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ABSTRACT Broad bandwidth simulation in frequency domain benefits from fast frequency sweep,
and frequency-domain electromagnetic solvers are usually combined with asymptotic wave evaluation or
interpolation techniques. In this work, we introduce the minimal rational interpolation from the perspective
of linear algebra and utilize it in fast broadband simulation. An efficient approach is formed by combining
adaptive frequency sampling and rational interpolating. Approximate models of the quantities of interests are
updated iteratively until the the broadband spectral dynamics are captured. Thanks to the minimal rational
interpolation, the approach is fully automatic and does not require pre-estimates of the orders of interpolating
functions in each step of the iterations. The obtained functions always have low complexities, hence no
further model order reduction is needed. Broadband simulations on admittance of a multi-port interconnects
and backward scattering of a cube are given as numerical examples. Results show that the approach can
significantly improve the computational efficiency.

INDEX TERMS Broadband simulation, fast frequency sweep, rational interpolation, asymptotic wave
evaluation, adaptive frequency sampling.

I. INTRODUCTION
Applications like broadband antenna design, radar cross
section (RCS) reduction, high-speed interconnects analysis,
andmacromodel extraction require spectral responses of elec-
tromagnetic (EM) systems over broad bandwidth. Numeric
simulationwith computational electromagnetic (CEM) solver
is an economic and accurate way to get such responses.
Frequency-domain solvers are appealing due to their advan-
tages in terms of efficiency and accuracy. However, direct
application of frequency-domain solvers for broadband sim-
ulation is inefficient since large number of frequencies have
to be simulated and much time will be cost. A lot of work has
been reported on the topic of efficient broadband simulation
with frequency-domain solvers [1]–[19]. Most of these study
is in the framework of model based parameter estimation
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[1]–[3], where physics-based models are applied to describe
the variation of system variables over frequency.

Multipath excitation model is utilized to extrapolate cur-
rents over frequency in [4], and phase extracted basis is
used to analyze the broadband scattering of perfect electrical
conductors (PEC) in [5]. Asymptotic wave evaluation (AWE)
[6], [20] employs moments matching to generate broadband
series expressions, and it has been combined with the method
of moments (MOM) and the finite element method (FEM)
[7]–[9]. Similar idea is used to solve low-frequency complex
problems over a frequency range [8], [10]. However, Tay-
lor series expansion is only valid near the expansion point,
and quantitatively predicting how far one can deviate from
the expansion point is difficult. Series model contains only
zeros (i.e., polynomial model), therefore it is not capable
of describing the contributions of poles. From this point of
view, AWE has inherent drawback. Zero-pole model (i.e.,
rational function model) is more natural for representing
the variation of system variable over frequency. As a result,
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the Padé approximation, which converts polynomials into
rational functions, is usually used to expand the valid band-
width of AWE. In addition, multi-point expansion is also
applied to expand the bandwidth. Another drawback of AWE
is that it increases the memory and time costs of numeric
solvers, as high order derivatives must be calculated and
kept in memory and a group of equations have to be solved.
In addition, the original CEMcodesmust bemodified in order
to implement AWE. For integral equation based methods,
the computational cost and the amount of work to modify the
codes grow drastically.

As mentioned before, zero-pole model is more suitable
for characterizing the variations of system variables over
frequency, so a straight forward idea is to use rational interpo-
lating functions directly. To this end, a group of representative
frequencies are selected from the desired frequency range,
and EM simulations are carried out at these points. Then the
simulation results are fitted by rational interpolating func-
tions, which are believed to be accurate over the frequency
range. By this way, the original codes remain unchanged.
Various methods have been introduced following this idea,
and they differ in the methods of finding the degrees and
coefficients of the rational functions.

In Cauchy method [11], [12], estimates of the degrees of
the numerator and denominator polynomials should be given
first, then singular value decomposition (SVD) is performed
on a data matrix to find the redundancy in the estimates.
If there is no redundancy, the estimates have to be increased
until the redundancy appears. Then the polynomial degrees
are corrected and the coefficients are solved by the total least
squares method. Vector fitting has been used widely since
1999 [13]. It employs pole relocation to generate pole-residue
model of given data. Combined with adaptive frequency sam-
pling (AFS) and the partial element equivalent circuit (PEEC)
method [21], it can be used for extracting macromodel of
interconnects [14]. However, in vector fitting estimate of the
degree of rational function is also required. If the degree is
underestimated, the fitting results will be inaccurate. In this
case, the estimated degree must be increased. Conversely,
when the degree is overestimated, the resulting rational
function will be unnecessarily complex. Thiele’s continued
fraction and algorithms of Neville type solve rational inter-
polation problems recursively [15], [16], [22]. Within each
step of recursion, either the degree of numerator or the degree
of denominator increases by one. At the end of recursion,
the summation of the degrees of numerator and denominator
will be K − 1, where K is the total number of interpolating
data. This leads to rational functions that are more complex
than actually needed.

Summarizing the above interpolation-based methods,
we see that in Cauchy method and vector fitting, degrees
of rational functions must be prescribed first. Cut-and-try
process may be performed several times in a single inter-
polation task. This prevents the two methods from being
applied in efficient and fully automatic broadband simulation.
In vector fitting, Thiele’s continued fraction and algorithms

of Neville type, rational functions are not guaranteed to have
low complexities, which are appealing in view of numerical
stability and physical realization. Consequently, model order
reduction should be carried out as post-processing.

