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ABSTRACT Aiming at the problem of low accuracy of traditional brain tumor detection, in this paper,
a combination of multimodal information fusion and convolution neural network detection method of brain
tumors, we call it a Multi-CNNs. First, this paper uses the extension of the 2D-CNNs to multimodal
3D-CNNs, and can obtain brain lesions under different modal characteristics of three-dimensional space.
It can solve the 2D-CNNs raw input requires large neighborhood of faults, at the same time better to extract
the modal of the differences between information. Then the real normalization layer is added between the
convolution layers and pooling layer to improve the convergence speeds of the network and alleviate the
problem of overfitting. In the end, the loss function was improved, and the weighted loss function was used
to enhance the feature learning of the lesion area. The experimental results showed that the brain tumor
detection method proposed in this paper could effectively locate tumor lesions, and better results were
obtained in correlation coefficient, sensitivity, and specificity. Compared with two-dimensional detection
network and single mode brain tumor detection methods, the detection accuracy is significantly improved.

INDEX TERMS Multimodal, fusion, convolutional neural network, brain tumor.

I. INTRODUCTION
With the improvement of modern medical standards, medical
imaging technology plays an increasingly important role in
daily medical diagnosis and medical research. Therefore,
research on medical diagnostic image data is very important.
As a tumor disease with frequent occurrence and complexity,
brain tumor has become a key research topic in the medical
field [1], [2]. The diagnosis of brain tumors is usually based
on imaging data analysis of brain tumor images. Accurate
analysis of brain tumor images is a key step in determining
a patient’s condition. However, the accumulation of doctors’
personal medical knowledge, differences in experience lev-
els, and visual fatigue can affect the correct analysis of image
results. Therefore, how to accurately detect brain tumor
images is very important [3], [4].

Magnetic Resonance Imaging (MRI) [5] can provide infor-
mation on the shape, size, and position of human tissues and
organs without high ionizing radiation. The images obtained
are very clear and precise. MRI greatly improves the diag-
nostic efficiency, avoids the operation of thoracotomy or
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laparotomy exploration, and provides a good guide for lesion
localization and surgical treatment. Brain tumor MRI uses
three-dimensional multi-band imaging technology, and chest
X-ray scanning, etc. Compared with 2D images, 3D multi-
band MRI can provide the coordinate position of the lesion
area to assist the doctor to accurately locate the lesion area.
In addition, MRI imaging can also obtain different structures
of the same tissue using the unused development sequence.
That is, a multimodal MRI image. Brain MRI imaging can
be divided into four modes according to the difference of
imaging auxiliary conditions: T1weightedmode, T1cemode,
T2 weighted mode and Flair mode. Different modes can
display different brain tumor features [6].

The existing methods of brain tumor detection mainly
include level set detection [7], fuzzy clustering [8], region
growing [9], and machine learning [10]. Feizollah et al. [11]
used fuzzy clustering algorithm to image pre-detection is
performed to obtain the region of interest of the brain tumor
MRI image, and the clustering detection result is taken as
the initial contour of the level set evolution, and finally the
clustering result is used to detect the tumor. Konur [12]
trained the Support Vector Machine (SVM) model with
known samples, and then processed other brain tumor images
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with the trained SVMmodel. Currently, convolutional neural
networks develop rapidly, in target detection [13], speech
processing [14], target detection [15], super-resolution recon-
struction [16] and other areas have made breakthroughs, and
extended to the field of computer-aided medical diagnosis,
such as the diagnosis of lung nodules and Alzheimer’s dis-
ease, some achievements have been made in the diagnosis
of brain tumors. Gnouma et al. [17] proposed an automatic
detection framework based on stacked noise reduction auto-
encoder and multi-modal brain tumor images. The best sim-
ilarity coefficient dice of the experimental results can be up
to 93%, the average dice is 86%.

However, the existing methods of brain tumor detection
and methods based on convolutional neural networks gener-
ally have the following problems:

1) The method is single and the accuracy is low, which
cannot provide valuable information for clinicians;

2) Strong dependence on manual intervention and data
preprocessing;

3) Most of them are processed based on a single modal-
ity, and MRI data of different modalities are not utilized
efficiently.

Combined with MRI images, 3D information of multiple
modalities can be obtained. This paper proposes an algo-
rithm of brain tumor detection based on multimodal infor-
mation fusion and convolutional neural network. Firstly, the
2D-CNNs are extended to multimodal 3D-CNNs to obtain
the three-dimensional features of brain tumor lesions under
different modalities. Secondly, the problem of slow conver-
gence and over-fitting is solved by normalization. Finally,
a new weighted loss function was constructed to reduce the
interference of non-focal region to the detection of brain
tumors.

Specifically, the technical contributions of this paper can
be concluded as follows:

This paper proposes an algorithm of brain tumor detection
based on multimodal information fusion and convolutional
neural network. Firstly, the 3D-CNNs network is introduced
fuse multiple modal information, which can better extract
the difference information among the modalities. Secondly,
the improvement of the loss function can reduce the interfer-
ence of non-lesional areas on brain tumor detection, and thus
improve the accuracy of detection.

II. RELATED WORKS
This section mainly introduces the method of brain tumor
detection based on multimodal MRI images and the structure
of the basic method used in this paper, such as the struc-
ture of convolutional neural network and the structure of
3D convolutional network.

