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ABSTRACT Developing a high-speed elliptic curve cryptographic (ECC) processor that performs fast point
multiplication with low hardware utilization is a crucial demand in the fields of cryptography and network
security. This paper presents field-programmable gate array (FPGA) implementation of a high-speed,
low-area, side-channel attacks (SCAs) resistant ECC processor over a prime field. The processor supports
256-bit point multiplication on recently recommended twisted Edwards curve, namely, Edwards25519,
which is used for a high-security digital signature scheme called Edwards curve digital signature algorithm
(EdDSA). The paper proposes novel hardware architectures for point addition and point doubling operations
on the twisted Edwards curve, where the processor takes only 516 and 1029 clock cycles to perform each
point addition and point doubling, respectively. For a 256-bit key, the proposed ECC processor performs
single point multiplication in 1.48 ms, running at a maximum clock frequency of 177.7 MHz in a cycle count
of 262 650 with a throughput of 173.2 kbps, utilizing only 8873 slices on the Xilinx Virtex-7 FPGA platform,
where the points are represented in projective coordinates. The implemented design is time-area-efficient as
it offers fast scalar multiplication with low hardware utilization without compromising the security level.

INDEX TERMS Elliptic curve cryptography (ECC), elliptic curve point multiplication (ECPM), twisted
Edwards curve, side-channel attacks (SCAs), field-programmable gate array (FPGA).

I. INTRODUCTION
Internet of Things (IoT) security has become a crucial issue
in the present scenario of the Internet world. With the rapid
development of wireless communication, the demand for IoT
security is increasing day by day. Public key cryptography
(PKC) or asymmetric cryptography [1], [2] is an excellent
solution to fulfill the demand as it provides a key-agreement
protocol between two sensor nodes in a wireless network
and prevents unauthorized accesses to sensitive data dur-
ing transmission over the network [3]–[5]. The two widely
accepted PKC algorithms for cryptographic applications are
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Rivest-Shamir-Adleman (RSA) [6] and elliptic curve cryp-
tography (ECC) [1]. RSA, proposed by Rivest, Shamir, and
Adleman, is based on integer factorization, whose encryption
strength depends on the key sizes taken. ECC, first intro-
duced by Koblitz [7] and Miller [8] independently, is based
on discrete logarithms, whose encryption strength is much
difficult to break. To provide the same level of security,
ECC requires a shorter key length than RSA. For example,
160-, 224-, and 256-bit ECC encryption keys provide equiv-
alent security as 1024-, 2048-, and 3072-bit RSA encryp-
tion keys, respectively. The advantage of smaller key sizes
is that they make ECC the best suited for the high-speed
cryptographic processors as well as resource-constrained IoT
devices. The authentication protocols for wireless sensor
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FIGURE 1. Elliptic curve cryptography hierarchy.

nodes are adopting ECC primitives to provide a high level
of security with optimal hardware resources.

Edwards curves, a family of elliptic curves, introduced by
Edward [9], have gained much interest among cryptography
researchers because of their fast group operations [10] and
high immunity to side-channel attacks (SCAs) [11]. Edwards
curves can offer strongly unified addition [12] formulas that
can be used for both point addition and point doubling, ensur-
ing side-channel security. An Edwards curve based crypto-
graphic processor can be developed with low area utilization
and low power consumption, providing high computational
speed and high level of security. Edwards25519 is a twisted
Edwards curve [12]–[15], which is the Edwards form of the
elliptic curve ‘‘curve25519’’ [16]. It is mainly used for high-
speed key generation as well as in Edwards curve digital
signature algorithm (EdDSA) [13], [17].

A typical hierarchy of ECC consists of four successive
levels as shown in Figure 1. The first level contains finite
field arithmetic such as modular addition, subtraction, mul-
tiplication, and inversion. The second level comprises ellip-
tic curve group operations such as point addition and point
doubling, which accommodate a number of modular arith-
metic. The third level relates to elliptic curve point/scalar
multiplication (ECPM/ECSM) that integrates the elliptic
curve group operations in a sequential manner. The top-level
includes ECCprotocols such as elliptic curve digital signature
algorithm (ECDSA) and EdDSA.