Recently, the minimal rational interpolation (MiniInt) is
exploited to model the variations of system variables over
frequency [17]–[19], [23], [24]. Given a group of data,
it seeks rational interpolating functions with the minimal
McMillan degree. The problem was first solved in 1986
[25]. In the work, the underlying degree of rational function
is regarded as the number of significant singular values of
the Loewner matrix pencil. State space representation of the
system is found by projecting data matrices on the singular
vectors, and rational interpolation matrix is constructed based
on the state space representation. We here call the method
the Loewner matrix method. An alternative solution of the
minimal rational interpolation problem was proposed in 1990
[26], [27]. In the method, interpolating function with the min-
imal McMillan degree is found automatically, hence heuristic
estimates of the degree of the rational function is not required.
This feature facilitates the application of the method in fast
broadband simulation. The method was originally introduced
in [26], [27] from the perspective of linear system and control
theory. To the best of our knowledge, it has remained largely
unknown to the EM, RF, and circuit communities. The sub-
jects of this paper are to give an alternative and simple inter-
pretation of the method, and to utilize it in reducing the time
costs of frequency-domain broadband simulation. The inter-
pretation here only uses knowledge of polynomials and linear
algebra, hence it is straight forward and easy-to-understand.
An efficient approach of frequency-domain broadband sim-
ulation is proposed as a sample application of the minimal
rational interpolation. The approach gives rational function
models of the concerned quantities with the lowest possible
degrees. It is worth noting that although this manuscript
focuses on fast broadband simulation, minimal rational inter-
polation is widely applicable. It could be used in scenar-
ios like modeling tabulated frequency data of microwave
circuits and interconnects, and broadband impedance
matching. The proposed approach can be transplanted
accordingly.

The outline of this paper is as follows. Section II presents
our interpretation of the minimal rational interpolation.
Section III gives a frequency-domain broadband simulation
approach as a sample application of the minimal rational
interpolation. Section IV shows the accuracy of the minimal
rational interpolation by comparing it with vector fitting, and
illustrates the efficiency of the proposed approach by two
broadband simulation examples.

II. THE MINIMAL RATIONAL INTERPOLATION
Here we elaborate the minimal rational interpolation in an
easy-to-understand way, and only use the knowledge of poly-
nomials and linear algebra. Given data set

{sk , yk}, k = 1, . . . ,K , (1)
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where sk represents the k-th Laplace frequency and equals
j2π fk , and yk is the value of system variable at sk . Rational
interpolating problem wants to find

y(s) = n(s)/d(s) (2)

that satisfies

y(sk ) = n(sk )/d(sk ) = yk , for k = 1, . . . ,K . (3)

y(s) can be currents, fields, admittances, S-parameters, etc.
Complexity of y(s) is measured by the McMillan degree,
which is defined as [26], [27].

deg y(s) , max{deg n(s), deg d(s)}. (4)

For data set (1), y(s) with different McMillan degrees exist.
y(s) will be non-unique unless it is required to be irre-
ducible [28]. In view of numerical stability and physical
realization, low-order models are always preferred. Hence,
minimal rational interpolation looks for interpolating func-
tion with the minimal McMillan degree.

A. PREPARATION
In the following, we introduce an alternative solution of the
minimal rational interpolation problem that finds the degree
and coefficients of the rational function straightforwardly.
In the beginning, we write the following two equations based
on (3)

n̄(sk )− yk d̄(sk ) = 0, for k = 1, . . . ,K , (5)

ñ(sk )− yk d̃(sk ) = 0, for k = 1, . . . ,K . (6)

The second equation provides the freedom of constructing
nonzero denominators, and this point will be explained in the
next subsection. Denoting

n̄(s) , n̄0 + n̄1s+ n̄2s2 + · · · , (7)

d̄(s) , d̄0 + d̄1s+ d̄2s2 + · · · , (8)

ñ(s) , ñ0 + ñ1s+ ñ2s2 + · · · , (9)

d̃(s) , d̃0 + d̃1s+ d̃2s2 + · · · , (10)

we rewrite (5) and (6) as


1 − y1 s1 − s1y1 s21 − s21y1 · · ·
1 − y2 s2 − s2y2 s22 − s22y2 · · ·
...

...
...

...
...

...
...

1 − yK sK − sK yK s2K − s
2
K yK · · ·





n̄0 ñ0
d̄0 d̃0
n̄1 ñ1
d̄1 d̃1
n̄2 ñ2
d̄2 d̃2
...

...



=



0 0
0 0
0 0
0 0
0 0
0 0
...

...


(11)

Since large numerical range might emerge in the above equa-
tion due to the powers of s, here we normalize f by

f ′ = 2(f − fmin)/(fmax − fmin)− 1, (12)

such that the band [fmin fmax] is mapped into [−1 1], which is
around the center of the numerical range of computer.
Defining matrices F and G as

F ,


s1

s2
. . .

sK

 , G ,
[
g1 g2

]

=


1 −y1
1 −y2
...

...

1 −yK

 , (13)

respectively, we abbreviate (11) as[
F0g1 F0g2 F1g1 F1g2 F2g1 F2g2 · · ·

]
·

[
ñ0 d̃0 ñ1 d̃1 ñ2 d̃2 · · ·

n̄0 d̄0 ñ1 d̄1 n̄2 d̄2 · · ·

]T
=

[
0 0 0 0 0 0 · · ·

0 0 0 0 0 0 · · ·

]T
, (14)

where F i is the i-th power of F of dimensionK×K , F ig1 and
F ig2 are column vectors of dimension K × 1. According to
Cayley–Hamilton theorem and related results in Appendix A,
F0G, F1G, F2G, · · · can be written as linear combinations of
F0G, F1G, · · · , FK−1G. Hence, (14) is equivalent to[
F0g1 F0g2 F1g1 F1g2 · · · FK−1g1 FK−1g2

]
·

[
ñ0 d̃0 ñ1 d̃1 · · · ñK−1 d̃K−1
n̄0 d̄0 n̄1 d̄1 · · · n̄K−1 d̄K−1

]T
=

[
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0

]T
. (15)

