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ABSTRACT In this paper, we propose a scalable Big Data framework that collects the data from smart
meters and weather sensors, pre-processes and loads it into a NoSQL database that is capable to store and
further process large volumes of heterogeneous data. Then, a set of Machine Learning (ML) algorithms
are designed and implemented to determine the load profiles and forecast the electricity consumption for
residential buildings for the next 24 hours. For the Short-Term Load Forecast (STLF), a Feed-Forward
Artificial Neural Network (FF-ANN) algorithm with backtracking adjustment of the learning rate that
extends and optimizes the Nesterov learning method is proposed. Its performance is compared with six
algorithms, i.e. FF-ANN with well-known learning methods, namely Momentum and Nesterov, Non-linear
AutoRegressive with eXogenous (NARX), Deep Neural Network (DNN), Gradient Tree Boosting (GTB)
and Random Forests (RF) that are competitive and powerful ML algorithms which have been successfully
used for load forecast. Hence, for STLF, the seven algorithms are executed simultaneously and the best one is
automatically selected considering its accuracy in terms of Root Mean Square Errors (RMSE). The proposed
methodology contains the steps required to implement the Big Data framework, i.e. data pre-processing,
transformation and loading, the configuration of the ML algorithms for dimensionality reduction, clustering,
STLF with different algorithms from which the Best Performant Algorithm (BPA) is automatically selected
to provide STLF for the next 24 hours. The methodology is ultimately tested considering a real case of a
residential smart building.

INDEX TERMS Load forecast, machine learning, Nesterov, clustering, big data.

I. INTRODUCTION
Future electricity grids consist in heterogeneous intercon-
nected systemswith an increasing number of small-scale gen-
erators and consumption appliances, providing large amounts
of data. Hence, the electricity sector necessitates Big Data
solutions and architectures for a performant energy system
management. A diversity of statistical and artificial intelli-
gence methods has been developed and applied for STLF.
However, as proven in literature, there is no single method
that exhaustively fulfil the requirements in terms of STLF
since target areas vary in size, in combination of commer-
cial, residential and industrial consumers, in geographic,
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climatologic and socio-economic characteristics. Further-
more, a new challenge is arising considering the large amount
of available input data that continuously flows from smart
meters and other sensors.

The STLF plays a key role as the consumption of the
residential consumers has gained increasing quotas from the
total consumption. For grid operators, STLF is essential in
terms of network configuration, voltage control, and dis-
patching generation units. Also, the electricity consumers
becomemore active and interested in minimizing the electric-
ity bill. The electricity suppliers performmore accurate STLF
enhancing the market strategies and settlement. Moreover,
for prosumers, consumption in correlation with volatility of
distribution generation (wind turbines, photovoltaic panels,
etc.) leads to new challenges.
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Most of the times, seasonal data, such as temperature,
humidity and nebulosity are variables that directly influences
STLF. Also, the current progress of sensors (formotion, doors
position or furnace state, weather stations, etc.) provides large
volume of data that could be integrated to understand the con-
sumers’ behaviour [1] and improve STLF. The influence of
the weekday might be also significant due to different activi-
ties that are scheduled for a specific day. The first generation
of the load forecast methods (also called analytical methods)
includes time series analysis, regression methods [2]–[4],
similar day method, Wavelet Transform (WT) [5], [6], least
square estimation [7], etc. Artificial intelligence methods,
also known as the second generation of the load forecast
methods, mainly comprises ANN [8], [9], including deep
neural networks [10]–[16], random forests, gradient boost-
ing [17], fuzzy logic [18]–[20], Support Vector Machines
(SVM) [21], genetic algorithms, Particle Swarm Optimiza-
tion (PSO) [22], ant colony optimization-based methods [23],
etc. The second generation compared with the first one has
gained importance due to errors reduction. Some combination
of methods (known as hybrid methods) that belong to both
generations is also possible [24]–[28].

The importance of the load forecast especially after the
unbundling of the energy sectors and different approaches for
STLF underlying the ANN methods are emphasized in [29].
STLF of buildings in microgrids enhancing renewables inte-
gration and economics of market transactions is proposed
in [24]. Load forecast using smart metering and sensors data
takes into account efficient peak management measures [30].
STLFmethods cover awide range of approaches that focus on
ANN methods [31] for building load forecast [32]. As ANN
algorithms have been shaded by the overfitting problem,
[33] propose a performant ANN with a learning method that
implements a novel search technique avoiding the overfitting.
An ANN method with backpropagation algorithm considers
three approaches in terms of confidence intervals for perform-
ing STLF [34]. Various ANN methods for STLF of buildings
in the context of smart grids underlying their advantages and
disadvantages are described in [35]. The probabilistic elec-
tricity consumption forecast approach is based on prediction
intervals that are developed by ANN models [36] using PSO
to set the parameters of ANN. Effects of temperature on
residential loads were found to be evident, while tempera-
ture effects on commercial and industrial loads weren’t quite
evident. This conclusion led to the fact that in case of a mix
of consumer types, low accuracy could appear when weather
(i.e. temperature) dependency assumptions are taken [37].
Forecasting accuracy, as measured with Mean Average Per-
centage Error (MAPE), improves considering a critical load
that depends on the forecasting method. Thus, for Support
Vector Regression (SVR) and FF-ANN, the critical load is
reached for a group of consumers of only 200, respectively
500 [38].

Different types of ANN are reviewed in [39], such as:
FF-ANN, Radial Basis Function (RBF) [40], self-organizing,
feedback (recurrent), fuzzy, stochastic, probabilistic ANN,

etc. setting stages and strengthening their applicability in
economics predictions. Reference [41] proposes a forecast
architectural model with ANN for microgrids. On the other
hand, [42] identify the limitation of ANN and propose a
STLF method for holidays and days that precede or follow
holidays consisting in a combination of ANN and fuzzy
inference method providing high accuracy of the hourly con-
sumption forecast. Reference [43] forecasts the consumption
in Bangladesh using various models, including fuzzy exten-
sion of ANN that proved to be very efficient. Forecasting
load for NEPOOL region from New England using hourly
temperature, humidity and electricity load with ANN, using
Mean Average Error (MAE), Mean Squared Error (MSE),
MAPE and daily peak forecast error to assess the accuracy
is given in [44]. A day-ahead load forecast in Turkish power
system based on FF-ANN, considering as input: date type,
hour, temperature of the four major cities and last day load,
is devised in [45]. Also, a 24-hour-ahead STLF for Turkey’s
Power System, with ANN, WT and ANN, WT and RBF,
empirical mode decomposition and RBF, considers only his-
torical data due to the irrelevance of temperature in terms of
a very wide area [46].