A. BRAIN TUMOR DETECTION METHOD BASED ON
MULTIMODAL FUSION
Brain tumor detection is a technique for dividing different
tumor tissues, such as active tumor tissue, edema tissue,
and necrotic tumor tissue, from normal tissues such as

gray matter, white matter, and cerebrospinal fluid. Due to
the high clinical relevance and challenge of tumor detection
itself, the problems of brain tumor detection have received
widespread attention in the past 20 years.

According to the degree of human intervention, image
detection of brain tumors can bemainly divided into three cat-
egories: manual detection based on manual, semi-automatic
detection based on manual initialization, and fully auto-
matic detection without human intervention. Manual detec-
tion involves manually depicting the contour of the tumor
and the structure of interest, or depicting the area of the
anatomy with a different label. Manual testing is a tedious,
tedious, time-consuming task. Different detectors have differ-
ent detection tendencies. However, manual detection is a rel-
atively professional and relatively accurate detection method
for obtaining tumor information from images. In the semi-
automatic and automatic detection methods, the results of
manual detection are often used as the object of our compar-
ison. We call it ground truth, which provides us with a qual-
itative and quantitative analysis basis. For semi-automatic
detection, its detection results are relatively dependent on
human initialization, and the user can interact with it, not
just the output. Compared with the semi-automatic detection
method, the automatic detection can automatically locate and
detect the tumor area without human intervention after setting
the relevant parameters.

Detection, localization, diagnosis, and classification of
brain tumors are very important in clinical and oncological
research. Early detection and localization of tumor diseases,
and accurate determination of the type and stage of the tumor
have a crucial impact on the rehabilitation and life extension
of patients. Image studies of brain tumors have been associ-
ated with the development of related technologies for a long
time, and various excellent algorithms have been introduced
into the image research of brain tumors. In the development of
brain tumor detection technology, most excellent algorithms
were originally developed to detect other structures or lesions,
such as the detection of white matter and gray matter, and
obtained quite high detection on these problems. Accuracy
was later introduced to the problem of brain tumor detection.

In brain tumor detection studies, there is no one method
that can obtain satisfactory results for all brain tumor images.
Typically, the method of detection is optimized for specific
image data or specific data modalities. The methods of tumor
image detection can be roughly divided into:

1) THRESHOLD-BASED APPROACH
Threshold is a very effective method of area detection, tumor
target and brain tissue background, characterized by the gray
value of pixels or voxels. Jiji and Dehmeshki [18] proposed
an unsupervised method for the detection of pixel grayscale
for T1c images with tumors.

2) REGION-BASED APPROACH
The corresponding MRI brain tissue images are divided into
different target regions by pre-defining the similarity criterion
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and combining the neighboring pixels or voxels in the inter-
secting regions. Vijayakumar and Gharpure [19] developed a
tumor detection method based on MRI images using region
growth. Nasrulloh et al. [20] proposed an improved region
growing method to eliminate the volume effect and integrate
the gradient information, obtain more accurate boundary
information, and have a certain filling of the leakage gap
that may occur after the detection. Zhao et al. [21] proposed
a multi-scale watershed transform detection method for the
detection of tumors by means of watershed transformation.
Shi et al. [22] constructed a manual-assisted semi-automated
method of brain tumor detection using the hierarchical water-
shed method.

3) METHOD OF PIXEL CLASSIFICATION
MRI data of brain tumors are generally stored in 2D slices or
3D volume. Slice-based brain tumor detection is no different
from traditional image detection. A pixel is a basic unit of
an image, and features such as gray level, local texture, color
component, and topology information appear for each pixel
in the feature space of the pixel using the attributes of the
pixel. A brain tumor detection method based on pixel classi-
fication uses a supervised or unsupervised classifier to cluster
related pixels in a brain tissue image. In the unsupervised
classification, clustering is representative, and the correlation
and non-correlation between tumor tissue and normal tissue
in tumor images are mainly measured by distance [23]. The
supervised classifier uses training data with tumor tags to
train the parameters of the model to accommodate specific
tumor detection problems [24].

4) MODEL-BASED APPROACH
The model-oriented tumor detection method has formed two
major schools on the tumor detection problem: respectively,
based on the detection model of the generation model and the
discriminant model. The generated model utilizes the shape
and spatiotemporal distribution of different tissues to gener-
alize the relevant images of the invisible brain tissue [25].
Relative to the generation model, the discriminant model
learns the difference in characteristics of brain tumors
and other tissues directly from the training images [26].
Of course, the discriminant method generally requires a
considerable amount of training samples. Through training,
the discriminant model is greatly reduced in sensitivity
to MRI image artifacts and grayscale and tumor shape
transformation.

However, these methods are basically based on the single-
modal information of MRI images to detect brain tumors.
With the continuous development of technology, methods
of brain tumor detection based on multi-modal MRI images
have become a research hotspot of many researchers.

Multimodal MRI images, in a common sense, are dif-
ferent MRI images obtained from different MR sequences
to the same tissue. Briefly, multimodal MRI images are
images that are imaged differently under different contrasts
from different MR imaging sequences. The introduction of

multimodal information has injected new vitality into brain
tumor detection.

From a single-modal MRI image, we generally only get
accurate information about one or two categories of tumors.
For example, in the image of the glioma in the Flair mode,
the free water in the brain tissue is converted to the bound
water due to the normal brain tissue after the tumor lesion
occurs. Free water was inhibited by Flair mode inversion
restoration sequence. The entire tumor has a bright signal in
Flair image, with high signal by binding water. At this time,
only tumor-based and non-tumor structures can be obtained
based on the separate Flair image detection. In order to have a
more detailed tumor structure, multimodal information plays
a crucial role.