The most dominant and time-consuming operation in ECC
is ECPM, which is defined as Q = k · P, where P is a base
point on an elliptic curve, k is a scaler, and Q is another point
on the elliptic curve. The main goal of ECPM is to generate
the public key Q by multiplying the private key k with the
base point P on the curve. It is mathematically difficult to
find the value of the secret key by reversing the ECPM as
k = Q · (P−1). Solving k from the points P and Q is regarded
as the elliptic curve discrete logarithm problem (ECDLP) [1]

that measures the weakness of ECC schemes. The security
of an elliptic curve cryptosystem lies in the hardness of the
ECDLP and the secrecy of the private key. The algorithms
for ECPM are the binary method or double-and-add method,
non-adjacent form (NAF) method, the Montgomery ladder
algorithm, sliding window method, and fixed-base comb
method [1], [18], [19]. In the binary method, since point
addition and point doubling are performed serially following
the binary bit pattern of the key, the method is vulnerable to
SCAs (e.g., timing and power analysis attacks). In the Mont-
gomery ladder technique, point addition and point doubling
are performed in parallel, which cannot be distinguished by
the bit pattern of the key; hence, this method precludes SCAs.
ECPMcan be performed representing the points in both affine
and Jacobian or projective coordinates [1]. ECPM in Jacobian
coordinates is faster than that in affine coordinates because
it requires no modular division or inversion operation to per-
form point addition and point doubling. In affine coordinates,
point addition and point doubling require inversion operation,
which is the costliest arithmetic operation in finite fields. The
cost of a modular inversion is the same as that of 80 modular
multiplications.

An elliptic curve cryptosystem can be implemented with
either a hardware or software approach. In this research,
our focus is only on the hardware approach because the
hardware implementation offers considerably faster opera-
tions compared with the software implementation. However,
the hardware implementation of ECC with low hardware
consumption and low time complexity is a very challenging
task. Area and time are two contradictory parameters of an
ECC processor, one of which has to be compromised to
achieve high efficiency in terms of the other one. For better
performance, the area-time (AT) product of the processor
should be as small as possible. This research aims to develop
an ECC processor well-suited for high-speed, low-power
cryptographic devices by reducing the computation time and
area required for ECPM.

A. RELATED WORKS AND MOTIVATION
Many hardware implementations of ECC processors over
both the Galois binary field GF(2n) and Galois prime
field GF(p) have been documented in the literature, where
some authors aimed to reduce computation time for fast
data encryption and others aimed to reduce required
hardware resources for small-device applications. Several
field-programmable gate array (FPGA) implementations of
ECC processors are proposed in the papers [20]–[43].
Ors et al. [20] proposed hardware implementation of a bit-
length-efficient elliptic curve processor over GF(p) for PKC,
providing a novel architecture for Montgomery modular mul-
tiplication. In [21], Sakiyama et al. proposed a reconfigurable
hardware architecture for PKC that is suited for both the RSA
and ECC. A novel hardware architecture for 256-bit ECC
over GF(p) was developed by McIvor et al. [22], providing
unified modular inversion and multiplication. In [23]–[25],
the authors proposed residue number system (RNS) based
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hardware implementations of ECPM to achieve high-speed
point multiplication. The design reported in [26] introduces
an RNS-based multi-key elliptic curve cryptosystem that per-
forms ECPM on 21 keys simultaneously between its pipeline
registers, providing high throughput. A high-throughput cost-
effective dual-field ECC processor was proposed in [27] that
supports arbitrary elliptic curves with different field orders.
Fan et al. [28] developed an embedded 192-bit multicore
ECC processor over a prime field, in which multiple modular
operations are performed in parallel to speed up ECPM.
In [29], [30], the authors proposed FPGA-based flexible
ECC processors over National Institute of Standards and
Technology (NIST) prime fields that support all five NIST
recommended curves without reconfiguring the hardware.
Liu et al. [31] proposed a flexible dual-field ECC pro-
cessor, providing both application-specific integrated cir-
cuit (ASIC) and FPGA implementations. They adopted a
hardware-software approach for their ECC processor.