Analysing the electricity consumers’ behaviour, [47] per-
form load forecast based on the online sequential extreme
machine learning applied to clusters of electricity con-
sumers that are aggregated to finally obtain the total system
load, using smart metering data of households from Ireland.
The FF-ANN architecture and Levenberg-Marquardt training
algorithm for electricity consumption forecasting of residen-
tial consumers provide good performance. Simulations imply
one year and a half historical records for 93 households,
in Portugal (Lisbon) showing that the model is reliable for
forecasting and load profile [48]. In addition, a study for load
forecasting, using a Big Data approach to find out the optimal
number of lagged hours in regression models that would
maximize the forecast accuracy, presents the fact that the
naive models are not useful for benchmark purposes due to
low accuracy issues [49].With simulations performed on a set
of buses from different areas: urban, sub-urban and industrial,
[50] develop a bus load forecast model for day-ahead and
hour-ahead prediction based on ANN using a clustering tech-
nique that leads to some hybrid forecast models characterized
by high level of parameterization and efficiency. Considering
data from smart meters and other sensors, a mixed ANN
approach for STLF using NARX is integrated into a cloud
solution that can be provided as a service for grid operators
and residential consumers [51].

Recent developments in terms of STLF are underlying
deep learning methods described in [52] as ‘‘one of the most
promising techniques in advanced data analytics’’ and [53],
i.e. Recurrent Neural Networks (RNN), specifically Long
Short-Term Memory (LSTM) [54]–[58] and Convolutional
Neural Network (CNN) [59], initially extensively used for
traffic forecast [57] and image processing [60] that involve
multiple layers to progressively extract higher level features
from the input dataset.
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Reference [52] compares deep learning with conventional
ANN, but with increased complexity in terms of layers and
training process. One very interesting conclusion is that the
optimized number of layers for a short-term building cool-
ing load prediction showed that the learning model do not
actually need a deep architecture and a two-hidden-layer
architecture workedwell. Also, [61] claim that ANNwith two
hidden layers is enough to model most of the functions in the
real world.

RNN, CNN and ARIMA models are compared from dif-
ferent point of view (accuracy, computational efficiency,
generalizability). Forecasting the consumption of different
types of buildings with a data set of one year and records at
1-hour resolution, [14] show that deep learning outperforms
the ARIMA model, stressing that CNN may be the solution
for future challenges in terms of day-ahead load forecast.

The RNN, such as LSTM and Sequence-to-Sequence
(S2S) LSTM are proposed for building load forecast in [55],
proving that S2S LSTM performs well for both one-hour-
and one-minute-resolution forecast, whereas LSTMperforms
well only for one-hour-resolution forecast. High accuracy of
STLF with DNN and two-stage ensemble strategy is obtained
in [62]. Deep learning, namely factored conditional restricted
Boltzmann machine is proposed for estimating the building
electricity consumption [63], outperforming other methods,
such as SVR, RNN, etc.

The performance of any load forecasting method is heavily
influenced by the volume and quality of data. For this reason,
smart meters and sensors play a key role since they enable
appropriate decisions based on the valuable information that
comes out of data. Itis a consequence of the grid operators’
decision to implement smart meters at large scale. Therefore,
conventional meters that are monthly read are replaced by
smart meters that can hourly or at a higher resolution trans-
mit the consumption. Thus, large volumes of data will be
generated by smart meters. Also, for STLF or load profiles,
more data sources are needed to correlate the consumption
with other significant factors like weather conditions, web
surveys or questionnaires. In this context, heterogeneous
sources need to be collected and processed and new informat-
ics solutions are required for an efficient data management.
Big Data that refers to the management of large volumes of
data represents the solution for data storage, processing and
analytics. Big Data is characterized by at least three ‘‘V’’
dimensions: Volume, Velocity, and Variety. For instance,
the volume of data collected from smart meters at 15 minutes
form a city/region with 1 million of electricity consumers is
around 7 GB per day considering approx. 30 bytes per read-
ing in case of the following attributes: timestamp, meter id,
active power, reactive power. In addition, the data collected
from weather sensors/web APIs and other sensors may be
added to correlate the consumption with other significant fac-
tors (e.g. temperature, wind speed, cloud cover). Regarding
variety, in case of STLF and load profiles, the data sources
are heterogeneous, collected in various formats and struc-
tures: raw, JSON or CSV from smart meters and sensors;

JSON, CSV or XML from web APIs, document oriented
(JSON, XML) from web surveys or questionnaires. As for
velocity, data is collected usually at 15 minutes, but for
ultra-short-term forecast or monitoring and control activities,
the readings may be collected even more frequently (minute
by minute).

In this paper, we concentrate on a scalable Big Data solu-
tion that collects data from smart meters and weather sensors,
pre-processes and loads it into a NoSQL database that is
capable to store various data formats without laborious data
normalization as required by the relational databases. Then,
a set of ML algorithms are designed and implemented to
provide STLF for the next 24 hours based on the data stored
in the NoSQL database. These algorithms are linked into
a framework that provides an automatic process flow for
determining the load profiles and day-ahead forecast. The
proposed methodology contains the step by step procedure
to implement this framework in the context of Big Data,
i.e. data pre-processing, transformation and loading, the con-
figuration of the ML algorithms for dimensionality reduc-
tion, clustering, load forecast with different ML algorithms
to automatically choose the best performant method. Thus,
the methodology is transparent, flexible, integrated and could
be easily applied in any environment or data sets. The original
elements of the proposed methodology consist in:
• Dynamically selecting the most significant weather
attributes that influence the electricity consumption by
applying three feature selection algorithms. Therefore,
the proposed approach can be applied in various regions,
automatically detecting the relevant meteorological fac-
tors that will be considered as input, reducing the time
and resources for additional investigations related to
attributes identification. Also, by selecting significant
predictors, theANNdimensionality is reduced, the accu-
racy is increased due to the noise filtering of uncorre-
lated attributes. The process required for data analysis
is performed automatically, no additional step being
required;