The above equation is of dimension K × 2K , and there
are 2K unknowns. Intuitively, the unknowns can be found
by appropriate method, and hence n̄(s), d̄(s), ñ(s), and d̃(s)
will be all of degree K − 1. In this sense, Cayley–Hamilton
theorem provides natural bound on the orders of the four poly-
nomials. However, two points should be noted here. The first
point is that for K data points, rational interpolating function
with the numerator and denominator both of orderK−1 is not
always necessary. Thus the orders of n̄(s), d̄(s), ñ(s), and d̃(s)
could be lower thanK−1. The second point is that (5) and (6)
are not necessarily equivalent to (3). Before moving d̄(s) or
d̃(s) to the denominator position of (3), we should make sure
that they are nonzero for all the abscissas s1, . . . , sK , or else
n̄(sk )/d̄(sk ) and ñ(sk )/d̃(sk ) will be undefined. In the next
subsection, method to find the coefficients in the polynomials
is given, and both the above two points are considered.
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FIGURE 1. Exemplary structure of (16), K = 5. ‘×’ indicates the
independent vectors, ‘o’ indicates the primary dependent vector, and ‘∗’
corresponds to the non-primary dependent vectors. The positions of the
marks are by no means fixed as shown, and they depend on actual data.

B. CONSTRUCTING THE MINIMAL INTERPOLANT
In (15),

[
n̄0 d̄0 n̄1 d̄1 · · · n̄K−1 d̄K−1

]T and[
ñ0 d̃0 ñ1 d̃1 · · · ñK−1 d̃K−1

]T
represent the coefficients of

linear dependent relationships in[
F0g1 F0g2 F1g1 F1g2 · · · FK−1g1 FK−1g2

]
. (16)

Therefore, we will look for such relationships in the above
matrix. To this end, we search the columns of the matrix
in order from left to right, and stop the procedure once the
obtained dependent relationships suffice for constituting the
interpolating function. It is true that we can rearrange (15)
and (16) in different forms. For example, putting the g1 terms
together and the g2 terms together, we will have[

F0g1 · · · FK−1g1 F0g2 · · · FK−1g2
]

·

[
ñ0 ñ1 · · · ñK−1 d̃0 d̃1 · · · d̃K−1
n̄0 n̄1 · · · n̄K−1 d̄0 d̄1 · · · d̄K−1

]T
=

[
0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0

]T
. (17)

However, since column vectors of the first matrix in the
above are searched in order from left to right, the resulting
coefficients may have forms like

[
n̄0 n̄1 · · · n̄K−1 d̄0

]
. Con-

sequently, the degree of the numerator is much larger than
that of the denominator. On the contrary, (15) and (16) will
make the difference between the degrees of the numerator
and denominator small. It is commonly regarded that in
Padé approximation, rational functions with the difference
between the degrees of numerator and denominator less than
one have the best fitting capability [7], [20]. As a result,
searching (16) leads to rational interpolating function with
lower McMillan degree.

Nowwe elaborate on how to find and exploit the dependent
relationships in (16). For convenience, we use Fig. 1 to help
explanation. In the beginning, we selectF0g1 as the first inde-
pendent vector and mark it with ‘×’. Since the elements of
g2 are not the same unless y does not change over frequency,
F0g2 is independent of F0g1, and we mark it with ‘×’. Next,
we go to subsequent columns and continue the search. If a
vector, for example, Fκ1gj, first becomes linearly dependent
on its previous vectors, then we call it the first primary
dependent vector, and mark it with ‘o’. By the algorithm in
Appendix B, we get the coefficients of the linear combination
of dependent column. Substituting these coefficients (some of
them may be zeros) into (7) and (8), we get n̄(s) and d̄(s) with
the highest degree κ1. For example, in Fig. 1, κ1 = 2, j = 1,
thus the first dependent relationship is

n̄0F0g1+d̄0F0g2+n̄1F1g1+d̄1F1g2+n̄2F2g1 = 0, (18)

or explicitly,

n̄0


1
1
...

1

+ d̄0

−y1
−y2
...

−yK

+ n̄1

s1
s2
...

sK

+ d̄1

−s1y1
−s2y2
...

−sK yK



+n̄2


s21
s22
...

s2K

 =

0
0
...

0

 . (19)

The above is saying that

n̄0 + n̄1sk+n̄2s2k = (d̄0+d̄1sk )yk , for k = 1, . . . ,K . (20)

Hence, we have

n̄(s) = n̄0 + n̄1s+ n̄2s2, (21)

d̄(s) = d̄0 + d̄1s. (22)

At this point, we check whether d̄(s) is nonzero for all
s1, . . . , sK . If so, we stop the search and take d̄(s) as the
denominator, obtaining

y(s) = n̄(s)/d̄(s) (23)

with deg y(s) = κ1, where κ1 is theminimalMcMillan degree.
On the other hand, if d̄(s) equals zero for some sk , we can

not take d̄(s) as the denominator. In such case we have to
continue the search in order to find the second dependent
relationship that will help constitute nonzero denominator.
A fact that will be used later is that the vectors F igj, where
i > κ1 and j is the same as that in Fκ1gj, also depend on their
previous vectors. For example, in Fig. 1 we have κ1 = 2,
j = 1. Left multiplying (18) by F , we get

n̄0F1g1+d̄0F1g2+n̄1F2g1+d̄1F2g2+n̄2F3g1 = 0, (24)

which indicates the dependence of F3g1(that is i = 3, j =
1). Proceeding similarly, we can also show the dependence
of F4g1. We call F3g1 and F4g1 the non-primary dependent
vectors, and mark them by ‘∗’. In addition, one can find that
the dependent relationship in (24) is the same as that in (18).
Taking the first line element of (24), we have

s1(d̄0 + d̄1s1)y1 = n̄0s1 + n̄1s21 + n̄2s
3
1. (25)

Thus, when d̄0 + d̄1s1 equals zero in (22), the left hand
side of the above will also be zero, which means that the
non-primary dependent vectors contain no valid information
for constituting nonzero denominator.