Brain tumor detection combined with multimodal MRI
information can be traced back to 2001. Fletcher-Heath et al.
[27] proposed an automatic method of brain tumor detec-
tion using three modes of modality and clustering of T1,
T2, and PD. After that, for the first time in the MICCAI,
the competition BRATS for multimodal brain tumor segmen-
tation [28] was established. This competition established the
multimodal brain tumor detection to the world. Therefore,
more and more outstanding researchers have also gathered to
participate in the problem of multimodal brain tumor detec-
tion, which greatly promotes the development technology of
brain tumor detection. Hu et al. [29] constructed a hybrid
clustering and classification method of tumor detection by
logistic regression. Wu et al. [7] studied an MRF model
based on the detection clustering of super voxels. Pereira
et al. [30] constructed a fully automated method of brain
tumor detection by extracting neighborhood and local content
features using a random forest classifier.

With the continuous breakthrough of convolutional neural
networks in natural language processing, target detection and
recognition, and image recognition and classification, meth-
ods of brain tumor detection have also begun to appear as a
method based on convolutional neural networks. Since 2014,
based on 2D and 3D convolution filters, many people use
the ability of CNN of automatically learn image features.
Pereira et al. [31] proposed a method by using multi-modal
image block and 3D CNN structure of 3D modal brain tumor
detection. García-Zapirain et al. [32] developed a method
for predicting tumors by interpreting the size of the input
four modal 3D patch to 2D-patch size using the traditional
2D-CNN structure. Havaei et al. [33] developed a two-way
stacked CNN structure that uses both small size patches and
large size patches. Lunga et al. [34] used a small 3x3 filter in
the convolutional layer to construct a deeper CNN structure,
while constructing different depths of network structures for
different tumor types.

B. CONVOLUTIONAL NEURAL NETWORK STRUCTURE
In 1989, Lecun et al. [35] first proposed CNN, but it did
not receive much attention until after the shocking results in
the 2012 ImageNet competition [36]. The ImageNet dataset
contains 1 000 objects, each containing 1 000 images,
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and CNN almost cuts the error rate of the previous best
method by half or even below the human recognition error
level. Over time, the hardware and software for deep learning
has been continuously improved, and CNN’s architecture has
become increasingly complex, even more than 100 layers,
and the number of training weights required has reached
millions.

A typical convolutional neural network consists of multi-
ple convolutional layers, pooled layers, and fully connected
layers. Usually, the convolutional layer and the pooled layer
appear alternately in the front part of the network, while the
latter part is the fully connected layer. The convolutional layer
generates a feature map by convolving on the input image.
The pooling layer is used to pass the value to the next layer
by using the defined sliding window and taking its maximum
or average value. The output of the convolutional layer before
it is down sampled also needs to be delivered to a nonlin-
ear function. This nonlinear function is called an activation
function and can perform nonlinear transformation on data.
To predict the input data, the output score of the last fully
connected layer of the CNN is connected to the loss function,
and the cross entropy loss function can normalize the score
to the probability distribution of each label, i.e., the score
large, the greater the probability that the input image belongs
to the label. Finally, the Stochastic Gradient Descent (SGD) is
used to optimize the parameters of the network byminimizing
the loss function between the prediction and the truth tag.
For example, the Stochastic Gradient Descent (SGD) is used
to update the weights of the network in each iteration with
back propagation until convergence. The training process of
convolutional neural network is shown in Figure 1.

FIGURE 1. Convolutional neural network training process.

CNN is a feedforward artificial neural network developed
from a multi-layer perceptron. Similar to the visual cortex
of biology, the use of weight sharing reduces the complexity
of the model inherited from the multi-layer perceptron and
greatly reduces the number of weights. Very good results have
been achieved in the fields of speech recognition, image clas-
sification and recognition. A typical CNN network structure
consists of the following parts.

1) INPUT LAYER
The data input corresponding to the CNN model is usually
a multi-channel image. Unlike traditional machine, learning
methods, for most problems, input can generally be directly
input into the CNN network without pre-processing, and
achieve better results.

2) CONVOLUTIONAL LAYER
Convolution is a very common linear operation in signal
processing theory. The name of CNN is also derived from this
special convolution operation for image signals. The purpose
of convolution in CNN is to extract features from images.
Convolution operations with convolution kernels of different
levels and images can be used to obtain feature descriptions
from general to abstract to more advanced, while retaining
the spatial relationship between pixels during the extraction
process.

By using the strategy of local perception, CNN can obtain
the global information equivalent to the fully connected
network through the fusion of feature information at a higher
level. Each convolution kernel convolved with the image, you
can get a set of images, also known as feature graph or feature
map, different convolution kernel, convolved with the same
image, you can get different feature graph, namely image
features. Taking advantage of this, CNN adopts the method
of multi-kernel convolution to extract richer image features
and reduce the number of corresponding parameters. In prac-
tice, CNN obtains weights in convolution kernel through
training. Figure 2 shows a schematic diagram of convolution
operation.

FIGURE 2. Schematic diagram of CNN convolution operation.

The convolutional layer has two important characteristics:
local perception and parameter sharing, which can reduce
the number of network model training parameters. Local per-
ception means that each neuron node only needs to respond
to certain specific regions of the global image, because the
local pixel connections are relatively close, and the spatially
distant pixels are weakly connected. Parameter sharingmeans
that each feature map corresponds to the same convolution
kernel, and the number of channels of the convolution kernel
depends on the number of channels outputted by the previous
layer. At the same time, the convolutional layer uses multiple
convolution kernels in order to fully extract features.