• Clustering the electricity consumption for each season
considering the similar consumption behaviour. Apart
from consumption data, useful insights from web sur-
veys or questionnaires may be extracted and processed.
By grouping the consumers in relevant clusters and
obtaining the load profiles, their consumption pattern
becomes more predictable compared to the total aggre-
gated consumption. Also, load profiles provide a more
accurate perspective over the structure of the electricity
consumption by underlining their contribution to peak
and off-peak. Therefore, by estimating the electricity
consumption for each cluster, the forecast errors will be
reduced and the STLF performance will be improved;

• Designing and developing a FF-ANN algorithm based
on Nesterov learning method in which backtracking is
introduced to adjust the learning rate, thus reducing the
convergence rate and providing an optimum step for the
minimization of the forecast errors. For evaluating its
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accuracy, the proposed algorithm is compared with other
six ML algorithms, i.e. two FF-ANN with Momentum
and classic Nesterov learning methods, NARX, DNN,
GTB, RF;

• Developing a scalable Big Data framework for STLF
that processes data and simultaneously executes the
seven ML algorithms to automatically select the best
performant one to provide the output for the day-ahead
load forecast. The BPA is selected by comparing the
forecast accuracy of the seven algorithms for the last
24 hours in terms of RMSE, average, minimum and
maximum values of the errors.

This paper is structured in four sections. In the current
section, the significance of STLF, Big Data concept and
different consumption forecast approaches from literature are
presented. In section 2, we describe the proposed method-
ology considering the following three stages: data gathering
(from smart meters and sensors), pre-processing and storage;
dimensionality reduction and clustering; STLF with several
ML algorithms. In section 3, we run several simulations and
provide the results starting from data management to STLF
performance evaluation. In section 4, the main conclusions
are drawn.

II. METHODOLOGY
The proposed methodology for STLF in the Big Data con-
text consists in three stages that imply data pre-processing,
validation, storing, further processing and analysis with ML
algorithms to determine the load profiles and STLF.

In the first stage, data is gathered from smart metering
devices, combined with meteorological data that was col-
lected from the weather sensors or web APIs. In order to
validate the readings, an Extract, Transform and Load (ETL)
process is applied and then the data is loaded into a NoSQL
database. Regarding the type of the NoSQL database, key-
value or document-oriented types are recommended consid-
ering the structure of the data sources. In our simulations,
since all data sources are in JSON format, we use MongoDB
to store data as Binary JSON (BSON) that is a binary-encoded
serialization of the JSON format. MongoDB provides faster
reading speed and is better suited for rapid growth when the
structure of the data sources is not clearly known from the
beginning (compared with another NoSQL database, such as
CouchDB).

In the second stage, data analysis is performed to identify
the most significant attributes that influence the electricity
consumption. The attributes regarding weather parameters,
type of the day (working/weekend) or season are automati-
cally ranked based on their influence on the electricity con-
sumption. Also, a clustering method using k-means is run
to group the electricity consumers into consumption groups
with similar behaviour. Apart from the consumption data,
other optional sources may be included for clustering, such
as web surveys or questionnaires. Both clusters and the
most significant attributes are considered as input for the
ML algorithms.

In the third stage, the STLF for the next 24 hours is per-
formed. As a novelty, an FF-ANN algorithm is proposed with
an enhanced learningmethod by introducing backtracking for
adjusting the learning rate and reducing the computational
time especially in case of large data sets. To compare its
performance, other six powerful and competitive ML algo-
rithms are implemented, i.e. FF-ANN with enhanced gra-
dient descend methods (Momentum and Nesterov), DNN,
ensemble algorithms (RF and GTB) and NARX. To obtain
the best results, in the proposed methodology, all seven ML
algorithms are simultaneously executed and the best perfor-
mant algorithm in terms of accuracy is automatically selected
to forecast the electricity consumption. The ML algorithms
are trained and incrementally validated at regular intervals
(monthly) to obtain amore accurate prediction. The algorithm
that provides the best accuracy in terms of RMSE on the pre-
vious 24-hour forecast is automatically selected to perform
the day-ahead forecast. The ML algorithms are implemented
in Python as an integrated package for STLF.

The stages are linked and executed in the following
sequence - stage 1: data gathering, pre-processing and storage
in the NoSQL database; stage 2: clustering, dimensionality
reduction; stage 3: short-term load forecast (Figure 1).

FIGURE 1. Proposed methodology for STLF in the Big Data context.

These stages are briefly described in Table 1.

A. DATA GATHERING, PRE-PROCESSING AND STORAGE
One of the biggest challenges is to process and analyse
large amounts of data from online sources, generated by
smart meters and sensors while data is still ‘‘alive’’, has
value and impact. However, online data stream processing
needs filtering, transformation and aggregation in order to
provide time-based analyses. Data assessment can be seen
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TABLE 1. Stages and steps of the proposed methodology.

as a filter that retains the significant data, identifies events
and discards irrelevant data. Different smart meters, weather
sensors or web APIs provide variate formats and recording

rates that might be too detailed for certain analysis, therefore
aggregation is necessary. Another challenge is related to the
data quality since the data generated by smart meters or sen-
sors could be missing, inconsistent or incomplete due to
damages or communication interruptions [64]. When data
quality issue is persistent, major prejudice to the STLF accu-
racy is caused. In order to eliminate these major risks, sev-
eral steps should be performed for data pre-processing and
transformation.

The smart meters installed at residential consumers usually
record electricity consumption data at 1 up to 60 minutes,
containing the following information: timestamp, meter id,
active power (electricity consumption), reactive and appar-
ent power. As mentioned before, weather conditions have
a major influence on the electricity consumption, therefore
weather data should be included as input. Accurate weather
data and forecast may be obtained from weather sites as web
APIs or from the weather stations located in the proximity
of the consumption place (apartments, houses). The weather
data usually has a 60 minute-resolution and contains values
related to temperature, wind speed, wind bearing, humid-
ity, dew point, visibility, cloud cover, pressure, precipitation
intensity and probability. The measurements recorded by
smart meters and weather sensors need a proper validation,
filtering and transformation process to be valuable and con-
sistent for the STLF. Thus, an ETL process is applied on these
data sources and the missing or corrupted values are replaced
by the most appropriate values from the previous time inter-
vals using backward interpolation. In case of weather APIs,
the non-numerical values (e.g. icon or sky-description and
cloud-cover) require to be transformed into numerical values
using encoders and converters. Optionally, in case of pre-
processing data from other web sources (surveys, question-
naires or even social media), more advanced pre-processing
methods should be applied after loading and storing data.

Since data gathered from smart meters, weather sensors /
web APIs and web sources contain semi-structured data in
various formats and with different time resolution, then the
solution for data processing and storage could be a NoSQL
database with powerful search engines, such as: MongoDB,
Elasticsearch, Oracle NoSQL, Riak or Redis.

