog2(N/2)c = 8,
λ = 0.3) were set for the proposed method in all experiments.
We mainly used the evaluation standard defined by the

dataset publishers when evaluating the performance of our
method, and so it was also convenient to directly compare it
with the previous methods. In addition, we also used the same
performance evaluation benchmark, that is, the recognition
rate versus top N images, to maintain the metric consistency
across the test on all datasets, which can better reflect the
performance of the algorithm.

It is worth pointing out that the main contribution of this
article is to propose a new shape description method, so we
used the existing technique for image pre-processing; that is,
we first converted the color leaf into a grayscale leaf, and
then used Otsu’s method [37] to convert the grayscale leaf
into a binary leaf. Third, we traced the leaf shape’s bound-
ary. Finally, we sampled the shape boundary into N points
uniformly along the anti-clockwise direction and acquired
a sequence of N points for subsequent feature extraction.
Fig. 3 shows the pre-processing of a leaf image. In all experi-
ments, we only used the outer contour of an object’s shape to
identify the plant leaves.

FIGURE 3. Preprocessing of leaf image: (a) original leaf, (b) grayscale
leaf, (c) binary leaf, (d) leaf contour, and (e) uniformly sampled leaf
contour with 512 points.

B. SWEDISH LEAF DATASET
The Swedish leaf dataset [27] is a famous dataset that is
widely used to evaluate the classification performance of var-
ious shape descriptors. It contains 15 species of leaf images,
each with 75 samples and a total of 1,125 leaf images. This
dataset is very challenging for the identification of plant
species because the shape of a leaf in the dataset has a
small inter-class distance and a large intra-class difference.
Fig. 4 shows several sample images of this dataset. We can
see that the shapes of some species in the dataset are very
similar, such as the first, third, and ninth species.

To facilitate a comparison with existing methods,
we adopted the same performance evaluation criteria as in
the literature [7], [10], [12], [13], [27], [28], [32]. For the
75 sample images in each category, we randomly selected
25 images as the training set, and the remaining 50 images
served as the testing set. Then, we used one-nearest-neighbor
(1-NN) to classify the testing set. The algorithm ran 10 times

FIGURE 4. Samples for Swedish leaf dataset, one sample per category;
Final leaf is an example of a mask image.

and took the average value as the final recognition rate of the
algorithm. Table 2 lists the classification rates of our approach
and the other methods on this dataset. The classification rates
of other approaches are directly from the published results,
except for the AlexNet [38] and VGG16 [39] methods.
Since the AlexNet and VGG16 methods did not report the
classification results on this dataset, we used the pre-trained
AlexNet and VGG16 models and then fine-tuned them on the
Swedish leaf dataset. Finally, we obtained the classification
results of AlexNet and VGG16 methods on this dataset.

TABLE 2. Classification rates of different approaches on Swedish leaf
dataset.

We note that our approach achieves the best classification
rate among all the competing approaches. Compared with the
three complex dynamic programming matching methods of
SC [28], IDSC [28], and shape-tree [32], the classification
result of our approach is higher than 9.1%, 3.1%, and 1%,
respectively. Compared with the two fast matching meth-
ods of MDM [4] and MTCD [10], the classification rate
of our method is higher than 3.6% and nearly 1%, respec-
tively. Compared with the recent generation model method
SVDSP [12] and the manifold learning method SGLP [13],
the classification accuracy of our method is higher than 6%
and 2% of the two methods, respectively. Compared with
the deep learning methods AlexNet [38] and VGG16 [39],
the classification accuracy of our method is 1.5% and 1.4%
higher than the two methods, respectively. The performance
of our method is slightly superior to the pattern counting
approach [7]. However, the pattern counting method must use
a special training set to learn to generate codebooks or dic-
tionaries, and then uses them to generate shape descriptors.
If the training set does not exist, the shape descriptors cannot
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be generated. The proposed TDR descriptor is generated
independently and does not depend on any training samples.