VOLUME 7, 2019 180137



M. Li et al.: Brain Tumor Detection Based on Multimodal Information Fusion and Convolutional Neural Network

3) ACTIVATION LAYER
The activation layer is an activation function that is concate-
nated after the convolutional layer. It is precisely because of
the features captured by the activation function CNN that the
nonlinear description is more prominent. Common activation
functions are mainly Sigmoid, Relu, tanh, and so on. The
basic schematic is shown in Figure 3.

FIGURE 3. Schematic diagram of neuron activation and activation
functions.

The Sigmoid function is used as the activation function.
In the case of backpropagation, the division operation is
involved. At the same time, for the deeper network structure,
the gradient disappears easily, and the derivative gradually
becomes zero in the process of Sigmoid back propagation.
Moreover, it is unable to complete the training. As an activa-
tion function, Relu has a part of the neuron’s output becoming
zero due to the unilateral suppression of the function itself,
thus reducing the interdependence of parameters, making the
network have a certain sparsity, more in line with the human
brain neurons working in response to the stimulus. The fea-
ture of sparsity, as an elemental operation, Relu can be applied
to individual pixels. In addition, Relu itself is a piecewise
linear function, and the derivation in the process of backward
propagation still maintains piecewise linearity, which makes
the network easier to optimize and learn. Therefore, most
networks use Relu as an activation function.

Sigmoid = 1/(1+ exp(−x)) (1)

Relu = max(0, x) (2)

tanh = (1− exp(−2x))/(1+ exp(−2x)) (3)

4) POOLING LAYER
Pooling is a convolutional neural network that is a means
of reducing the amount of computation and is an aggregate
statistical operation of images. The feature map obtained
after the input image passes through the convolution layer,
if directly expanded to do classification or other tasks, results
in a large amount of calculation. The purpose of the pool-
ing operation is to remove some redundant information and
reduce the dimension of the feature map, which can reduce
the feature, thereby reducing the amount of calculation, and
effectively avoid over-fitting. In addition, the convolutional

layer obtains the local features of the upper layer output
through local sensing, and the function of adding the pooling
layer is to combine these similar local features into more
advanced features.
Pooling is actually a down sampling operation. It is gener-

ally pooled on a 2 × 2 scale to reduce the size of the feature
map, reducing feature redundancy and reducing the load
on the next layer of computation. Commonly used pooling
mainly includes maximum pooling, averaging pooling, and
weighted pooling. Taking the 2×2-space domain as an exam-
ple, the maximum pooling is to select the largest element
from the window to correct the elements in the feature map.
If the average is themean pooling, the elements in thewindow
are summed and pooled. Figure 4 shows a schematic of the
pooling of the maximum values.

FIGURE 4. Schematic diagram of the maximum pool.

The pooling operation actually replaces the area informa-
tion by calculating the average value or the maximum value
in the local area of the feature map, thereby implementing the
function of down sampling. As shown in Figure 4, the 4× 4
feature graph is divided into 4 2 × 2 small regions, and then
the maximum value or draw value of each region is calculated
to obtain a 2 × 2 feature graph. Even if the target object
in the image has a small translation or scaling, the pooling
operation can still obtain the same pooling features as before
the change. For example, when recognizing a handwritten
number, moving it in any direction will cause the classifier to
still classify it as the same number without errors. Therefore,
the feature map information after pooling has certain rotation,
translation, and telescopic invariance.

5) FULLY CONNECTED LAYER
The fully connected layer is actually a multi-layer perceptron
network, which is fully connected to the features or activation
data of the previous layer output. Like the general neural
network, the activation of the fully connected layer is only
the neuron weight and bias. After the convolution kernel is
imaged, the image is imported into the softmax classifier
through the fully connected layer to obtain the classification
result. For the softmax classification, the sum of the output
probabilities obtained from the fully connected layer is one,
that is, softmax converts the input eigenvector into a numeri-
cal vector between zero and one, and the sum is one.

The basic training process of CNN can be summarized as
follows:
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1. Random or zero initialization of the parameters of the
network convolution kernel.

2. Input training samples to the CNN network, through
forward propagation process such as convolution, activation,
pooling, and full connectivity layers, get the output probabil-
ity of each class.

3. Calculate the error using the loss function at the output
layer.

4. Using a back-propagation algorithm to modify the
network parameters, moving the weight of the convolution
kernel to a method of reducing the error gradient, thereby
updating the parameter weights of all convolution kernels to
minimize the error.

5. Repeat steps 1-4 for all image samples in the training
data.

C. STRUCTURE OF 3D CONVOLUTIONAL NEURAL
NETWORKS
Figure 5 is a schematic structural diagram of a conventional
two-dimensional CNN, which is mainly composed of a con-
volutional layer, a pooled layer, and a fully connected layer.
It can be seen that the data processed by the network is in a
two-dimensional format.

FIGURE 5. Schematic diagram of two-dimensional CNN structure.

The three-dimensional CNN is similar to the two-
dimensional CNN. The difference is that the three-
dimensional CNN performs convolution operations on
three-dimensional data, and the convolution kernel and output
data of network are all in three-dimensional format. The
schematic diagram of the convolution is shown in Figure 6.
As can be seen from Figure 6, the 3D convolution consists of
stacking multiple consecutive images into one cube and then
applying a 3D convolution kernel in the cube. In this structure,

FIGURE 6. 3D convolution diagram.

each feature map in the convolutional layer is connected to
a plurality of adjacent images in the upper layer, thereby
capturing feature information of the image.