B. CLUSTERING AND DIMENSIONALITY REDUCTION
The electricity consumption data from regions with similar
meteorological conditions is split over seasons and, for each
consumer (cl), the hourly average is computed. Then, the con-
sumers with similar consumption behaviour are grouped into
load profiles using the k-means algorithm. K-means is an
unsupervised machine learning algorithm that builds clus-
ters by grouping instances (consumers) around k centroids
by computing the distance or the similarity between these
instances. The distance between two instances is determined
with one of the following classical methods: Euclidean,
Manhattan orMahalanobis. Initially, a centroid value for each
cluster (µk ) is randomly chosen, then the following steps are
performed iteratively:

177878 VOLUME 7, 2019



S.-V. Oprea, A. Bâra: ML Algorithms for STLF in Residential Buildings Using Smart Meters, Sensors and Big Data Solutions

1) determine the distance between each instance
(consumer cl) and each of the k centroids. The Euclidean
distance is determined as follows:

dist
(
cl, µj

)
=

√∑24

h=1

(
clh − µjh

)2
, ∀j ∈ 1, k (1)

2) establish the allocation ρl of each consumer l to the
cluster j based on the nearest centroid:

ρl := argmin dist
(
cl, µj

)2 (2)

Thus, each instance will be allocated to a single cluster.
Let’s denote by Sj the set of all instances allocated to each
cluster (centroid) j, ρl ∈ Sj.
3) determine new centroids based on the mean value of the

instances belonging to the corresponding clusters:

µj =
1∣∣Sj∣∣ ∑cl∈Sj

cl (3)

Steps 2 and 3 are repeated until the allocation of the
instances do not change or a user-defined tolerance or max-
imum number of iterations is reached. The k-means can
be seen as an optimization problem that minimizes the
within-cluster sum of squared errors, known as cluster
inertia.

As a result, the electricity consumers are grouped into
k clusters representing seasonal load profiles. The allocation
of each consumer to a load profile (ρl) will be considered as
input for the ML algorithms.

A dimensionality reduction method is applied to select the
most significant factors. For each region, meteorological fac-
tors (temperature, humidity, wind speed or cloud cover) have
different influence and impact on the electricity consumption.
Also, type of the day (weekdays or weekend days) and period
of day (hours) influence to some extent the electricity con-
sumption. To analyse their impact, we compared three feature
selection algorithms: univariate selection, Recursive Feature
Elimination (RFE) and Lasso Regularization (LassoR). For
univariate selection, we use a feature selection method that
computes the F score between each input factor and the elec-
tricity consumption. A small value will mean that the input
factor has a minor influence on the consumption, whereas a
big value will indicate a strong dependency; thus, the input
factor has a major influence on the consumption. The method
computes the scores for each input factor and automatically
retains the most important factors with the highest scores
selected as predictors (input parameters) for the ML algo-
rithms. For the most important factors, we also calculate the
Pearson correlation coefficient to validate the F scores. RFE
uses the accuracy to rank the input factors considering their
importance on the training model (1 being the most impor-
tant) and recursively removes unimportant factors to build the
model on the remaining attributes. It also provides the support
of each factor as a Boolean value, True being a relevant factor
and False being an irrelevant one. LassoR is an embedded
method that iteratively extracts the factors with the highest
impact on the training process at each iteration. If the factor

is not important, then its coefficient (contribution) is set to
zero. Hence, only the factors with non-zero coefficients may
be kept for the model. Then, the rankings provided by these
three algorithms are compared and the most important fk
factors are selected considering their common highest scores.
By applying the feature selection method, the number of
input parameters are reduced, and the complexity of the ML
algorithms is decreased, thus the STLF is performing faster
and with less computational resources.

C. STLF WITH ML ALGORITHMS
1) DESCRIPTION OF VARIABLES AND PARAMETERS
The first four ML algorithms are developed on the FF-ANN
architecture with backward propagation of errors using sev-
eral options for optimizing the squared error function of the
real output and the predicted values. The input parameters (X )
are composed by m elements as follows: the most important
fk meteorological factors, type of the day, hour and the allo-
cation of the electricity consumers to one of the k clusters.
The output of the STLF is represented by the electricity con-
sumption (Y ) for the next 24 hours. The FF-ANN architecture
consists in three layers: the input layer (X ) with m elements,
one hidden layer (H ) with p neurons and the output layer (Y )
with a single element (electricity consumption). The output Y
is determined based on the input X using the approximation
function:

Y = f (X) (4)

The network topology is given in Figure 2 having only one
hidden layer for faster training and performance.

FIGURE 2. FF-ANN configuration.

Based on this topology, each element hj of the hidden
layer H is determined by the activation functions fj (X) as
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follows:

hj = fj (X) = fj
(
bxj +

∑m

i=1
wx jixi

)
, ∀j = 1, p (5)

In this case, the output Y is determined using the activation
function fH (X) as follows:

Y = fH (H) = fH (bh+
∑p

j=1
whjhj) (6)

In order to simplify the notation and to increase the clar-
ity of the algorithms, the weights and biases (WX ,WH ,
BX ,H , bh) are stored into a single in-memory variableW as a
data frame. The elementswj ∈ W , j = 1, p are represented by
{wx j.,whj, bxj, hj, bh}. The algorithms automatically receive
(from step 2.2) the sizem of the input vectorX and the number
of hidden neurons p as parameters, and dynamically allocate
the W variable.