To further evaluate the performance of our method, we also
adopted the recognition rate versus top N leaves as the per-
formance evaluation benchmark on the Swedish leaf dataset.
In this measurement, each image of the dataset was used as
a test sample, and then the distances between the test sample
and all other images of the dataset were calculated. Finally,
if there was a sample with the same class label as the test sam-
ple in the first N best matching (minimum shape difference),
it was regarded as a successful recognition. The recognition
rate of 1125 tests was counted as the recognition rate Pre
corresponding to the parameter N . The recognition rate Pre
versus the top N best matching curve was obtained when the
N value was taken from 1 to 10. Obviously, the recognition
rate Pre increases with N , and the corresponding value is the
1-NN recognition rate when N = 1. Fig. 5 shows the recog-
nition results of our method and the other methods. As can
be seen from the results, our method obtained the best recog-
nition result in all the shape description methods compared.
Compared with the deep learning methods AlexNet [38]
and VGG16 [39], the recognition accuracy of our method
was also comparable. This result further demonstrates the
effectiveness of our approach in plant leaf recognition.

FIGURE 5. Recognition results of different methods on Swedish leaf
dataset.

C. SMITHSONIAN LEAF DATASET
This dataset is a collection of isolated leaf images from the
Smithsonian project [28]. It contains 343 leaf images from
93 plant species. The number of leaves from different plant
species is different. Fig. 6 shows some sample images from
this dataset. Leaf images in this dataset are susceptible to light
changes and some leaf images are not very flat.

In the experiment, we used the same performance evalu-
ation criteria used in the literature [10], [28]. We randomly
selected 187 leaf images as the training samples, and the
remaining 156 leaves were used for testing. The retrieval
accuracy was assessed by a performance curve showing the
recognition rate in the first N leaf images, where N ranges
from 1 to 16. The recognition result versus the top N leaves
curve is presented in Fig. 7.

The curves in Fig. 7 are the recognition rates, indicating
how often the testing leaves can be correctly classified (or hit)

FIGURE 6. Several examples of Smithsonian leaf dataset with one
example per species.

FIGURE 7. Recognition rates on Smithsonian leaf dataset.

by the top N candidates. It should be noted that this percent-
age increases monotonically with respect to N and decreases
to the recognition rate of 1-NN when N = 1. Except for
the results of the MDM method [4], AlexNet method [38],
VGG16 method [39], and our method, the results of the other
methods were derived from Refs. [10], [28]. Since the MDM
method does not provide results on this dataset, we imple-
mented the approach and reported the recognition result of
the approach. At the same time, we also give the recog-
nition results of the AlexNet and VGG16 methods on the
Smithsonian dataset. We adopted the pre-trained VGG16 and
AlexNet models based on the Caffe framework [41], and then
used these two models to extract their FC7 features. Finally,
we employed the L2 distance to calculate the dissimilarity
between FC7 features.We observe that our approach achieves
the highest recognition accuracy among the nine approaches.
It can be noted that the recognition rate of our method exceeds
the IDSC [28] and MTCD [10] methods by 15% and 9%,
respectively, when only one candidate result is returned.
Compared with the two deep learning methods AlexNet [38]
and VGG16 [39], the recognition accuracy of our method is
higher than that of the two methods by approximately 15%
and 16% when N = 1. This result indicates that our method
has strong shape distinguishing ability.

D. FLAVIA LEAF DATASET
The Flavia leaf dataset is also widely employed to assess
the performance of plant leaf recognition methods, which are
primarily employed to evaluate the retrieval performance of
algorithms. It has 32 plant species with a total of 1,907 leaf
images. The number of leaf images for each species is
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between 50 and 77. Fig. 8 presents some samples of this
dataset.

FIGURE 8. Several example images of Flavia leaf dataset with one leaf
per class.

Somemethods are tested in [4], [10], [42] on the Flavia leaf
dataset and their results are reported. To make a direct com-
parison with these approaches, we also used two performance
evaluation criteria: the precision-recall (PR) curve and mean
average precision (MAP). The precision P is the retrieved
related image divided by the retrieved image, and the recall
R is the retrieved related images divided by the total related
images in the dataset. In the experiment, each image of the
Flavia leaf dataset is sequentially served as the query, and the
retrieval result is the average of all the queries.

The MAP value is computed by the following expression:

MAP =

∑
q∈Q AP(q)

|Q|
. (10)

Here, |Q| denotes the number of queries. AP(q) represents
the average precision score of each query q, which is given
by

AP(q) =

∑m
k=1(P(k)× f (k))

n
, (11)

where P(k) denotes the precision at cutoff k in retrieved
image sequences, and f (k) takes 1 when the retrieved k-th
image is related to the query q and 0 otherwise. m and
n represent the number of retrieved images and retrieved
images relating to the query q, respectively. The larger the
MAP value, the better the performance. The MAP values of
our method and other methods are shown in Table 3. Except
for the AlexNet and VGG16 methods, the MAP scores of
the other approaches are from the published results. For the
AlexNet and VGG16 methods, we used the same process
as the Smithsonian dataset in Section IV-C; that is, we used
the pre-trained AlexNet and VGG16 models to extract their
FC7 features, and then employed the L2 distance to calculate
the dissimilarity between FC7 features.