If the three-dimensional data size of the network input is
W × H × D, the size of the three-dimensional convolution
kernel is m × n × h, and the convolution step is l, the out-
put size of the three-dimensional CNN is (W − m+ l) ×
(H − n+ l) × (D− h+ l). In the three-dimensional CNN,
the formula for calculating the value of the voxel point of
feature block (x, y, z) of i-th layer, like the formula (4).

gx,y,zi,j = f (
∑
m

∑
p

∑
q

∑
r

wp,q,ri,j,m × X
(x+p)(y+q)(z+r)
(i−1)m + bi,j)

(4)

The variables of x, y and z represent the pixel values of
pixel (x, y) in the three-dimensional MRI brain tumor. The
variables wp,q,ri,j,m represents the (i, j, r) between the i-th in the
j-th feature map of i-th layer and the weight between the m-th
feature map of the 1st layer. The variable bi,j represents the
offset value; f (•) is the activation function.
After three-dimensional convolution, the network also

needs to be pooled. The three-dimensional pooling is sim-
ilar to the two-dimensional pooling. The three-dimensional
pooling reduces the characteristic dimension of brain tumor
lesions and improves the feature significance of tumor
lesions. The area is F1×F2×F3, and the calculation formula
of three-dimensional pooling is equation (5).

Yl,m,n = max
0≤i≤F1,0≤j≤F2,0≤k≤F3

(Xl×s+i,m×t+j,,n×r+k ) (5)

The variable Xl×s+i,m×t+j,,n×r+k is the eigenvalue of the
three-dimensional pixel point of the lesion (l× s+ i,m× t +
j, n×r+k). The variables of s, t and r are the moving steps of
the three-dimensional pooling. Moreover, the variable Yl,m,n
is the output value after the three-dimensional pool.

D. MULTIMODAL AND IMAGE PREPROCESSING
Multimodality is a very broad concept, and images and
speech are information about two different modes. Assuming
that a person is now identified, using both image and voice
information, recognition based on these two kinds of informa-
tion is the application of a multimodal information, the image
provides visual features, and the voice provides auditory
features. Usually, with a kind of information, humans can
basically know a person, but it is not so reliable for a machine.
However, if both types of information are used at the same
time, it is clear that the correct rate of recognition will be
much higher. For MRI images, the concept of multimodality
is very similar to the concept of common multimodality,
as well as different descriptions of the same target, except that
the multimodality in MRI images is obtained using different
nuclear magnetic visualization sequences, including T1, T1c,
T2, and Flair images of four modalities. The main difference
between the four modal images is that the same tissue is
presented by different development sequences at different
grayscale contrasts.
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In common image segmentation, recognition, or detec-
tion systems, image preprocessing is often a critical step
influencing system performance. The same is true for brain
tumor detection problems in this paper. Since registration
and skull separation have been completed, the focus here
is on grayscale normalization and contrast adjustment for
multimodal MRI images. The gray level of MRI images is
usually 16 bits or higher, the scattered gray scale distribution
and large gray value have a certain negative impact on the
improvement of brain tumor segmentation accuracy. To do
this, perform grayscale normalization on the MRI data before
performing the segmentation process:

g(x, y) = ((GWM − BWM )/(hmax − hmin))

(h(x, y)− hmin)+ BWM (6)

where h(x, y) is the original histogram of the image, and
the variable hmax and the variable hmin are its maximum and
minimum gray levels. The variable f(x, y) is a histogram
of the image after normalization. GWM and BWM are the
maximum and minimum gray levels of the histogram of the
image after normalization.

After normalization, usually MRI images still cannot meet
the needs of brain tumor detection, because the contrast dif-
ference between different tissues may make the segmenta-
tion robustness greatly reduced. The original MRI image is
adjusted using itk-snap [37], and the slices sequence of the
multimodal MRI image is extracted, as shown in Figure 7.

FIGURE 7. MRI image preprocessing process.

III. BRAIN TUMOR DETECTION ALGORITHM COMBINED
WITH MULTIMODAL FUSION AND CNN
At present, most of the 3D medical image data is sliced
into 2D data, and then the 2D slice data is used to train
the network. This paper uses a 3D network of brain tumor
detection to train 3D MRI images. The network structure is
shown in Figure 8.

The whole network is divided into two parts: the con-
traction path and the expansion path. The purpose of the
contraction path is feature extraction, which is composed
of 3D-CNNS improved by the classic 2D-CNNs network; the
expansion path can be used for brain tumor detection based
on the features extracted from the contraction path, consists of

FIGURE 8. Schematic diagram of brain tumor detection network.

three-dimensional up sampling, feature cascading, and output
layers.

A. MULTIMODAL 3D-CNNs FEATURE EXTRACTION
NETWORK
The classic 2D-CNNs input image size is fixed, and then the
feature is extracted from the whole image. Applying it to
MRI brain tumor detection will have the following problems:
First, to detect brain tumor images, individual pixel points
must be classified. Therefore, the original input can only
be the neighborhood of a single pixel, and the size of this
neighborhood is difficult to grasp. Secondly, the size of brain
tumors varies from patient to patient, and the size of brain
tumors in different image layers of the same patient is differ-
ent, even though the training layer. The neighborhood value
of the original input layer is also difficult to ensure that this
neighborhood is suitable for all tumor points of this patient.
Third, how to make full use of MRI multimodal information
to achieve higher precision classification is very important.