Next, we claim that Fκ2gj′ , where κ2 = K − κ1 and j′ 6= j,
must be dependent by using the facts that 1) matrix (16) has
column rank K ; 2) all the vectors before Fκ1gj are inde-
pendent; 3) vectors F igj with i > κ1 are dependent. For
example, in Fig. 1 the matrix has column rank 5, so the first
four vectors are independent, and the fifth vector is the first
primary dependent vector. Then, F2g2 must be independent.
Otherwise, using the same method as we deduce the depen-
dence of F3g1 and F4g1, we will get that F3g2 and F4g2
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are dependent. Then, the matrix will only have column rank
four, and this contradicts the fact that the matrix has column
rank five. As a result, F2g2 must be independent. By now we
have obtained all the five independent vectors, so F3g2 must
be dependent. Hence, κ2 = 3, and j′ = 2. Fκ2gj′ is called
the second primary dependent vector. Since it appears after
Fκ1gj, relationship κ1 ≤ κ2 ≤ K − 1 will always hold.

Substituting the coefficients of the second primary depen-
dent relationship (some of them may be zeros) into (9)
and (10), we get ñ(s) and d̃(s) with the highest degree κ2. Let
us assume the second primary dependent relationship in Fig. 1
as

ñ0F0g1+d̃0F0g2+ñ1F1g1+d̃1F1g2+d̃2F2g2+d̃3F3g2=0.

(26)

Following a procedure similar to that between (18) and (22),
we get

ñ(s) = ñ0 + ñ1s, (27)

d̃(s) = d̃0 + d̃1s+ d̃2s2 + d̃3s3. (28)

In Appendix C, we prove that d̃(sk ) and the previously
obtained d̄(sk ) cannot be zero simultaneously for any k .
Now the motivation for having ñ(s) and d̃(s) (or equivalently,
having (6)) becomes clear: it provides the opportunity for
constructing nonzero denominator when d̄(s) equals zero for
some sk . In this case, denominator of the rational interpolat-
ing function can be constructed as linear combination of d̄(s)
and d̃(s), i.e.,

p(s)d̄(s)+ d̃(s), (29)

where p(s) is any polynomial satisfying the constraint

p(sk )d̄(sk )+ d̃(sk ) 6= 0, for k = 1, . . . ,K . (30)

For keeping low complexity, it is preferable to set

deg p(s) ≤ κ2 − κ1. (31)

Then, n̄(s) and ñ(s) must follow the same linear combination
as (29) to meet the interpolation requirements. Consequently,
the rational function is of the form

y(s) =
p(s)n̄(s)+ ñ(s)

p(s)d̄(s)+ d̃(s)
(32)

with deg y(s) = κ2, where κ2 is theminimalMcMillan degree.
At this point, we have found the solution to the minimal

rational interpolation problem. For clarity, we summarize the
main steps as follows:

1) Scale f according to (12), and compute matrix (16);
2) Search the columns of (16) in order from left to right,

and find the first dependent vector Fκ1gj. Then, sub-
stitute the coefficients of the dependent relationship in
to (7) and (8), and get n̄(s) and d̄(s);

3) Check whether d̄(s) is nonzero for all s1, . . . , sK .
If so, (23) is the desired interpolating function with
degree κ1. Otherwise, go to the next step;

4) Set κ2 to be K−κ1, and select Fκ2gj′ (j′ 6= j) as the sec-
ond primary dependent vector. Find the coefficients in
the dependent relationship and substitute them into (9)
and (10), and get ñ(s) and d̃(s);

5) Choose any p(s) satisfying deg p(s) ≤ κ2−κ1 and (30),
then (32) will be the solution with degree κ2.

From the above steps, we see that with this method one
does not need to estimate the complexity of the rational inter-
polating function, and can always get functions with the min-
imalMcMillan degree. Owing to these properties, the method
can be implemented as fully automatic program, and it is well
suited as the interpolating algorithm in broadband simulation.

C. REMARKS ON PHYSICAL CONSISTENCY AND
NUMERICAL STABILITY
By now we have finished the introduction of minimal inter-
polation as a mathematical method. In this sense, the method
is general. However, when it is applied to fit realistic physical
quantities and the resulting model is to be used together with
other systems, physical consistency should be considered.
Specifically, the model must be causal, stable, and passive
[29], [30]. For linear time-invariant systems passivity implies
causality [31]. As a result, only stability and passivity need
to be satisfied. Since no attention was paid on physical con-
sistency in the previous derivations, the resulting rational
models have unstable poles and violate passivity constraint.
In addition, the coefficients in the numerator and denomina-
tor polynomials are complex, and this leads to unrealizable
model.

To solve the problem of complex coefficients and unstable
poles, we suggest utilizing the method in [32]. Firstly, the real
parts of the frequency response are fitted with even rational
functions of squared variables by using the minimal rational
interpolation. Then, poles of the even functions are found
and those in the left half-plane are taken as the poles of the
original rational functions. In the end, the coefficients in the
numerator polynomials of the original functions are solved.
At this point, the resulting rational functions will be stable
and real-coefficient.

Passivity assurance has been studied extensively in macro-
modelling [33]–[37]. It consists of two steps, namely, pas-
sivity check and passivity enforcement. As in vector fitting,
the two steps are usually carried out as post processing of
rational modeling. There are public domain codes for pas-
sivity assurance (for example, the RPdriver of the matrix
fitting toolbox [36], [37]). The results of minimal rational
interpolation, after being made stable and real-coefficient,
can be processed by such routines so as to meet physical
consistency constraints.

From the explicit form of (11), we know that the entries
along each row of (16) are powers of frequency values.
Therefore the computational procedure will be limited by the
numerical range and precision of the computer. The normal-
ization in (12) makes the procedure no longer limited by the
numerical range. However, when the frequency range is wide
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and the data change rapidly, high-order approximation should
be used. At this time the procedure will still be limited by the
numerical precision, as parts of the normalized frequencies
are small and their high order powers are difficult to be repre-
sented. In such cases we suggest dividing the frequency range
into sub-bands and fitting the data in each band individually.
The cost is that one can no longer get a single rational model
for the whole data.