2) TRAINING METHODS
The FF-ANN algorithms are using a supervised learning and
attempt to minimize the errors between the actual values of
the electricity consumption (Ŷ ) and the output (Y ) predicted
with FF-ANN. The error function (E) for each pair (Ŷ q,Xq)
of the training set Q is adapted from [65]:

E =
1
2
(Ŷ − Y )2=

1
2Q

∑Q

q=1
err2q=

1
2Q

∑Q

q=1
(Ŷq − Yq)2

(7)

In order to find the minimum E , the principle of gradient
descend method is used in which the weights (wxij,whj, ∀i =
1, n ∀j = 1, p) and biases (bxj, bh,∀j = 1, p) are adjusted
at each learning step (iteration) considering the following
equation:

wt+1
j = wt

j + lrtVt (8)

However, for faster convergence and acceleration of
error minimization, more efficient methods for updating the
weights and biases are considered by introducing additional
elements:

1) Algorithm MOMENTUM implements the Momentum
method that accelerates theminimization of the error function
in the downward direction and reduces the oscillations by
adding the value updated at the previous step (t) to the current
step (t + 1):

wt+1j = wtj − ηw
t−1
j − lr∇E t

(
wtj
)
, ∀j = 1, .., p (9)

2) Algorithm NESTEROV implements the Nesterov
method that reduces the convergence rate by adjusting the
current values based on the gradient of the previous two
iterations (t and t-1):

wt+1j = (1− δt)
(
wtj − lr∇E

t
(
wtj
))

+ δt

(
wt−1j − lr∇E t−1

(
wt−1j

))
(10)

where δt starts with 1 and is updated iteratively based on
another variable λt :

δt =
1− λt
λt+1

(11)

λt =
1+

√
1+ 4λ2t−1
2

; λ0 = 0; (12)

The main advantage of the Nesterov method is that it
obtains the lower bound of the convergence rate of order
1/t∧2, while the gradient descent method has a rate of con-
vergence of order 1/t after t iterations.

3) Apart from the existing training methods, as a novelty,
we propose the algorithm NEST_BCKTR that introduces the
backtracking for adjusting lr t in classic Nesterov method,
keeping the λt constant as in Momentum method. For
adjusting the learning rate, we implement Armijo-Goldstein
method. This represents a line search method and its advan-
tage is that it provides an optimum step to move along the line
search (minimization of the network error). Initially, lr starts
with 0.5 and gradually, at every iteration, is adjusted with a
shrinking rate r , where r ∈ (0, 1):

lr1 := 0.5;
LOOP
lr t+1 := r × lr t ;
UNTIL Et+1

− Et < lr t× ∝ ×V t ;

where ∝ is a constant between 0 and 0.5.
The weights are updated based on the following equation:

wt+1j = (1− η)
(
wtj − lr

t
∇E t

(
wtj
))

+ η
(
wt−1j − lr t−1∇E t−1

(
wt−1j

))
(13)

4) Considering the well-known performance for time-
series in general and load forecast in particular [40], NARX
algorithm is chosen to compare the accuracy of the proposed
FF-ANN. Therefore, we implement NARX that uses nonlin-
ear autoregressive network with exogenous variables to deter-
mine the electricity consumption (Ŷ ) at step (t + 1) based on
previous yd past output and xd past exogenous variables.

Ŷ (t + 1) = f (Y (t),Y (t − 1), . . . ,Y (t − yd ),

X (t),X (t − 1), . . . ,X (t − xd )) (14)

The most significant weather factors, cluster number, type
of the day and hour are considered as exogenous variables.
In our case, the previous three steps are considered for both
yd and xd parameters.

The accuracy of the proposed FF-ANN algorithm is also
compared with more competitive ML algorithms, i.e. DNN,
GTB and RF.

5) DNN implements a sequential deep learning algorithm
with a similar representation with FF-ANN, but with a higher
number of hidden layers and more complex training meth-
ods. For comparison, we select Stochastic Gradient Descent
(SGD) and ADAM as training methods. ADAM represents
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an optimization algorithm for the first-order gradient using
a stochastic objective function and proves its efficiency in
terms of the computational resources [66]. In the simulation
section, we test several configurations for DNN, i.e. different
number of hidden layers, number of neurons of the hidden
layers and activation functions (e.g. linear, rectified linear,
SoftMax, hyperbolic tangent and sigmoid).

6) GTB implements the boosting ensemble algorithm that
uses many predictors trained sequentially to minimize the
network errors. GTB is especially applied for classification
and regression problems and uses a weak prediction algo-
rithm considering fixed size decision trees. At each itera-
tion, GTB fits the current decision tree to pseudo-residuals
attempting to minimize the errors of its predecessor using
gradient descent method. The final prediction is obtained by
computing the residuals predicted by all trees adjusted by the
learning rate [67]. In the simulation section, we test different
number of predictors with variable depth.

7) RF applies the bootstrap aggregation known as bagging
that trains each decision tree of the ensemble algorithm with
a subset randomly extracted from the training set. The final
prediction is obtained by combining classifiers into twoways:
averaging their probabilistic prediction or considering their
voting for a single class [68].

3) SETTING UP THE PARAMETERS OF THE ML ALGORITHMS
Since the ML algorithms are sensitive to the data values and
ranges, the data set is standardized using Median – MAD
method described in [69]. This is proven to be a robust tech-
nique since it does not transform the values into a common
numerical range. Also, this method is not sensitive to out-
liers or extreme values of the distribution. The standardized
input values are transformed accordingly to the following
equation:

xi′ =
xi−med i
MADi

(15)

MADi is determined as follows:

MADi = medianQq=1
∣∣xqi −medi

∣∣ (16)

Also, the training and validation steps of the algorithms
require distinct sets of data, randomly selected from thewhole
data set, but with representative records. For this purpose,
the data set is split into 80% training records and 20% valida-
tion records. The initialization step of the algorithms requires
other important parameters, such as: the number of training
epochs (p_n_epoch) and also the accepted error (p_eps) for
stopping the training step.

These data pre-processing steps are implemented in Python
as sub-routines developed as part of a single package used
for obtaining the forecast (STLF_PACK package) shown in
Figure 3.

4) CHOOSING THE BEST FORECASTING ALGORITHM
In order to automatically choose the BPA for STLF, the fol-
lowing performance indicators are evaluated:

FIGURE 3. The flowchart of the training steps of the ML algorithms.

• Error values in terms of average of the absolute error
(AVG (|E|)), minimum absolute error (MIN (|E|)) and
maximum absolute error (MAX (|E|));

• Correlation coefficient between the actual consump-
tion (Ŷ ) and the forecasted consumption (Y );

• RMSE determined as follows:

RMSE =

√√√√∑Q
q=1

(
Ŷq − Yq

)2
Q

(17)

The results are ordered first by RMSE and then by
AVG (|E|), MIN (|E|) and MAX (|E|). Then, the BPA is
selected to provide the forecast of the electricity consumption
for the next 24 hours. The flowchart of the training and
validation steps of the above ML algorithms is synthetized
in Figure 3.

Considering the above flowchart, we train the ML algo-
rithms on a data set described in section 3 and compare the
results in terms of accuracy for training and validation steps.