In [32], Ghosh et al. proposed parallel crypto devices
for ECPM over GF(p), providing both FPGA and ASIC
implementations, which are resistant to different SCAs. The
design reported in [33] introduces a compact FPGA-based
architecture for ECC over a 256-bit prime field using carry-
chain logic. A power and timing resistant ECSM over pro-
grammable GF(p) was proposed by Ghosh et al. [34] that
is resistant to differential power analysis (DPA) attacks.
In [35]–[37], the authors proposed FPGA implementations
of 256-bit ECC processors over NIST prime fields based on
redundant signed digit (RSD) representations for carry free
arithmetic to achieve high-speed point multiplication. The
area-delay products of their designs are very low compared
with that of the other available designs for taking the advan-
tages of RSD-based modular arithmetic. A power-analysis-
resistant ECC processor was developed by Lee et al. [38]
using heterogeneous dual processing elements that can per-
form over both GF(2n) and GF(p). In [39]–[41], the authors
proposed FPGA-based ECPM over GF(p) by introducing a
new parallel modular multiplier to take the full advantage
of parallelism in group operations, which can provide high-
speed point multiplication with low computational complex-
ity. A high-performance ECC processor over NIST prime
fields was developed by Hossain et al. [42], providing both
ASIC and FPGA implementations that can perform fast scalar
multiplication with low hardware utilization. They proposed
both the affine and projective representations of their proces-
sor along with a projective to affine converter. Hu et al. [43]
proposed a low hardware consumption ECC architecture over
GF(p) in embedded applications, which is safe from simple
power analysis (SPA) attacks.

B. OUR CONTRIBUTIONS
In this paper, FPGA implementation of a time-area-efficient
256-bit ECC processor over GF(p) is presented. The number
of clock cycles, as well as computation time for point mul-
tiplication, is aimed to reduce as far as possible. The mini-
mization of the hardware resources required for the group and

modular operations is emphasized to reduce the occupied area
of the processor. The major contributions of this paper can be
summarized as follows:
• An efficient design for ECPM on a twisted Edwards
curve named Edwards25519 is proposed to achieve
faster point multiplication with higher security.

• The Montgomery ladder algorithm is adopted for the
ECPM design to provide significant protection against
probable SCAs (e.g., timing and power analysis attacks).

• The design is represented in projective coordinates
instead of in affine coordinates to avoid modular inver-
sion operation, which is computationally expensive.

• Novel hardware architectures are proposed for the
twisted Edwards curve group operations (point addi-
tion and point doubling) minimizing the latency and
the number of arithmetic modules as far as possible by
manipulating parallelization technique.

• An optimized hardware architecture is proposed for
radix-2 interleaved modular multiplication to perform
faster group operations with low area utilization.

• Furthermore, the area-delay product of the proposed
ECPM design is very low and the throughput of the
design is high compared with that of the other similar
works, which ensure better performance of the ECC
processor.

The remaining of this paper is organized as follows:
The acronyms used in this paper are enlisted in Table 1.

The mathematical background of the twisted Edwards curve
is described in Section II. The hardware architectures for the
ECC operations are proposed in Section III. The implemen-
tation and simulation results of the proposed ECC designs
are presented in Section IV. A performance comparison of
our ECPM design with other available designs is shown
in Section V. Finally, in Section VI, this research work is
summarized and concluded.

II. MATHEMATICAL BACKGROUND
This section presents the twisted Edwards curve and group
law of this curve. The point addition and point doubling for-
mulas for the Edwards25519 curve in projective coordinates
are also presented in this section.

A. TWISTED EDWARDS CURVE
A twisted Edwards curve over a prime field Fp with not
characteristic 2 is defined by the equation

ea,d : ax2 + y2 = 1+ dx2y2 (1)

where a, d ∈ Fp \ {0, 1} with a 6= d . In the case of a = 1, the
curve is called Edwards curve, which is untwisted. Therefore,
the twisted Edwards curve is a generalization of Edwards
curve. When a = −1 and d = −121665/121666, the curve
is called Edwards25519, which is the Edwards form of the
elliptic curve ‘‘curve25519’’ over Fp, where p = 2255 − 19.
In the case of a = −1, the curve ea,d will be

ed : −x2 + y2 = 1+ dx2y2 (2)
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TABLE 1. List of acronyms and corresponding meanings.