III. APPLICATION IN BROADBAND SIMULATION
Nowadays, many full-wave numerical techniques are avail-
able for accurate analysis of EM systems. In these techniques
quantities on all the mesh girds are taken as unknowns. As the
complexity of the modeled objects increases, the number of
unknowns also increases, leading to higher requirements on
memory space and computing time. However, in many cases
designers are only interested in part of the quantities within
a frequency range. This motivates the idea of approximating
the variations of quantities by rational interpolating functions,
so the overall computational costs can be saved. Many works
have been published on this topic [2], [11], [12], [15], [16],
[19], [38]. Particularly, vector fitting is combined with AFS
and PEEC method for extracting macromodel of intercon-
nects [14]. In this section we give an efficient broadband
simulation approach as a sample application of the previ-
ously introduced minimal rational interpolation. Like [14],
the approach here also combines rational interpolation and
AFS. The central idea is to fit the frequency-domain simu-
lation results by rational interpolating functions, which are
then checked and improved recursively by new simulation
results. The aim is to achieve accurate and broadband results
with reasonable computational costs. A flow diagram of the
approach is shown in Fig. 2, and the main steps proceed as
follows:

1) To begin, the start and end points of the frequency range
are selected as initial frequency samples. Frequency-domain
EM simulations are carried out at the two points, result-
ing in currents, fields, etc. Then quantities of concern are
selected and put into a data set that will be fitted later. The
specific choice of quantities depends on actual scenarios.
For example, if the broadband admittances of a circuit are
considered, then only the current coefficients at the circuit
ports are selected. This choice will reduce the workload of
interpolation.

2) Then, the quantities of interests are fitted individually by
the minimal interpolation, obtaining rational functions with
the lowest degrees. These functions are believed to be accu-
rate at the data points. Depending on the attributes of the fitted
data, the stability and passivity processing in Section II-C
may be required for keeping physical consistency.

3) To assess the validity of the obtained interpolating
functions, test frequency points are selected according to
predefined rules, and EM simulations are performed at these
points. In this work, test points are set to the intermediate
values of interpolating input frequencies.

FIGURE 2. Flow diagram of the broadband simulation which exploits
adaptive frequency sample and minimal rational interpolation.

4) The interpolating functions are evaluated at the test
points, and the function values are compared with the above
simulation results. To get a scalar number that indicates the
validity of interpolating functions, we define the maximum
relative error (MRE) as

MRE = max
j=1,...,J

{ max
k=1,...,K

{|yj(sk )− yj,k |/|yj,k |}}, (33)

where J denotes the number of fitted variables, K denotes
the number of test frequencies, yj,k denotes the value of the
j-th variable at the k-th test frequency, and yj(sk ) is value of
the j-th interpolating function at the k-th test frequency. This
definition gives the maximum relative error over all the test
frequencies and all the fitted variables, hence it directly indi-
cates the validity of interpolating functions. On occasion, yj,k
is small or close to zero, and this makes the error definition
in (33) invalid. In such case, the maximum root-mean-square
(RMS) error can be used, which is defined as

MRMSE = max
j=1,...,J


√√√√ 1
K

K∑
k=1

|yj(sk )− yj,k |2

 . (34)

5) If the error is larger than a prescribed criterion, it means
that the current rational function models need to be improved
by supplementing new contents to the interpolating data set.
Since adding all the test frequencies into the data set will
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make the degrees of interpolating functions growth rapidly,
only the test frequencies with the first mmaximum errors are
added. Then the procedure goes to step 2.

6) Steps 2-5 are repeated until the error is less than the
predefined threshold. Depending on the desired accuracy,
the threshold can be adjusted. At this time, the variations of
the quantities are captured by the rational functions, and the
procedure is terminated. The resulting rational functions are
then evaluated at desired frequencies.

The above steps follow an iterative procedure of ‘fit data –
check validity – add new data – fit data – · · · ’. The approach
has the following properties: Firstly, interpolating functions
are generated automatically, and one does not need to interact
with the program. This is due to the automatic property of
the minimal rational interpolation. Secondly, the obtained
rational functions always have low degrees due to theminimal
property of the rational interpolation. Consequently, model
order reduction is not required, and this is preferable for
applications like physical realization. Thirdly, the approach
is more efficient than the simple point-by-point simulation
in terms of time costs. When the process is terminated, one
just has to evaluate the rational functions at desired fre-
quencies. Finally, like the other interpolation based method,
the approach here does not solve for or storage derivations,
so it costs less computational time and memory compared to
the AWE based methods.

It should be stressed that the approach here is by no means
ideal. It is just a sample application of the minimal rational
interpolation in broadband computational electromagnetics.
When the procedure stops, it just means that convergence is
achieved under the predefined rules. Even if most of the fre-
quency range is oversampled by the approach, some impor-
tant features can still be missed due to local undersampling.
Usually, some prior knowledge is needed to evaluate the
validity of the rational models. The flow diagram in Fig. 2 is
general. The fitting method, error definition, and the method
of selecting test frequencies can be replaced, for example,
by those in [14]. Several frequencies of the band can also
be designated as the key points, where tests must be carried
out. These measures will help to ensure that all the dynamics
within the frequency range are captured by the final rational
functions. As mentioned in Step 2), the stability and passivity
processing in Section II-C may be required to make the
rational functions physical consistent, but the actual choice
depends on the scenarios. For example, scattering simulations
of objects in frequency domain do not require stability and
passivity. Finally, the approach fits the quantities of concern
individually, hence the computational costs scale linearly
with the number of quantities of interests. Further work is
needed to study the possibility of fitting multiple quantities
with rational functions sharing the same common poles and
zeros, thus reducing the computational costs.