MRI images of different modal brain tumors can reflect
the different characteristics of tumor and non-tumor regions.
Therefore, if multiple information is fused and sent to the
network for training, the accuracy of brain tumor detection
will be improved. Therefore, it is necessary to A modal
MRI three-dimensional angiography was used to construct
high-dimensional brain tumor features. This paper improves
the classical 2D-CNNs and builds a multi-modal 3D-CNNS
network to achieve multi-modal information fusion.

The network of multimodal 3D-CNNs is shown in
Figure 9. Small neighborhoods of the same position of four
modalities that the specific neighborhood size is obtained
according to the training data grid constitute the 3D origi-
nal input layer. For example, if the size of small neighbor-
hoods is 14 × 14, the size of the 3D original input layer is
14× 14× 2. A convolution template of 3× 3× 2 size shared
by six weights is used to convolve the original input layer to
obtain six feature maps C1, and the size is 12× 12× 3. The
feature maps of the six C1 layers are respectively subjected
to 2D average down sampling to obtain the S2 layer. After
summing all the features of the S2 layer and passing through
12 convolution templates, the size is 3 × 3 × 2. And we can
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FIGURE 9. Multimodal 3D-CNNs.

obtain 12 feature map C3 layers, the size is 6 × 6 × 2. The
C3 layer is averaged down sampled to obtain the S4 layer. The
S4 layer is normalized by column to obtain a 96-dimensional
feature vector F5.

Multi-modal 3D-CNNs the original input layer is com-
posed of four modes. The 3D convolution automatically
extracts the difference information between the modes. The
supervised learning method realizes different classification
features for different patient difference information. Down
sampling allows feature extraction to contain more structural
edge information while eliminating redundant information
and noise; multimodal common input makes the original
input require less neighborhood information to accommodate
tumor points in different image layers and improve brain
tumors detection accuracy.

B. INSTANCE NORMALIZATION
In the deep neural network, the number of layers in the
network is deep, and the neurons between different layers
interact with each other. If the data is jittered at a certain layer
of the network, the problem of data jitter will become stronger
as the network deepens. The training optimization process
affecting the model, normalization can effectively alleviate
the problem of data oscillation [38].

Currently used data normalization methods include Batch
Normalization (BN), Group Normalization (GN), Weight
Normalization (WN), and Instance Normalization(IN), and
so on [39]. In this experiment, the batch size of the training
set and the test set are set to one, and BN, LN, and WN are
all for the case where the batch value is large, and the IN can
handle the smaller batch value. In this case, the normalization
of brain tumor data by IN is used to speed up the convergence
of the brain tumor detection network while solving the data
jitter. The schematic diagram of the IN method is shown
in Figure 10.

From the N direction of Figure 10, it is a picture of brain
tumor, while from the C direction, it is the pixel of the charac-
teristic map of brain tumor. Every 11 to vertical arrangement

FIGURE 10. Schematic diagram of the instance normalization method.

of small cubes rectangle represents a feature of a brain tumor
image figure. The dark block is the part that is normalized
together, so it can be clearly seen that IN refers to the single
channel of a single brain tumor image that is normalized
separately.

The main steps of the IN algorithms are:
1) Calculate the mean value of each brain tumor picture

along the channel µ

µij = (1/HW )
W∑
l=1

H∑
m=1

xijlm (7)

where, variable
W∑
l=1

H∑
m=1

xijlm is the data that needs to be nor-

malized.
2) Calculate the variance σ of each brain tumor picture

along the channel

σ 2
ij = (1/HW )

W∑
l=1

H∑
m=1

(xijlm − mµij)2 (8)

3) Combining equations (7) and (8), normalize the input
brain tumor image to obtain normalized data y

yijkg = (xijlm − µij)/
√
σ 2
ij + ζ (9)

The variable yijkg is the output after instance normalization.
The advantage of adding the IN layer is that layer-by-layer
normalization avoids gradient disappearance and gradient
overflow, reduces the network’s dependence on initialization
such as weights, and accelerates network convergence. It can
serve as a regularization approach that reduces the need for a
network for dropout.

C. LOSS FUNCTION CONSTRUCTION
In the final output layer of the network of brain tumor detec-
tion, the brain tumor classification probability map with the
same dimension as the input brain tumor data is output,
indicating whether each individual prime point is a brain
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tumor probability. The network of brain tumor detection cal-
culates the output value through the loss function. In addition,
the error value between the tag value and the reverse param-
eter correction of the network according to the error value to
obtain the best weight and offset value of the network of brain
tumor detection. In the target detection and target detection
tasks of natural images, commonly used the loss function is
loss, and its calculation formula is

loss = 1−

2
N∑
i=0

pigi

N∑
i=0

p2i +
N∑
i=0

g2i

(10)

The variable pi represents the value of i-th pixel point.
In addition, gi represents the ground truth, respectively.