5) INCREMENTAL VALIDATION AND TESTING
In the previous steps, we have described the training and
validation processes for the initial configuration of the ML
algorithms. But for applying the algorithms in a testing or real
environment, for day-ahead load forecasting, they must per-
manently adjust their configurations considering the most
recent selected inputs. This process requires incremental val-
idation considering the last period. Thus, the data set used
for training and validation must be permanently updated by
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introducing the records measured in the last d days and
removing the records measured in the first d days of the
previous interval.

For testing, to provide the day-ahead load forecasting, the
BPA is selected based on the accuracy of the last 24 hours
forecasts obtained with all ML algorithms. In this case,
the actual consumption values are available, therefore the
performance indicators can be determined for each ML algo-
rithm. The flowchart of the STLF in the testing environment
is presented in Figure 4.

FIGURE 4. The flowchart of the ML algorithms in testing environment.

Section 3 describes the data set, simulations and results
obtained with the previously depicted methodology.

III. SIMULATIONS AND RESULTS
A. SMART METERING DATA SOURCE DESCRIPTION AND
PRE-PROCESSING
The data set used in simulations consists in raw files recorded
by smart meters representing 15 by 15 minutes electricity
consumption values from mid of 2014 up to December 2015
(around 7.25mil. of records) andminute byminute electricity
consumption values for 2016 (around 57.46 mil. of records).

Smart meters were installed during 2014, so that some
records are missing or inconsistent; therefore, we consider
for training and validation the 2015 data set (over 6 mil. of
records), keeping the 2016 data set for incremental validation
and testing of the ML algorithms.

Also, hourly weather data for the entire period (such as:
temperature, apparent temperature, humidity, visibility, pres-
sure, wind speed, wind bearing, cloud cover, precipitation
intensity, precipitation probability, dew point) is available
for the simulations. The recorded data belongs to a resi-
dential building with 114 single-family apartments located
in New England [70]. This region has a humid continental

climate, long winters, cold, and heavy snow. The summer
months are moderately warm, though summer is rather short,
and rainfall is usually spread through the year.

For pre-processing, the ETL process transforms, validates
and loads the files collected from smart meters and weather
stations into MongoDB. The files regarding the electricity
consumption contain the following attributes: timestamp,
apartment id, active power (kWh) and status of the sen-
sor. If the status is online, but the load value is out of the
boundaries, then corrections are made by adjusting the load
value with the average of the previous reading values. The
files from the weather stations contain hourly readings of the
following parameters: dew point, apparent temperature, tem-
perature, humidity, visibility, precipitation intensity, precipi-
tation probability, cloud cover, icon (sky-description), wind
bearing, wind speed and atmospheric pressure. The descrip-
tive variables are transformed into numerical values using
encoders. The weather readings are transformed from hourly
to 15 minutes data values using interpolation. Therefore,
the electricity consumption is correlated with themeteorolog-
ical readings and can be used as input for the ML algorithms.

B. CLUSTERING AND DIMENSIONALITY REDUCTION
To determine the load profiles, an initial analysis of the data
set is performed, noticing that in most of the cases, the morn-
ing peak is at 8-9, the evening peak at 20-21, the night peak
at 3 and the day off-peak at 15 as represented in Figure 5.

FIGURE 5. Total hourly load curve for 2015 data set.

However, there are significant differences regarding the
individual consumption behaviour of the inhabitants of the
114 apartments in terms of electricity consumption. For
instance, some of them may reach the morning/evening peak,
while others may reach the night/day off-peak at the same
hour. Therefore, splitting apartments into clusters is crucial
for STLF.

The contribution of the apartments to the morning and
evening peaks is depicted in Figure 6. It can be noticed that
each apartment has a different contribution to the peaks. For
instance, apartment no. 28 contributes with more than 2.2%,
while apartment no. 30 contributes with less than 0.25% to the
consumption peaks. This could provide valuable information
to the designers of the time-of-use tariffs as they could impose
higher rates based on contribution to the consumption peak.
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FIGURE 6. Load peaks contribution of the 114 apartments for
2015 data set.

After hourly aggregating the electricity consumption over
each season for the entire data set, we cluster the 114 apart-
ments to identify more similarities among the electricity
consumers in terms of the hourly consumption. In order to
determine the appropriate number of clusters, we perform
the Elbow analysis (Figure 7) that indicates that the recom-
mended value is 4 or 5.

FIGURE 7. Elbow analysis indicating the recommended number of
clusters.

Therefore, 5 clusters with k-means algorithm are deter-
mined, considering the Euclidian distance. The size of each
cluster is shown in Figure 8.

As described in the proposed methodology, the forecast is
performed for each cluster, taking into account the type of
the day, considering weekdays (from Monday to Friday) and
weekend (Saturdays and Sundays) due to their specificities
(i.e. on weekdays peaks, load are slightly higher, morning
peak are earlier compared with the weekend peaks) as in
Figure 9.

After this step completes, each apartment is assigned to a
specific cluster and its allocation (ρl) can be used as input for
the ML algorithms.

To automatically configure the ML algorithms input as
vector X , the dimensionality reduction is applied to select
the most important fk factors that influence the electricity
consumption. As presented in the methodology, we compared

FIGURE 8. Members’ distributions among the clusters.

FIGURE 9. Load profiles for weekdays and weekend days determined for
the entire year.

three feature selection methods, all of them implemented
in the scikit-learn Python package: SelectKBest with
univariate linear regression test (f_regression), RFE and
LassoCV for Lasso regularization. Table 2 depicts the rank-
ings of each meteorological factor determined with Selec-
tKBest (F scores), RFE (ranking and support) and LassoR
coefficient.

TABLE 2. The influence of the weather parameters over the electricity
consumption.

Analysing the 2015 data set by applying the Pearson corre-
lation coefficient, we notice a very strong inverse correlation
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between the electricity consumption and the apparent temper-
ature as in Figure 10 and relatively weak correlation between
load and the rest of the weather parameters.

FIGURE 10. Hourly load and apparent temperature for 2015.

As it can be noticed, the most important weather fac-
tors, common to all methods are temperature, apparent tem-
perature and dew point. Therefore, we set fk = 3 and
these meteorological factors are selected as predictors for the
ML algorithms.

The following input parameters are passed to the ML algo-
rithms: X1 – cluster number (X1 ∈ {1, 2, 3, 4, 5}), X2 – type
of the day (day code, X2 ∈ {1, 2}), X3 - apparent temperature,
X4 – dew point, X5 – temperature, X6 – hour. The output Y is
the electricity consumption.