IV. EXAMPLES
In this section, we give two examples to demonstrate
the effectiveness of minimal rational interpolation and the

practical value of the broadband simulation approach. Objects
in the two examples are all PEC, and they are simulated by
integral equation methods. The program is executed on a
computer with Intel i7-3820QM CPU (8 cores at 2.7 GHz)
and 32 GB RAM.

A. EXAMPLE 1: INTERCONNECTS
In this example, broadband admittances of the interconnects
in Fig. 3 are considered. The structure is cut out of a real-
istic package board [39], [40], and the associated mesh has
3691 triangular patches and 5222 inner edges. The highest
frequency supported by the mesh is about 40 GHz. There
are four ports in the structure, and they are marked out by
the arrows in the figure. First, we show the accuracy of
minimal rational interpolation by fitting the Y31 parameter
between 1 MHz - 40 GHz. There are 161 frequencies in
all. The interval between the first and second frequencies is
0.249 GHz, and the intervals between the remaining frequen-
cies are 0.25 GHz. Since the average size of the mesh is much
smaller than the smallest wavelength of the frequency band,
commonMOM solver can not be used. Instead, an augmented
electric field integral equation solver (A-EFIE), which is
immune to low-frequency breakdown [39], [40], is adopted.
Then the minimal rational interpolation is applied to fit the
simulation results. The program finds a rational function with
McMillan degree 22, and the function is compared with the
original 161 data in Fig. 4. Fig. 4a and 4c illustrate that the
function fits the original data quite well, and one can hardly
distinguish them from the overlapped lines. Fig. 4b shows that
the average value of the relative errors of the magnitudes is on
the order of 1E-5. In theory, the error should equal zero at the

FIGURE 3. Geometry of the interconnects with (a) top layer upwards and
(b) bottom layer upwards. The distance between the top layer and the
bottom layer is 0.29 mm, and the two layers are connected by 7 vias. The
over all dimension in the X-Y plane is 7.57× 2.73 mm2. P1, P2, P3, and
P4 are exciting ports.
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original data points. However, there are numerical errors in
the program, so one can not get ideal fitting. It should be noted
that stability and passivity enforcement is not implemented
in our current program, so the result is accurate only in
mathematical meaning.

For comparison, the commonly used vector fitting [13],
[41], [42] is applied to fit the same data. Since the degree
of rational model (or equivalently, the number of poles) is a
necessary input parameter of the vector fitting program, it is
specified as 8, 22, and 36, respectively. The degree of 22 is
the same as that found by the minimal rational interpolation,
while the degree of 36 is larger than the later. Passivity
enforcement is turned off in the program. Results under the
three degrees are also shown in Fig. 4. When the degree
is 8, the relative errors of the magnitudes are on the order
of 1, being very large and unacceptable. This demonstrates
the necessity of providing appropriate order estimate in vec-
tor fitting. When the degree is underestimated inaccurate
results will be obtained. On the contrary, the minimal rational
interpolation finds the underlying degrees automatically, and
the user is not required to provide the estimate. This facili-
tates its application in fully-automatic broadband simulation.
The errors of vector fitting decrease as the input degrees
increases to 22 and 36. However, the errors in the range of
5.25-14.25 and 21.75-34.75 GHz are still much larger
than those of minimal rational interpolation. In particular,
the errors at 10.25 GHz reach 0.56, while the error of minimal
rational interpolation is less than 1E-6. This comparative
example demonstrates the clear advantage of minimum inter-
polation in automatically producing high precision fittings
with low order functions. In addition to accuracy, computa-
tional time is also a concern when embedding interpolating
algorithms in fast frequency sweep. In the above example
the minimal rational interpolation costs 0.29 second, and the
vector fitting costs 0.13 second in each of the three fitting
tasks. As the A-EFIE program uses about 44 seconds in
simulating a single frequency point, the time taken by the two
interpolating algorithms is negligible.

We then apply the proposed simulation approach to com-
pute Yij, where j = 1, . . . , 4 and i ≥ j, between 1 GHz -
40 GHz. The approach calls A-EFIE solver to get tabulated
data of the ten admittances, and interpolates them individ-
ually. The maximum number of newly added interpolation
frequencies in each step is set to 12. The stopping criteria
for the MRE is set to 3E-3. After seven steps of ‘fit data –
check validity – add new data’, the error becomes 2E-3 and
the process is terminated. The solid line in Fig. 5 shows the
errors in the process. Fig. 6 shows the frequencies used by
each step. In the figure, frequencies marked by ‘o’ are used to
construct interpolation functions, while those marked by ‘x’
are used to check errors, and they are the intermediate of the
‘o’ points. There are a total of 81 frequency points, of which
41 (the ‘o’ points in the top line) are used to construct the
final interpolation functions. Table 1 lists the complexities of
the final ten rational functions, and the maximum degree is
20. To show the accuracies of these ten rational functions,

FIGURE 4. Comparison of the various interpolating functions with the
original Y31 data. Legends in the figures are abbreviated for compactness.
data: Original data; MinInt22: minimal rational interpolation with degree
22; VFT8: vector fitting with degree 8; VFT22: vector fitting with degree 22;
VFT36: vector fitting with degree 36. (a) Magnitudes of the admittances.
(b) Relative errors of the magnitudes. (c) Phases of the admittances.

we perform another simulation of the interconnects. This time
the frequency step is set to 0.125 GHz, and the 313 fre-
quencies are simulated one by one. This method is called
‘point-by-point’ simulation. The ten rational functions are
evaluated at the same 313 frequencies and the obtained values
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FIGURE 5. The maximum relative errors within each step of the
broadband simulation of the interconnects.