It can be seen from Table 3 that our approach achieved the
highest MAP score among all nine approaches. Compared
to other shape description methods, the MAP value of our
method is higher than that by 3.3%-21.4%. Compared with
the deep learning methods AlexNet [38] and VGG16 [39],
the MAP score of our method is higher than the two methods
by 1% and 3%, respectively. Although the shape of the dataset
has very large inter-class similarities, our method still obtains
a better recognition result.

TABLE 3. MAP values of different methods on Flavia leaf dataset.

Fig. 9 shows the PR curves of our approach and the other
approaches on the Flavia leaf dataset. As can be seen, our
approach achieves the best PR curve in all approaches com-
pared. This result further demonstrates that ourmethod is well
suited for plant species identification.

FIGURE 9. PR curves of proposed approach and other methods on Flavia
leaf dataset.

To further evaluate the performance of our method, we also
presented the recognition rate versus top N leaves for our
method on the Flavia leaf dataset to maintain the metric
consistency of all dataset tests. The test standard was the
same as the Swedish leaf dataset in Section IV-B; that is, each
image in the Flavia leaf dataset was used as a test sample,
and then the distances between the test sample and all other
images in the dataset were calculated. Finally, the top N best
matching images (minimum shape difference) were returned.
If there was an image with the same class label as the test
sample in the returned image, it was regarded as a successful
recognition. Fig. 10 shows the comparison results of our
method and the other methods.

It can be seen from Fig. 10 that our method achieves the
best recognition performance in all shape-based plant leaf
recognitionmethods. This shows that our method has a strong
ability to distinguish between shapes. At the same time,
our method also obtains comparable results in comparison
with the deep learning-based AlexNet and VGG16 methods.
In addition, our method is very efficient in plant leaf clas-
sification and retrieval tasks. Therefore, our method is very
effective for real-time application.

E. IMAGECLEF2012 LEAF DATASET
The fourth challenging dataset employed in our experiment
was the famous ImageCLEF2012 plant leaf dataset [35].
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FIGURE 10. Comparison results of different methods on Flavia leaf
dataset.

To the best of our knowledge, it is currently the largest dataset
for the research of plant leaf identification. This dataset con-
tains a total of 11,572 leaf images, which is divided into
three categories of leaf images: ‘‘scans’’, ‘‘pseudo-scan’’, and
‘‘photograph’’. Leaves in the category ‘‘scans’’ contain clean
backgrounds and minor shadowing, while those in category
‘‘pseudo-scan’’ are photographs with clean backgrounds,
but have very heavy shadowing. Leaves in the category
‘‘photograph’’ contain unconstrained photos with complex
natural backgrounds. We only employed the ‘‘scans’’ cat-
egory images in the experiment, which accounts for 57%
of the entire dataset. This is because we only focused on
shape-based plant leaf recognition, and the shapes of the
‘‘scans’’ category images can be extracted accurately by using
a pre-processing step. This subset consists of 6,630 leaves
from 115 different species. The number of leaves per plant
species is between 2 and 249. Fig. 11 shows some samples of
the ‘‘scanned’’ class subset.

FIGURE 11. Some samples from the ‘‘scans’’ category subset of the
ImageCLEF2012 leaf with one sample per species.

This dataset is very challenging because it contains a
great number of different plant species, and the shape of
different plant species has a large similarity, the shape of
the same plant species varies greatly. This subset contains
4,870 leave images for training and 1,760 leaf images for test-
ing. The performance evaluation standard employed was the
same as for the Smithsonian leaf introduced in Section IV-C.
Fig. 12 presents the recognition rates of our approach and
other methods on this dataset.

FIGURE 12. Recognition result on ‘‘scans’’ category of
ImageCLEF2012 leaf dataset.