B. ARITHMETIC ON TWISTED EDWARDS CURVE
The addition of the affine points A (x1, y1) and B (x2, y2) on
the curve ea,d is given by the formula [14]

A (x1, y1)+ B (x2, y2) = R (x3, y3)

where

x3 =
x1y2 + y1x2
1+ dx1x2y1y2

,

y3 =
y1y2 − ax1x2
1− dx1x2y1y2

(3)

The doubling of the affine point A (x1, y1) on the curve ea,d
is given by the formula [14]

2A (x1, y1) = R (x2, y2)

where

x2 =
2x1y1

y21 + ax
2
1

,

y2 =
y21 − ax

2
1

2− y21 − ax
2
1

(4)

C. GROUP OPERATIONS IN PROJECTIVE COORDINATES
Projective or Jacobian coordinates are used to avoid the most
expensive modular inversion operation, which is essentially
used in affine coordinate systems. In a projective coordinate
system, each point (x, y) on the curve ea,d is represented in
a triplet form (X ,Y ,Z ) that corresponds to the affine point
(x = X/Z , y = Y/Z ) with Z 6= 0.

The affine point (x, y) can be transformed to the projective
point (X ,Y ,Z ) as

X = x, Y = y, Z = 1 (5)

The projective point (X ,Y ,Z ) can be transformed to the
affine point (x, y) as

(x = X/Z , y = Y/Z ) (6)

The projective form [14] of the curve ea,d is given by the
equation

Ea,d : (aX2
+ Y 2)Z2

= Z4
+ dX2Y 2 (7)

The projective form of the curve ed is given by the equation
Ed : (−X2

+ Y 2)Z2
= Z4

+ dX2Y 2 (8)

The point addition can be performed on the curve Ed as

A(X1,Y1,Z1)+ B(X2,Y2,Z2) = R(X3,Y3,Z3)

where

X3 = Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2)(X1Y2 + Y1X2),

Y3 = Z1Z2(Z2
1Z

2
2 + dX1X2Y1Y2)(X1X2 + Y1Y2),

Z3 = (Z2
1Z

2
2 + dX1X2Y1Y2)(Z

2
1Z

2
2 − dX1X2Y1Y2) (9)

The point doubling can be performed on the curve Ed by

2A(X1,Y1,Z1) = R(X2,Y2,Z2)

where

X2 = (2X1Y1)(Y 2
1 − X

2
1 − 2Z2

1 ),

Y2 = (X2
1 − Y

2
1 )(X

2
1 + Y

2
1 ),

Z2 = (Y 2
1 − X

2
1 )(Y

2
1 − X

2
1 − 2Z2

1 ) (10)

III. PROPOSED HARDWARE ARCHITECTURES
This section presents all algorithms and proposed hardware
architectures for modular multiplication, point addition (PA),
point doubling (PD), and ECPM.

A. MODULAR MULTIPLICATION
Modular multiplication is one of the most time-consuming
arithmetic operations of an ECC processor over a prime field
onwhich the efficiency of an ECPMscheme entirely depends.
Although higher radix modular multipliers offer fewer clock
cycles as well as less computation time to perform modular
multiplication, these require more hardware resources that
increase occupied area. To minimize the area required for
ECPM, a radix-2 interleaved modular multiplier is adopted
to implement the ECPM scheme, which requires n+ 1 clock
cycles to perform modular multiplication of two n-bit inte-
gers. The modular multiplication of the two n-bit integers A
and B over the prime field GF(p) can be defined as

C = A · B mod p

= {b0 · A+ b1 · (21A)+ b2 · (22A)+ . . .+ bn−1
·(2n−1A)} mod p

= {

n−1∑
i=0

bi · (2iA)} mod p (11)
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Algorithm 1 Radix-2 Interleaved Modular Multiplication

Input: A =
n−1∑
i=0

ai2i,B =
n−1∑
i=0

bi2i, p =
n−1∑
i=0

pi2i;

ai, bi, pi ∈ {0, 1}
Output: C = (A · B) mod p;
1. C ← 0;
2. T ← B&‘1’;
3. while T (n− 1 downto 0) 6= 0 loop
4. C ← 2C;
5. if Tn = 1 then //nth bit of T
6. C ← C + A;
7. end if;
8. C ← C mod p;
9. T← T(n− 1downto0)&‘0’;// left-shift operation

10. end loop;
11. return C ;

where

A = (
n−1∑
i=0

ai2i)10 (multiplicand),

B = (
n−1∑
i=0

bi2i)10 (multiplier),

p = (
n−1∑
i=0

pi2i)10 (prime number); ai, bi, pi ∈ {0, 1}.