FIGURE 6. Frequencies used by each step of the broadband simulation of
the interconnects.

are found to agree with the point-by-point simulation results.
For illustration, Fig. 7 plots the comparison of Y42. Note that
the sharp peaks in the curves are captured exactly by the
rational function models. Table 2 lists the simulation costs
of the proposed approach and the point-by-point method for
getting the broadband admittances. Obviously, the proposed
approach is more time-efficient than the later, and uses neg-
ligible additional memory.

As mentioned in section III, the broadband simulation
approach is general, and the fitting process therein can be
implemented by other methods. For reference and compar-
ison, we re-run the above example using the vector fitting
as a substitute for the minimal rational interpolation, while
keeping all other parameters unchanged. For vector fitting the
degrees of rational functions are necessary input parameters.
In order to ensure the accuracy of fitting, we set the degrees
as one less than the lengths of the data to be fitted. As the sim-
ulation goes on, the lengths of data increase and the degrees
are updated accordingly. The errors in the simulation process
are plotted as the dashed line in Fig. 5, whose convergence
rate is slower than that of minimal rational interpolation. The
errors at the 7 and 10-th steps are 0.39 and 0.08, respectively.

TABLE 1. Degrees of the rational models of the admittances.

TABLE 2. Costs for computing broadband admittances of the
interconnects.

Up to the 7-th step of the iteration, 81 frequencies are simu-
lated and 41 of them are used to construct the interpolating
functions. The degrees of these functions are all 40, being
twice of the degrees of those functions generated by minimal
rational interpolation. The accuracies of these rational models
are also verified by comparing with the data of point-by-
point simulation with dense frequency sampling. As a rep-
resentative example, the case of Y42 is drawn as the dashed
lines with triangle labels in Fig. 7. The relative errors of
magnitudes show the model exhibit comparable accuracies as
that generated by AFS in combination with minimal rational
interpolation in the band of 10-40 GHz. However, in the
band of 1-9.6 GHz the model exhibit lower accuracies than
the latter. Seven of the other nine models exhibit similar
behavior. To sum up the above comparison, the advantage
of applying the minimum interpolation algorithm in adaptive
broadband simulation lies in using low-order functions to
achieve high-precision rational models, thus accelerating the
simulation speed.

B. EXAMPLE 2: CUBE UNDER PLANE WAVE
ILLUMINATION
In this example, the approach is applied to simulate the
scattering of a cube between 2-22 GHz. The cube is shown
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FIGURE 7. Y42 obtained by point-by-point simulation, broadband
approach that combines AFS with minimal rational interpolation, and
combines AFS with vector fitting. (a) Magnitudes. (b) Relative errors of
the magnitudes. (c) Phases.

in Fig. 8 and its side length is 1 cm. The incident plane
wave propagates along the −z direction, and the electric
field is in the +x direction. The EM solver called by the
approach is MOM, and there are a total of 975 Rao-Wilton-
Glisson (RWG) basis functions [43]. Coefficients of the basis

FIGURE 8. A cube under plane wave illumination. Unit: 1 cm. The mesh
consists of 650 triangular patches and 975 inner edges.

FIGURE 9. The maximum relative errors within each step of the
broadband simulation of the cube.

functions are chosen as the quantities to be fitted since they
are closely related to the near fields and change rapidly over
frequency. This choice should bemore challenging than inter-
polating the far fields. The maximum number of newly added
interpolation frequencies in each step is set to 8. The stopping
threshold on the maximum relative error is set to 1E-3. In the
eighth step of the iteration, the error becomes 9.5E-6 and the
process is terminated. Fig. 9 shows the maximum relative
error within each step. Fig. 10 plots the frequencies used by
each step. There are 81 frequency points in all, 41 of which
are used for interpolation (marked by ‘o’) and the other 40 are
used for assessing errors (marked by ‘×’). The maximum
McMillan degree of the 975 rational functions is 15, and the
minimal is 13.

To check the accuracies of the rational function models
of the currents, we rerun the MOM code in point-by-point
manner with step of 0.1 GHz, and the current coefficients
at all the frequencies are written to files. Then values of the
rational functions are computed at the same frequencies and
compared with the written data. The differences in Fig. 11
show that the relative magnitude errors are less than 1E-5 and
the absolute phase errors are less than 1.5E-5 rad. This
demonstrate the accuracies of rational models, so the fields
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FIGURE 10. Frequencies used by each step of the broadband simulation
of the cube.

FIGURE 11. Differences between rational function models of current
coefficients on the cube and the results of point-by-point simulation.
(a) Relative magnitude differences. (b) Absolute values of the phase
differences.

can be computed faithfully. Fig. 12 compares the backward
RCS derived from the rational models with that obtained
by point-by-point simulation. The two curves overlap and

FIGURE 12. Backward RCS of the cube in the z direction.

TABLE 3. Costs for computing the induced currents on the cube.

cannot be distinguished. Table 3 lists the costs of the two
approaches for simulating the cube. It can be seen that the
proposed approach uses much less time than the point-by-
point simulation while consuming comparable memory. This
superiority will be even more pronounced as the problem size
increases. Therefore, the proposed approach is quite effective
in accelerating frequency-domain broadband simulation, and
can help to save time in related study.