In the three-dimensional MRI brain tumor imaging, due to
the particularity of medical images, compared with natural
images, in the whole brain tumor image, the brain tumor
lesions account for a relatively small proportion, and the non-
lesion area accounts for a larger proportion. Dice correlation
coefficient as a loss function, in the network training process,
the network tends to learn the characteristics of non-brain
tumor lesions, cannot effectively extract the characteristics of
brain tumor lesions, resulting in false detection and missed
detection. Therefore, improve the learning ability of the net-
work on the brain tumor area, and improve the traditional loss
function. The improved loss function formula is

loss = 1−

2×
N∑
i=0

((1/4)pi × (3/4)gi)

N∑
i=0

p2i +
N∑
i=0

g2i

(11)

According to equation (10), since the gi part corresponds to
the lesion area of brain tumor, weight weighting was carried
out on the gi part, and the ratio of predicted results and
true values in the loss function was 1:3. The loss function
has a larger loss coefficient for the true value distribution.
It can strengthen the network’s characteristic learning of the
lesion area of brain tumor, weaken the distribution of the
loss value of the network to the non-tumor area, and reduce
the interference of the brain MRI background image on the
characteristic learning of the lesion area, thereby improving
the detection accuracy of the network.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL DATA SET
The experimental data set is the actual patient data provided
by MICCAI BraTS 2018 [21], of which 220 have advanced
gliomas and 54 have lower grade gliomas. In the experimen-
tal data, each patient has four modal MRI images, namely
FLAIR, T1, T1c, and T2. The dimension of each MRI image
is 155 × 240 × 240. All images are stored as signed 16-bit
integers, but only non-negative values are used. Each data is
labeled as five categories at the pixel level, which are normal

tissue (or background), necrosis, edema, non-enhanced and
enhanced tumors.

Due to the limited source of medical image acquisition,
the sample is augmented based on the existing data set.
Firstly, the image with the size of 240 × 240 is cropped,
and only the area containing the brain is retained, and
the surrounding 0 pixel point is removed. Then use the
nearest neighbor interpolation method to enlarge the brain
image after removing the background, highlighting the image
characteristics of the brain; finally, the processed sample is
rotated, mirrored, and flipped. The schematic diagram of
sample augmentation of brain tumor is shown in Figure 11.
As can be seen from Figure 11, the ROI image is first acquired
by cropping the original image, and the size of the ROI image
is enlarged to the same size as the original image by the near-
est neighbor interpolation method. The new sample image is
then obtained by rotating different angles and flipping.

FIGURE 11. The schematic diagram of sample augmentation of brain
tumor.

B. EVALUATION STANDARD
In order to verify the effectiveness of the algorithm of brain
tumor detection, dice similarity coefficient, sensitivity (SN)
and specificity (SE) were used to quantify the brain tumor
detection results. Dice reflects the detection of network of
brain tumor detection. The degree of similarity between the
result and the true value, the larger the value indicates the
higher the accuracy of the detection result and the formula
is (12).

dice(A,B) = 2|A ∩ B|/(|A| + |B|) (12)

where, A is the lesion detection result of the brain tumor
network, and B is the true value of the brain tumor lesion
area.

The SN reflects the ratio of the voxel point of the correct
brain tumor area to the sum of the true voxel points, which
can be calculated according to the true positive (TP) and the
false negative (FN), and the formula is (13).

SN = TP/(TP+ FN ) (13)

SE reflects the probability that non-tumor tissue is cor-
rectly determined to be part of normal tissue, and the formula
is (14).

SE = TN/(TN + FP) (14)

180142 VOLUME 7, 2019



M. Li et al.: Brain Tumor Detection Based on Multimodal Information Fusion and Convolutional Neural Network

In the formula, TN is the number of voxel points that
are correctly recognized in the non-tumor region; FP is the
number of voxel points in which the non-tumor region is
misjudged as the tumor region.

C. COMPARISON OF SINGLE-MODAL AND MULTI-MODAL
DETECTION RESULTS
In order to verify the effectiveness of the multimodal fusion
method used in this paper, the single-mode Flair and multi-
modal fusion MRI images were compared experimentally.
The pre-assigned 228 samples were used as training samples
and 57 samples were used as test samples. The network con-
vergence map of the training set of the network of brain tumor
detection and test set is shown in Figure 12 and Figure 13.

FIGURE 12. Schematic diagram of network convergence for single-mode
brain tumor detection.

FIGURE 13. Schematic diagram of network convergence for multimodal
brain tumor detection.

As can be seen from Figure 12 and Figure 13, the loss
values of the training network and test set of the single-mode
network of brain tumor detection are −0.883 and −0.830,
respectively, and the loss values of the multimodal network
of brain tumor detection can reach −0.912 and −0.858.
Compared with the single-mode network, the loss value of the
multi-modal network is smaller, and the training loss value

and the test loss value are increased by 0.029 and 0.027,
respectively, indicating that the performance of the multi-
modal brain tumor detection network is better, but the conver-
gence from the loss function. From the curve, the multimodal
network of brain tumor detection has a problem of overfitting.

Figure 14 and Figure 15 show the dice distribution of the
evaluation index of 57 samples in the test set. Compared
with Figure 14 and Figure 15, there are 4 samples in the
single-mode network away from the cluster point, and only
2 samples in the multi-modality are far away from the cluster
point.

FIGURE 14. Dice distribution of single-mode test set of brain tumor.

FIGURE 15. Dice distribution of multimodal test set of brain tumor.

Table 1 compares the three evaluation indexes of 57 sam-
ples of different modal training sets of the network of brain

TABLE 1. Comparison of three evaluation indicators for different modal
brain tumors.
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tumor detection. It can be seen that the three evaluation
indicators dice, SN and SE of the multimodal brain tumor
detection network increased by 4.7%, 0.13%, and 0.07%,
respectively. The quantitative results from the test set indicate
that the multimodal brain tumor detection method is better.