An efficient algorithm based on iterative addition of partial
product is proposed for the modular multiplication as shown
in Algorithm 1. Figure 2 depicts the proposed modular mul-
tiplier over GF(p) based on this algorithm. In this method,
accumulatorC is doubled at the beginning of each iteration to
perform iterative addition of the successive partial products.
A shift-left register is used to perform synthesizable loop
operation for the left to right bitwise multiplication. To deter-
mine the appropriate end of the loop, a temporary variable T
of n+ 1 bits is used in which T (n downto 1) is precomputed
as the multiplier B and the least significant bit (LSB) of T
is precomputed as 1. One extra bit is added at the LSB to
cope with the completion of the left-shift operation in the case
of b0 = 0. The multiplicand A is added to the accumulator
in each iteration if the most significant bit (MSB) of T
is 1. The content of the accumulator is reduced to modulo p
after each addition. To perform this modular operation, C is
subtracted by the prime numbers p and 2p. As the content
of the accumulator is always less than 3p, subtractions by
p and 2p are enough to confine the content below the value
of p. The subtractions C − p and C − 2p are performed by
adding the 2’s compliment of the subtrahends p and 2p to
the minuend C . The comparisons C ≥ p and C ≥ 2p are
performed by checking the sign bits of the differences C − p
and C − 2p, respectively. At the end of each iteration, T is
shifted to the left by one bit. After n number of iterations,
T (n − 1 downto 0) is shifted to zero value and the content

FIGURE 2. Proposed modular multiplier.

of the accumulator is stored in register ‘Reg C’, which is the
final modular product of the integers A and B. The module
comprises two multiplexers, in which MUX1 is used to keep
the content of the accumulator unchanged if Tn = 0 or add
A to the accumulator if Tn = 1 and MUX2 is used for
performing C mod p. In the proposed architecture, a total of
n+ 1 clock cycles (CC) are required to perform the modular
multiplication, where n clock cycles are for n number of
iterations and one extra clock cycle is to store the final result
in the register. Modular squaring can be performed by taking
the inputs of the proposed modular multiplier identical such
as (A,A) instead of (A,B).

B. ELLIPTIC CURVE GROUP OPERATIONS
Elliptic curve group operations include several arithmetic
modules such as modular adder, subtractor, multiplier, and
squarer that belong to several successive levels for sequen-
tial data flow to perform ECPM. The PA and PD archi-
tectures are designed in projective coordinates. Figure 3(a)
depicts the hardware design for PA based on (9), which has
five consecutive levels that cost twelve multiplications, one
squaring, three additions, and one subtraction denoted as
(12M+1S+4A). Figure 3(b) illustrates the hardware design
for PD based on (10), which has four consecutive levels
that cost fourmultiplications, three squaring, three additions,
and three subtractions denoted as (4M+3S+6A). The point
addition and point doubling formulas for the projective
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FIGURE 3. Proposed hardware architectures for (a) PA and (b) PD.

twisted Edwards curve reported in [14], [15] are modified to
minimize the number of arithmetic modules as well as the
hardware resource requirements. To obtain the shortest data
path and the optimal latency, the architectures are efficiently
balanced and the arithmetic operations are horizontally par-
allelized among the levels. Each multiplication and squaring
requires n + 1 clock cycles, each addition and subtraction
requires one clock cycle to be completed, where n is the
number of bits under operation. The level that contains one
or more than one squaring or multiplication takes n+1 clock
cycles and the level that contains no multiplication or squar-
ing takes only one clock cycle to jump to the next level.
In this way, the latencies across the proposed PA and PD
architectures are 4n+5 and 2n+4 clock cycles, respectively.