As can be seen from the results, our method achieves
the best recognition performance among all the competing
methods. The recognition rate of our method is much higher
than that of the MDM [4] and SC [29] methods, and is
higher than those twomethods by 22% and 11%, respectively,
when only one candidate result is returned. Compared to
the IDSC [28] and MTCD [10] methods, the recognition
accuracy of our method is higher than the two methods by
4% and 8%, respectively, whenN = 1. Compared to the deep
learning methods AlexNet [38] and VGG16 [39], the recog-
nition accuracy of our method is higher than that of the two
methods by 4% and 11% when N = 1. We can also see
that the recognition performance of VGG16 on this dataset
is almost identical to that of the SC method, and the result
of AlexNet method on this dataset is slightly lower than the
IDSC method. At the same time, we note that the recognition
performance of the AlexNet method on this dataset is better
than that of the VGG16 method. These results indicate that
the proposed approach can distinguish different plant species
well. In addition, the matching efficiency of our method is
also very high. Therefore, our method is very suitable for
real-time tasks and large-scale image retrieval tasks.

F. MPEG-7 SHAPE DATASET
To further test the potential of our approach for general shape
recognition, we adopted the same experimental method as
in [7], and used the MPEG-7 shape dataset [36] to evaluate
the generality of the algorithm. This dataset has 1,400 images
in 70 categories, with 20 images per category. Fig. 13 presents
several samples from this dataset.

To facilitate comparison with other methods, we adopted
the same performance evaluation criteria as in [7]. This per-
formance metric is the same as that used for the Swedish
leaf dataset in Section IV-B; that is, the recognition rate
versus top N images evaluation standard. Fig. 14 shows
the recognition rate curves of our method and the other six
methods, that is, IDSC [28], MDM [4], pattern counting [7],
MTCD [10], AlexNet [38], and VGG16 [39]. The result of
the pattern counting method here is taken directly from the
literature [7], and the result of the IDSC method is obtained
by running the source code released by the author [28].
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FIGURE 13. Several samples of MPEG-7 dataset, with one shape per class
presented.

FIGURE 14. Recognition rates of different methods on MEPG-7 shape
dataset.

For the MDM andMTCDmethods, we directly implemented
them and reported their experimental results on this dataset.
For the AlexNet and VGG16 methods, we directly adopted
the same processing as in Section IV-C; that is, we used
the pre-trained AlexNet and VGG16 models to extract their
FC7 features, and then employed the L2 distance to calculate
the dissimilarity between FC7 features. Finally, we obtained
the recognition results of the AlexNet and VGG16 methods
on the MPEG-7 shape dataset.

It can see from Fig. 14 that our method obtains the best
recognition result in all methods. Compared with the classic
IDSC [28] and MDM [4] methods, the recognition accuracy
of our method is higher than that of the two methods by
3% and 4%, respectively, when only one candidate result is
returned. Compared with the recent shape description meth-
ods MTCD [10] and pattern counting [7], the recognition
accuracy of our method is higher than that of the twomethods
by approximately 1% and 2%, respectively, when N = 1.
Compared to the deep learning methods AlexNet [38] and
VGG16 [39], the recognition accuracy of our method is
higher than that of the two methods by 9% and 15%, respec-
tively, when N = 1. At the same time, it can be seen that the
recognition accuracy of the AlexNet and VGG16 methods is
lower than that of the shape-based description methods. The
main reason is that AlexNet and VGG16 are pre-trained in
natural images, while the images in the MEPG-7 dataset are
binary images. This affects the AlexNet and VGG16methods

in extracting robust and effective image features. In addition,
since the binary image on the MPEG-7 dataset is identified
based on shape information, and AlexNet and VGG16mainly
extract high-level visual information of an object, their abil-
ity to describe the shape of an object is thus relatively
weak, which further affects their recognition accuracy on
the MPEG-7 shape dataset. The experimental results prove
that our approach can be effectively applied to general shape
recognition.

G. PARAMETER STUDY
We mainly analyzed the influence of selected parameters on
plant leaf recognition performance. In our proposed method,
there are three parameters: N , the number of sample points of
the leaf boundary; λ, the weight parameter; andM , the num-
ber of Fourier coefficients. Here, N and M are mainly used
for the shape description stage, and λ is used for the shape
matching stage. We first analyzed the two parameters N and
M of the shape description stage, and then the λ parame-
ter. When analyzing the N and M parameters, λ remains
unchanged; when analyzing the λ parameter,N andM remain
unchanged. We used the Flavia leaf dataset for parameter
analysis experiments. In the experiment, we set N to the
power of two, so that the fast Fourier transformation could
be used. The retrieval results were evaluated by MAP scores.
Table 4 shows the MAP scores with λ = 0.3 at different
values of N andM used in the shape feature extraction stage.
It can be seen from Table 4 that the best MAP score