D. INSTANCE NORMALIZED TEST RESULTS COMPARISON
Schematic diagram of the normalized network convergence
is shown as Figure 16 and Figure 17. In addition, the dice
index distribution of the brain tumor test set. Comparing
Figure 13 and Figure 16, the network of brain tumor detec-
tion combined with the example normalization has a faster
convergence rate. The loss-value curve of the set and the
test set is well fitted, indicating that the method of instance
normalization not only accelerates the convergence speed of
the network, but also alleviates the over-fitting problem in the
multi-modal brain tumor detection network.

FIGURE 16. Schematic diagram of network convergence based on
real-world normalization.

FIGURE 17. Dice distribution of brain tumor test set.

From the distribution of dice index of 57 cases of brain
tumor test set shown in Figure 17, it can be seen that com-
pared with Figure 15, the dice value with the lowest normal-
ized brain tumor test result can reach 0.41, and only Two
serious points away from the cluster.

It can be seen from Figure 18 that the three evaluation
indexes dice, SN and SE of the brain tumor detection network
can reach 0.882, 0.894, and 0.997 combined with the real-
normalization method, andmore modal brain tumor detection
models, dice and SN. The indicators increased by 3.91% and
6.82%, while the SE indicator decreased by 0.03%.

FIGURE 18. Evaluation index of brain tumor detection model combined
with real column.

E. COMPARISON OF WEIGHTED LOSS FUNCTION
DETECTION RESULTS WITH 3D-CNNs
To verify the effectiveness of the improved weighted loss
function, the convergence graph of loss function and the test
set dice index distribution of the network training are shown
in Figure 19 and Figure 20, respectively. As can be seen
from Figure 19 and Figure 20, compared with Figure 16 and
Figure 17, this paper uses the weighted loss function is used
to train the brain tumor detection network, strengthen the
characteristic learning of the brain tumor lesion area, and
weaken the characteristic expression of the non-focal area.
The final training and test loss value of the network can
reach−0.875 and−0.912, the lowest. The dice value can also
reach 0.07.

FIGURE 19. Schematic diagram of network convergence combined with
weighted loss function.
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FIGURE 20. Brain tumor test set dice distribution.

F. COMPARISON OF 2D AND 3D INSPECTION NETWORK
RESULTS
In order to verify the three-dimensional CNN, the exper-
imental results of the two-dimensional detection network
and the three-dimensional detection network are compared.
Figure 21 is a schematic diagram of the convergence of the
two-dimensional detection network.

FIGURE 21. Schematic diagram of two-dimensional detection network
convergence.

Comparing Figure 21 and Figure 19 it can be seen that
the loss function of the three-dimensional detection network
is better fitted, the training and test loss values of the two-
dimensional detection network are −0.874 and −0.891, and
the three-dimensional detection network can reach −0.875
and −0.912, respectively increased by 0.1% and 2.3%.
The two-dimensional detection network and the three-

dimensional detection network evaluation of brain tumors
are shown in Table 2. Compared with the two-dimensional
detection network, the results of the three-dimensional detec-
tion networks dice, SN and SE are improved by 4.5%, 3.9%
and 0.04%, respectively. Then the reliability of 3D detection
network is verified.

TABLE 2. Comparison of 2D and 3D network evaluation indicators.

G. COMPARED WITH OTHER METHODS
In order to verify the advantages of brain tumor detec-
tion methods combined with multimodal information fusion
and CNNs, the methods of this paper were compared with
those of literature [31], literature [32], literature [33], and
literature [34].

The experimental results are shown in Table 3. It can
be clearly seen that the algorithm has obvious advantages
in three evaluation indicators. This is because, first, brain
tumors are generally close to spherical, and the tumor size of
different layers in the same patient is different. The 2D-CNNs
model trained on the training layer is difficult to adapt to the
image of the entire patient’s tumor layer; secondly, the four
models are respectively the 2D-CNNs feature extraction can
theoretically obtain more rich information between different
modes, but too much feature information increases the linear
indivisibility of each pixel, making the detection result worse.
Multimode state 3D-CNNs not only overcomes the short-
comings of the above classic 2D-CNNs, but also facilitates
the combination of four modes, which is more conducive to
the combination of different information between modes, and
removes redundant information to promote the realization
of effective classification. Finally, by constructing a new
weighted loss function, weakening the interference of non-
focal areas on brain tumor detection can reduce the interfer-
ence of non-focal areas on brain tumor detection, and thus
improve the detection accuracy.

TABLE 3. Comparison results of different algorithms.

V. CONCLUSION
In this paper, a method with three-dimensional MRI brain
tumor detection combining multimodal information fusion
and CNN is proposed. Firstly, it is better to use the improved
multimodal 3D-CNNs to obtain the three-dimensional fea-
tures of brain tumor lesions under different modalities.
Extract the difference information between the various
modes. Secondly, in order to solve the problem that the net-
work convergence is slow and the over-fitting is serious, the
brain tumor characteristic data is normalized. Then, accord-
ing to the small volume of the lesion area and the large
volume of the non-focal area, a new weighted loss function
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is constructed to weaken the interference of the non-focal
area on the detection of brain tumors, and the loss function
can be improved to reduce the detection of brain tumors
in non-focal areas. The experimental results show that the
three evaluation indexes of dice, SN and SE are optimized
respectively, and the two-dimensional brain tumor detection
network and the original single-mode brain tumor detection
method are compared. There has been a big improvement.
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