C. ELLIPTIC CURVE POINT MULTIPLICATION
ECPM is the pivotal operation of an ECC processor, which is
computationally the most expensive. The underlying opera-
tion of ECPM can be defined as Q = k · P, where P is a base
point on the curve Ed , k is a scalar, which is the secret key,
andQ is another point on the curve, which is the public key.Q
can be obtained by adding P to itself k − 1 times or doubling
P on itself log2 k times if k is even. The point multiplication
can be performed as a sequence of point addition and point
doubling following the binary bit pattern of k . The simplest
and easiest way to perform ECPM is the double-and-add
method [1], as shown in Algorithm 2, in which point doubling
is performed in every iteration, whereas point addition is
performed only when ki = 1. There are two timing and power
consumption profiles in this method: one is only point dou-
bling and the other is point addition following point doubling.
Tracing the power consumption profiles by simple power
analysis (SPA) [18], the binary bit pattern of the secret key
can be easily retrieved as shown in Figure 4; therefore, this
method is vulnerable to SCAs.

Algorithm 2 Double-and-Add Point Multiplication (Left to
Right)

Input: P, k = (
l−1∑
i=0

ki2i)10; ki ∈ {0, 1}, kl−1 = 1

Output: Q
1. Q← P;
2. for i from l − 2 downto 0 do
3. Q← 2Q; // point doubling
4. if ki = 1 then
5. Q← Q+ P; // point addition
6. end if;
7. end for;
8. return Q;

The Montgomery ladder algorithm [19] is used for the
proposed ECPM scheme as shown in Algorithm 3, in which
point addition and point doubling are performed simultane-
ously to make the secret key uncertain. Figure 5 justifies
the SCAs resistance of the Montgomery algorithm based
ECPMby showing its power tracing profile. The initial power
consumption in each iteration is the total power consumed by
both PA and PDmodules because of their parallel operations.
As the latency of point addition is higher than that of point
doubling, point doubling is completed before point addition.
After the completion of point doubling operation, power is
only consumed by the PAmodule. There is no possible way to
guess the bit pattern of the secret key by tracing the identical
power pattern. Figure 6 illustrates the proposed hardware
design for ECPM based on Algorithm 3, which utilizes a
sequential combination of the PA and PDmodules. The initial
inputs of the PA module are computed as P and 2P. The
precomputation of the PD module depends on the (l − 2)th

bit of k, where l is the bit length of k . MUX1 is used to
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FIGURE 4. Power tracing profile of DAA algorithm based ECPM.

FIGURE 5. Power tracing profile of Montgomery algorithm based ECPM.

FIGURE 6. Proposed hardware architecture for ECPM.

select ith bit of k among k0 to kl−1 by log2 l number of select
lines. MUX2 selects the initial input of the PD module as
P if kl−2 = 0 or 2P if kl−2 = 1. An XOR gate is used to
perform ki ⊕ ki−1 that determines when to change the input
of the PD module, where ki is the current operating bit of
k and ki−1 is the upcoming bit of k in the left to right point
multiplication. If the output of the XOR gate is low, no change
of state occurs and the output of the PD module goes to its
input via a feedback loop. Else if the output of the XORgate is
high, change of state occurs and the output of the PA module
goes to the input of the PD module.

The input selection process of the PD module is operated
by MUX3. In both cases, one of the two inputs of the PA
module is its own output via a feedback loop and the other is
the output of the PD module. ‘Reg A’ and ‘Reg D’ are used
to store the intermediate outputs of the PA and PD modules,
respectively. After l − 1 number of iterations, MUX4 selects
the output of the PA module if k0 = 1 or the output of the PD
module if k0 = 0 as the final result. Since the point addition
and point doubling are performed simultaneously and the PA
module requires more clock cycles than the PD module to
complete its operation, the number of iterations, as well as
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TABLE 2. Implementation results of the proposed ECC modules on different FPGA platforms over Fp-256.