obtained by the proposed method on the Flavia leaf dataset is
70.58% when N = 2048 andM = 6. At the same time, it can
also be seen that the MAP score increases with increasing
N and decreases with increasingM . In addition, the increase
in theMAP score becomes increasingly smaller and when the
value ofN is further increased, as can be seen fromN = 1024
to N = 2048.
In general, a smaller M value can achieve better perfor-

mance. This is because a smaller M value gives the main
feature of a shape, while a larger M value provides more
details of a shape, but also introduces too much noise. It can
be seen from the experimental results that the MAP score
will decrease when the M value is large. This is because
the introduction of excessive noise affects the retrieval per-
formance. Accordingly, M = 6 is the optimal value on
the Flavia leaf dataset. Meanwhile, although more precise
sampling can improve the accuracy of plant leaf recognition,
the number of sampling points does not remarkably improve
the recognition accuracy when N reaches a certain threshold.
The satisfactory result of the Flavia leaf dataset is obtained
when N = 2048. However, a larger value of N also increases
the time consumption of plant leaf recognition and decreases
the retrieval efficiency, which can be seen from the results
in Fig. 15 in Section IV-H.

Therefore, the proposed TDR descriptor is a parameter-
based method, which indicates that we can obtain the best
recognition result by adjusting the parameters of different
datasets. However, the parameters N = 512 and M = 6 can
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TABLE 4. MAP scores of Flavia leaf dataset with λ = 0.3 at different values of N and M used in shape description stage.

FIGURE 15. MAP scores of Flavia leaf dataset for 11 different values of
λ = 0 weight when N = 512 and M = 6.

give better results for most applications, while maintaining
the compactness and high efficiency of the descriptor. Thus,
we employed the parameters N = 512 and M = 6 in all
experiments.

We next analyzed the influence of λ parameter on the
performance of plant leaf recognition. The λ parameter had
11 values: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.
λ = 0 means that we only use the triangle center distance
feature for the identification of plant leaves. Fig. 15 shows
the MAP scores of the Flavia leaf dataset for 11 different λ
weight values when N = 512 andM = 6. It can be seen that
the MAP scores of the Flavia leaf dataset first increase and
then decrease as λ increases, and the MAP score of the Flavia
leaf dataset takes the optimal value when the λ = 0.2. At the
same time, it is also noteworthy that better MAP scores can
be obtained when λ is in the interval [0.2, 0.3]; that is to say,
there is a reasonable range of λ values, within which the exact
setting is not critical (λ ∈ [0.2, 0.3]). Thus, we set λ = 0.3 in
all experiments.

In addition, it can be seen that we obtained a MAP score of
approximately 5% over the MTCDmethod when λ = 0. This
result shows that we can improve the accuracy of plant leaf
recognition by using the logarithmic distance scale and L1
distance. When λ > 0, the sign matrix is added to the shape
feature, which indicates that the concave-convex property of
the shape contour is taken into account. We can see that the
MAP score is further improved, which is approximately 8%
higher than that of MTCD method. This result shows that the
concave-convex property of the shape contour can improve
the ability to distinguish the shape, thereby improving the
accuracy of plant leaf recognition.

Finally, to further explore the performance improve-
ment of our method as being due to the three proposed
improvements, we analyzed the performance of the MTCD
method at different N and M values, so that we could

further explore whether the performance is significantly
improved when taking the same parameters as our method.
Table 5 gives the MAP scores of the Flavia leaf dataset for
the MTCD method at different N and M values. As can
be observed, the MAP score of the MTCD method first
increased and then decreased as N increased for all M
values, and the MAP score of the MTCD method first
increased and then decreased as M increased when N value
is than or equal to 128. For N = 64, the MAP score
of the MTCD method first increased, then decreased, and
next increased, but the overall performance remained rela-
tively stable. The best MAP score of the MTCD method
on the Flavia leaf dataset is 62.74% when N = 512 and
M = 12. The best performance achieved by the MTCD
method is also approximately 8% lower than that of our
proposed method. This experimental result further shows the
ability to improve the performance of plant leaf recognition
via the proposed three improvements. At the same time, it can
be seen that the efficiency of our method is also significantly
higher than that of the MTCD method from the subsequent
efficiency experiment analysis. In [10], the parameter N is
set to 128. This is because the efficiency of recognition will
decrease when N is too large. In addition, the exact value of
M is not critical (e.g., M ∈ [8, 32]) for the performance of
plant leaf recognition after setting the value of N .