C. STLF PERFORMANCE
1) INITIAL TRAINING AND VALIDATION RESULTS
First, we perform the input standardization to transform the
input based on Median – MAD method. Then, the data set
is split for training (80% of the records) and for validation
(20% of the records).

For FF-ANN algorithms, similar neural network configu-
ration is considered in order to compare their accuracy. After
several tests, the best results are obtained with 100 training
epochs (p_n_epoch), 40 neurons on the hidden layer (p),
0.01 for the initial learning rate and 0.1 for the accepted error
(p_eps). The activation function is the rectified linear unit
(relu). Similar results in terms of accuracy are obtained with
hyperbolic tangent (tanh) and 64 neurons on the hidden layer,
but with a slightly higher computational time for training.
The weights and biases are randomly initialized with values
between 0 and 0.5. For the DNN algorithm, we start with one
input layer and 6 hidden layers with 32 neurons using relu as
activation function and SGD as trainingmethod. After several
tests, comparing the results in terms of accuracy and compu-
tational time, we set the final configuration to 3 hidden layers
with 64 neurons, tanh activation function and ADAM as
training method. Comparable results in terms of accuracy are
also recorded with 2 hidden layers with lower computational
time, meaning that the DNN developed for load forecast does
not actually require a deep architecture. It also indicates that
DNN shows limited advantages compared with FF-ANN.

For the GTB and RF algorithms, we test several configu-
rations and finally we set the number of predictors to 60 and
max_depth to 15. A lower value for max_depth reduces the
computational time but decreases the accuracy.

The forecast time-horizon is 24-hour ahead at a 15-minute
resolution and lead time is 1 hour. Update frequency is hourly
based assuring a refresh of the results close to the real-time
operation.

The ML algorithms are executed simultaneously and their
results are first compared in terms of accuracy. For compari-
son, we train the algorithms without considering the clusters
and then repeat the training on each cluster. Table 3 syn-
thetises the results obtained for the entire data set (without
clusters) and Table 4 synthetises the average results obtained
for the 5 clusters.

TABLE 3. STLF performance for training and validation without clusters,
2015 data set.

TABLE 4. STLF performance for training and validation with 5 clusters,
2015 data set.

Then, we analyse the performance recorded in the training
and validation phase with the ML algorithms applied for each
cluster by comparing the RMSE (Table 5).

TABLE 5. STLF performance for training and validation RMSE
performance for each cluster, 2015 data set.

In the training phase, the FF-ANN algorithms (excepting
NARX) and DNN provide very good accuracy with similar
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results in terms of RMSE for all clusters, independently of
their distribution (size) or load profiles. Comparing the results
of the ensemble algorithms and analysing the load profiles for
each cluster, it can be noticed that RF and GTB record a very
good accuracy on clusters no. 2 and 3 that have flatter curves,
without significant peaks or off-peaks. On the other hand,
on clusters 1 and 5 with frequent peaks and off-peaks, these
algorithms have similar results with NARX which provides
the lowest accuracy. Regarding the computational resources,
we noticed a very high CPU activity and a significant increase
in the computational time for training the DNN.

2) INCREMENTAL VALIDATION AND TESTING RESULTS
As mentioned before, the 2016 data set is preserved only for
incremental validation and testing. We set d = 15 days and
run the ML algorithms to select the BPA. After this period,
the weights and biases are updated, and the data set used for
the next validation process is also updated. Also, clustering
technique is applied for each season to include the weather
influence on the electricity consumption.

For testing, we consider twelve scenarios involving the
most populated clusters (1, 2 and 5) and two types of
the days: winter and summer weekdays (19-Jan-2016 and
7-Aug-2016) and winter and summer weekend days
(24-Jan-2016 and 23-Aug-2016). The first scenario considers
cluster 2 on a winter weekday (19-Jan-2016) and the algo-
rithm with the best performance over the last 24 hours is
automatically selected to forecast the electricity consumption
for the next day. The performance indicators for this scenario
are provided in Table 6.

TABLE 6. STLF performance at the testing phase: Cluster 2, 19-Jan-2016,
winter weekday.

Even though with GTB and RF we obtain very good
results at the training stage on cluster 2 and we expected
to outperform the other ML algorithms at the testing stage,
the best performance is recorded with NEST_BCKTR, so this
algorithm provides the forecast for the next day. DNN has
similar results with the FF-ANN that uses classic Nesterov as
training method. The results obtained by NEST_BCKTR are
displayed in Figure 11.

The second scenario considers a winter weekend day
(24-Jan-2016) for cluster 2. In this case, NESTEROV algo-
rithm records the best performance (RMSE = 1.32) com-
paring to the other six algorithms on the day before (that is
also a weekend day), so it provides the forecast for next day.

FIGURE 11. Load forecast for cluster 2 for a winter weekday.

Similar results are recorded with DNN (RMSE = 1.38),
followed by NEST_BCKTR (RMSE = 1.39) and MOMEN-
TUM (RMSE = 2.15). The lowest accuracy is obtained with
NARX and the ensemble algorithms with RMSE between
3.17 and 4.7. The forecast results obtained with NESTEROV
are displayed in Figure 12.

FIGURE 12. Load forecast for cluster 2 for a winter weekend day.

For the third scenario, we forecast the electricity con-
sumption of cluster 5 on 19-Jan-2016 with NEST_BCKTR,
automatically selected by the process flow, having RMSE =
2.12. Very good results are also recorded with NESTEROV
(RMSE = 2.29) and DNN (RMSE = 2.49) followed by
MOMENTUM with RMSE = 2.61. The lowest accuracy is
obtained with NARX and the ensemble methods were RMSE
is between 3.4 and 5.01. The forecast results obtained with
NEST_BCKTR are presented in Figure 13.

In the fourth scenario, for cluster 5, we forecast
the electricity consumption for a winter weekend day
(24-Jan-2016). For the day before, the best performance is
recorded with NEST_BCKTR with RMSE = 2.01, followed
by NESTEROV (RMSE = 2.24) and DNN (RMSE = 2.48).
The forecast results obtained with NEST_BCKTR are pre-
sented in Figure 14.

In the fifth scenario, cluster 1 is also considered for
simulations to validate the results for other clusters with
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FIGURE 13. Load forecast for cluster 5 for a winter weekday.

FIGURE 14. Load forecast for cluster 5 for a winter weekend day.

numerous members. The electricity consumption for cluster 1
on 19-Jan-2016 is forecasted with NEST_BCKTR having the
best RMSE = 2.37. In this case, there are some minor spikes
in the real load that are not very well fitted by the prediction
as it can be observed in Figure 15 for hours 9 and 12.