V. CONCLUSION
This work introduces the minimal rational interpolation from
point view of linear algebra, and makes the algorithm easy to
understand. In addition, this work also presents an efficient
broadband simulation approach that exploits the minimal
rational interpolation and adaptive frequency sampling. The
approach is fully automatic and always gives rational function
models with the minimal McMillan degrees. Examples illus-
trate the power and efficiency of the approach. Future
improvements of this work include optimizing the strate-
gies of adaptive frequency sampling, possibly by utilizing
machine learning, such the final rational models generated
by the approach will not miss any details in the interested fre-
quency band. Although this work focuses on the application
in fast broadband simulation, minimal rational interpolation
is widely applicable. Possible scenarios include modeling
experimental and simulation data and broadband impedance
matching. With physical consistency enforcement as post-
processing, it could also be applied inmacromodel extraction.
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In these scenarios the proposed approach can be transplanted
accordingly.
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APPENDIXES
APPENDIX A
CAYLEY–HAMILTON THEOREM AND RELATED RESULTS
Cayley–Hamilton Theorem says that every square matrix
satisfies its characteristic equation. Specifically, let A be a
matrix of dimension n× n, and let

p(λ) = det(A− λI ) = α0 + α1λ+ · · · + αnλn (35)

be its characteristic polynomial. Then,

p(A) = α0I + α1A+ · · · + αnAn = 0. (36)

For proof of the theorem, see Chapter 2 of [44].
Let f (λ) be any polynomial in λ, then there are unique

polynomials g(λ) and r(λ) such that

f (λ) = p(λ)g(λ)+ r(λ), (37)

where deg r(λ) ≤ n− 1. Assuming

r(λ) = β0 + β1λ+ · · · + βn−1λn−1, (38)

and exploiting p(A) = 0, we have f (A) = r(A), which means
that any polynomials of A can be expressed as

f (A) = β0I + β1A+ · · · + βn−1An−1. (39)

The above equation implies that Am, where m ≥ n, can be
written as linear combination of I , A, A2, . . . , An−1.

APPENDIX B
SEARCH LINEAR DEPENDENT COLUMNS
WITHIN A MATRIX
In Section II-B, it is required to search the linear dependent
columns of amatrix in order from left to right. Themethodwe
use is column-searching, which is a parallel implementation
of the row-searching algorithm in page 550-551 of [44]. Here
we elaborate the method by a simple example. Assuming A is
a 4× 5 matrix, we first transform it into reduced row echelon
form by using routines like Gauss Jordan elimination with
partial pivoting, and get

Ā =


1 0 0 ā14 0
0 1 0 ā24 0
0 0 1 ā34 0
0 0 0 0 1

 . (40)

The above expression means that the fourth column of A
can be represented as linear combination of the first three
columns, namely,

A(:, 4) = ā14A(:, 1)+ ā24A(:, 2)+ ā34A(:, 3). (41)

As a result, we get the dependent relationship and coefficients
in the linear combination.

Note that the matrix in this example is general and no
assumption is made on its form. Eqn. (16) brings special
property to the positions of dependent columns. Refer to
Section II-B for the discussion.

APPENDIX C
PROOF OF THE FACT THAT D̄(S) and D̃(S) CANNOT BE
ZERO AT THE SAME INTERPOLATION FREQUENCY
Let us assume the first primary dependent relationship of (16)
as

n̄0F0g1+d̄0F0g2+· · ·+d̄κ1−1F
κ1−1g2+n̄κ1F

κ1g1 = 0,

(42)

then it follows that j = 1 and j′ = 2. Using a procedure
similar to the one between (18) and (22), we have

n̄(s) = n̄0 + n̄1s+ · · · + n̄κ1s
κ1 , (43)

d̄(s) = d̄0 + d̄1s+ · · · + d̄κ1−1s
κ1−1, (44)

which satisfy

n̄(sk )− yk d̄(sk ) = 0, for k = 1, . . . ,K . (45)

If d̄(s) equals zero for some sk , e.g., s1, then the above implies
that n̄(s) and d̄(s) share the common polynomial factor s−s1.
We cancel the factor in the above three equations, and get

n̄′0 + n̄
′

1sk + · · · + n̄
′

κ1−1s
κ1−1
k − yk (d̄ ′0 + d̄

′

1sk + · · ·

+ d̄ ′κ1−2s
κ1−2
k ) =

{
α, k = 1
0, k = 2, . . . ,K ,

(46)

where α is some nonzero constant. If α equals zero, then the
left hand side of the above equals zero for all k = 1, . . . ,K ,
implying that Fκ1−1g1 is dependent. Apparently, this is in
conflict with the assumption that Fκ1g1 is the first dependent
vector. Consequently, α must be nonzero.
Assuming the second primary dependent relationship

in (16) as

ñ0F0g1+d̃0F0g2+· · ·+ñκ2F
κ2g1+d̃κ2F

κ2g2 = 0, (47)

we have

ñ(s) = ñ0 + ñ1s+ · · · + ñκ2s
κ2 , (48)

d̃(s) = d̃0 + d̃1s+ · · · + d̃κ2s
κ2 , (49)

which satisfy

ñ(sk )− yk d̃(sk ) = 0, k = 1, . . . ,K . (50)

If d̃(s) also equals zero at s1, then we have

ñ′0 + ñ
′

1sk + · · · + ñ
′

κ2−1s
κ2−1
k − yk (d̃ ′0 + d̃

′

1sk + · · ·

+ d̃ ′κ2−1s
κ2−1
k ) =

{
β, k = 1
0, k = 2, . . . ,K ,

(51)

where β is some nonzero constant.

177824 VOLUME 7, 2019



J. W. Wu, T. J. Cui: Minimal Rational Interpolation and Its Application in Fast Broadband Simulation

Multiplying (46) by β and (51) by α, and then subtracting
the results, we have

(βn̄′0 − βd̄
′

0yk − αñ
′

0 + αd̃
′

0yk )+ (βn̄′1 − βd̄
′

1yk − αñ
′

1

+ αd̃ ′1yk )sk + · · · + (−βd̄ ′κ1−2yk )s
κ1−2 + βn̄′κ1−1s

κ1−1
k

− αñ′κ2−1s
κ2−1
k + αd̃ ′κ2−1yks

κ2−1
k

=

{
0, k = 1
0, k = 2, . . . ,K .

(52)

The above equation indicates that Fκ2−1g2 (corresponding to
the last term in the left hand side of the above) is dependent.
However, this is contradicts the fact that Fκ2g2 is the second
primary dependent vector and all the vectors F ig2 with i < κ2
should be independent. Therefore, d̄(s) and d̃(s) cannot be
zero at the same interpolation frequency.
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