H. EFFICIENCY COMPARISON
To prove the efficiency and effectiveness of the proposed
approach, we compared the time consumption of the pro-
posed approach with other important methods. Table 6 shows
the time consumption of various methods on the Flavia leaf
dataset. The time consumption of all methods is obtained
under the same conditions, which represents the average
time cost in retrieving each query in the Flavia leaf dataset.
In our experiment, all the algorithms were implemented by
MatLab except for the DP step of the IDSC method, which is
implemented in the C language. The experimental platform
employed a PC with a Core(TM) i7-8700K 3.7-GHz CPU
andMatLab 2017a.We chose the IDSCmethod [28] for com-
parison because it is the most classic and popular method for
shape description.Meanwhile, the source code of this method
is provided. Thus, we could directly compare it with our
method under the same conditions. For the fast shape match-
ing method, we chose the MDM [4] and MTCD [10] meth-
ods. These two methods are recently proposed and achieve
better results for plant leaf recognition.We implemented both
methods and compared themwith our method under the same
conditions.
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TABLE 5. MAP scores of Flavia leaf dataset for the MTCD method at different N and M values.

TABLE 6. Time consumption of various approaches on Flavia leaf dataset.

It can be seen from Table 6 that the retrieval time of our
method is much lower than that of the IDSC method. The
time consumption of our method is only approximately 3%
of the IDSC method. At the same time, it can be noted that
the IDSC method employs DP in the C language to calculate
the dissimilarity between shapes. The C language is faster
than the MatLab language for loop operations. Thus, the effi-
ciency of the IDSC method will be further reduced when the
dissimilarity is computed by MatLab. Even with the two fast
matching methods of MDM and MTCD, the retrieval time of
our method is lower than theirs, and the recognition accuracy
of our method is higher than those of the two methods. In the
last row of Table 6, the parameter settings of our method are
the same as those of MTCD method. It can be seen that the
retrieval time of our approach is less than that of the MTCD
approach. This result shows that using logarithmic distance
as a scale can improve the efficiency of retrieval. Thus, our
method is very suitable for the tasks of real-time application
and large-scale image retrieval.

To further explore the effect of the number of sampling
points N on retrieval efficiency, we compared the time con-
sumption of our approach and that of the MTCD method at
different N values. Fig. 16 shows the time consumption of
the two methods when taking different values of N , which
represents the total time consumption in retrieving all images
in the Flavia leaf dataset.

FIGURE 16. Time consumption of our method and the MTCD method for
different N values.

It can be seen that the total retrieval time of our method
is lower than that of the MTCD method at all N values.
This result further demonstrates that the use of logarithmic
distance as a scale can improve the retrieval efficiency. At the
same time, it can be noted that the retrieval time will increase
significantly when the value of N is greater than or equal
to 1024. This is mainly due to the increased time of shape
feature extraction. However, the time increase of our method
is far less than that of theMTCDmethod. In addition, the total
retrieval time of our method is relatively stable whenN is less
than or equal to 512. Therefore, this is also why we set the N
to 512 in our experiment.

V. CONCLUSION
We have proposed a novel shape description approach named
TDR for plant species recognition. The proposed TDR is
described by two matrices: a sign matrix and a triangle cen-
ter distance matrix. The sign matrix is used to characterize
the concave and convex properties of a shape, while the
triangle center distance matrix is used to reflect the bend-
ing degree and spatial distribution information of a shape.
The TDR descriptor is a compact multi-scale representa-
tion method that can well characterize the local and global
features of the shape while maintaining the invariance to
similarity transforms. We conducted extensive experiments
on four standard plant leaf datasets, and the results demon-
strate that our approach exceeds the existing state-of-the-art
shape-based plant species recognition approaches on the
aspects of retrieval accuracy, efficiency, and storage space.
In addition, our experimental results on the MPEG-7 shape
dataset further confirm that our method has great potential
in general shape recognition. However, we only used the
shape information of plant leaves, and the texture and vena-
tion structure of plants are also very important features for
identifying plant species. In future work, we plan to combine
our method with textures or venation structures for plant leaf
recognition. We believe that the performance of our method
will be further enhanced when texture or venation informa-
tion of plants is incorporated.
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