FIGURE 15. Load forecast for cluster 1 for a winter weekday.

In the sixth scenario, the forecast is also performed for
winter weekend day (24-Jan-2016) for cluster 1. The BPA
is NESTEROV with best RMSE = 2.27. The results are
presented in Figure 16.

The results for winter simulations are centralized in
Table 7.

FIGURE 16. Load forecast for cluster 1 for a winter weekend day.

TABLE 7. STLF performance (RMSE) in the testing phase for clusters 1, 2
and 5 on winter days.

For all winter scenarios, the ML algorithms provide accu-
rate forecast, either for weekdays or for weekend. In most
cases, the NEST_BCKTR has the best performance in
term of RMSE. In case of two winter weekend days, for
clusters 1 and 2, the BPA is NESTEROV. Very good results
are obtained with DNN in all scenarios, while the lowest
accuracy was obtained with NARX and the two ensemble
algorithms, namely GTB and RF.

In order to better evaluate the results, we also run the
simulations for clusters 1, 2 and 5 for two summer days:
7-Aug-2016 (weekend day) and 23-Aug-2016 (weekday).
The forecast performance of theML algorithms is centralized
in Tables 8 and 9.

TABLE 8. STLF performance (RMSE) in the testing phase. Clusters 1, 2 and
5 for summer weekend day (7-Aug-2016).

The best performance in case of summer weekend
day for cluster 1 is obtained with DNN, while for clus-
ters 2 and 5, NEST_BCKTR performed better. Also,
NESTEROV recorded very similar results. As it can be
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TABLE 9. STLF performance (RMSE) in the testing phase. Clusters 1, 2 and
5 for summer weekday (23-Aug-2016).

observed, the differences between these three methods are
very small, so each method can be used to provide a good
forecast for summer weekend days. In case of cluster 2,
a good accuracy is obtained with DNN, followed by the
ensemble algorithms, MOMENTUM and NARX.

For clusters 1, 2 and 5, in summer weekdays,
NEST_BCKTR performs better than the other ML algo-
rithms, recording smaller differences compared to DNN and
NESTEROV and bigger difference compared to NARX.
This proves that both algorithms based on Nesterov learning
method are reliable for an accurate forecast in case of the
considered data set. Even though Momentum method did not
perform as well as Nesterov in these scenarios, it is possible
that with different data sets to provide better accuracy since
its results are relatively close to the Nesterov methods. DNN
records a very good accuracy, similar with the algorithms
based on Nesterov learning method. While for the cluster
2, the ensemble algorithms obtain good results, similar with
DNN in terms of RMSE, for clusters 1 and 5 their results are
similar with NARX, RF having the lowest accuracy.

Besides the accuracy of the ML algorithms, we compare
the computational time, CPU activity and memory alloca-
tion during the training and testing stages. Thus, the lowest
resources are required by the two Nesterov methods as both
imply faster convergence than the otherML algorithms. Also,
a small computational time and a low CPU activity, but an
increased memory allocation are required by the ensemble
algorithms. The highest resources are consumed by the DNN
which requires almost 38 times more computational time
than Nesterov algorithms. In this case, a very high CPU
activity (around 96%) is also noticed. In the context of smart
metering and Big Data, a small computational time and
less resources required by the ML algorithms are extremely
important in selecting the BPA. For the proposed algorithm,
NEST_BCKTR, the computational time is reduced compared
to the classical Nesterovmethod, since it uses a more efficient
method for minimizing the network error by implementing a
dynamical adjustment of the learning rate.

IV. CONCLUSION
In this paper, we propose an integrated methodology for
STLF using ML algorithm in the Big Data context that
mainly involves the processing of large volumes of data
recorded at different time resolutions. Our approach dynami-
cally determines the most important attributes as predictors

considering their influence on the electricity consumption.
Thus, the proposed methodology can be applied in different
regions, automatically detecting the relevant meteorological
factors that will be considered as input, reducing the time and
resources for additional investigations related to the selection
of attributes. Also, by selecting significant predictors, theML
algorithms configuration is reduced, and the performance is
increased due to the noise filtering of uncorrelated attributes.

Another important aspect of the proposed methodol-
ogy represents the clustering of the electricity consumers
obtaining useful load profiles. By grouping the consumers
into relevant clusters considering the consumption pattern
similarities, the performance of STLF is improved, RMSE
decreasing from 5.72 to 1.93.

Our approach in terms of STLF relies on seven ML
algorithms (i.e. three FF-ANN algorithms, NARX, DNN,
GTB and RF) that simultaneously run to select the BPA
and estimate the electricity consumption for the next day.
The FF-ANN algorithms are based on the enhanced gradi-
ent descend methods, two of them using existing methods,
such as Momentum and Nesterov. Besides, we proposed and
implemented a novel learning method by introducing a back-
tracking adjustment of the learning rate.

By selecting the ML algorithm with the best performance,
a more accurate prediction is obtained, the results being
incrementally validated. The algorithms are implemented in
Python, trained, validated and tested on 2-year data sets; the
results are compared in terms of RMSE, correlation coeffi-
cient R, average, minimum and maximum of absolute error.

The proposed algorithm, NEST_BCKTR, performs bet-
ter than the other ML algorithms, revealing smaller RMSE
differences compared to the classic Nesterov and DNN. For
training the DNN, very high computational resources were
required, almost 38 times more than Nesterov algorithms.
This proves that both algorithms based on Nesterov learning
method are reliable for an accurate and faster forecast in case
of the considered data set. NARX and ensemble algorithms
record lower performances in terms of accuracy. However,
GTB and RF algorithms provide similar results in terms
of accuracy as Nesterov and DNN algorithms for summer
days in case of clusters 2 and 3 with smooth load profiles.
Even though Momentum didn’t perform as well as Nesterov
and DNN in the analysed scenarios, it is possible that with
different data sets to offer better accuracy since its accuracy
is acceptable for all clusters.

Another interesting conclusion is referring the optimal
DNN configuration that revealed a number of only 3 hidden
layers (or even 2) showing limited advantages compared with
FF-ANN.

A limitation of our approach is that the input data for tem-
perature, apparent temperature and dew point are measured
values, not estimations, so there is no error probability for
the weather forecast. But, in a real environment, the weather
data will be also an estimation. This aspect needs to be further
investigated by introducing a probabilistic forecast regarding
the weather conditions.
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