Algorithm 3Montgomery Ladder Point Multiplication (Left
to Right)

Input: P, k = (
l−1∑
i=0

ki2i)10; ki ∈ {0, 1}, kl−1 = 1

Output: Q
1. Q1← P;Q2← 2P;
2. for i from l − 2 downto 0 do
3. if ki = 1 then
4. Q1← Q1 + Q2; // point addition
5. Q2← 2Q2; // point doubling
6. else
7. Q2← Q1 + Q2; // point addition
8. Q1← 2Q1; // point doubling
9. end if;

10. end for;
11. return Q1;

the latency of the ECPM, depends on the PA module. Thus,
the latency of the ECPM can be calculated as

ECPMcc = (l − 1)× PAcc + (l − 1)× Rgcc
= (l − 1)× (4n+ 5)+ (l − 1)× 1

= (l − 1)× (4n+ 6) (12)

For l = n,

ECPMcc = (n− 1)× (4n+ 6)

= 4n2 + 2n− 6 (13)

where
PAcc = clock cycles required to perform point addition,
Rgcc = clock cycle required to store PA output in ‘Reg A’.

In the double-and-add method demonstrated in Algorithm 2,
the average clock cycles required for the ECPM can be
calculated as

ECPMcc = (l − 1)× PDcc + (l/2)× PAcc + (l − 1)

= (l − 1)× (2n+ 4)+ (l/2)× (4n+ 5)+ (l−1)

(14)

For l = n,

ECPMcc = (n− 1)× (2n+ 4)+ (n/2)× (4n+5)+ (n−1)

= 4n2 + 5.5n− 5 (15)

The same ECPM design can be implemented with fewer
clock cycles by the Montgomery ladder method than the
double-and-add method, which makes the ECC processor
faster. We take the advantages of high-speed computation
and high resistance against probable SCAs offered by the
Montgomery ladder algorithm for our ECPM module.

IV. IMPLEMENTATION AND SIMULATION RESULTS
The proposed ECC processor is implemented using theXilinx
ISE 14.7 Design Suite software and simulated by the Xilinx
ISim simulator. The simulation results are verified by the
Maple software. All the designs are synthesized, mapped,
placed, and routed on the Xilinx Virtex-7 (XC7VX690T) and
Virtex-6 (XC6VHX380T) FPGA platforms, separately. The
design goal is set to ‘‘Balanced’’ and the design strategies
are set to the default values. The implementation results of
the proposed ECC modules over a prime field of 256 bits are
summarized in Table 2. On the Virtex-7 FPGA, the proposed
modular multiplier, PA, PD, and ECPM modules run at a
maximum frequency of 177.7 MHz. The latencies of the
multiplier, PA, PD, and ECPM modules are 257, 1029, 516,
and 262,650 clock cycles, respectively. To perform modular
multiplication, the multiplier takes 1.45 µs with 177 Mbps
throughput on the Virtex-7 FPGA, occupying 427 slices
equivalent to 1311 look up tables (LUTs). On the same
platform, the PA module takes 5.79 µs with a throughput
of 44.21 Mbps to add two points on the curve Ed , consuming
4459 slices equivalent to 15,619 LUTs. The PDmodule occu-
pies 1801 slices equivalent to 6687 LUTs and takes 2.90 µs
with 88.16 Mbps throughput for doubling a point on the
curve. The final ECPM scheme combines both the PA and
PDmodules, utilizing 8873 slices equivalent to 32,781 LUTs.
It requires 1.48mswith a throughput of 173.2 kbps to perform
single point multiplication for a 256-bit key.

On the Virtex-6 FPGA, all the modules run at a maximum
frequency of 161.1 MHz. The multiplier, PA, and PD mod-
ules take 1.60, 6.39, and 3.20 µs with 160.47, 40.08,
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FIGURE 7. Simulation result of modular multiplication.

FIGURE 8. Simulation result of point doubling.

FIGURE 9. Simulation result of point addition.

FIGURE 10. Simulation result of ECPM.

and 79.93Mbps throughputs, occupying 414, 4339, and 1990
slices, respectively, to perform. To complete single point
multiplication, the ECPM scheme spends 1.63 ms with a
throughput of 157 kbps, utilizing 9246 slices on this platform.
The same designs show slightly worse performance in terms
of speed and area utilization on the Virtex-6 FPGA than on
the Virtex-7 FPGA.

Figure 7 shows the simulation result of the modular mul-
tiplication. ‘a’ and ‘b’ are the inputs and ‘c’ is the output.
The multiplication takes 257.5 clock cycles to be completed,
where 1 clock cycle = 1ns and offset delay = 0.511ns.
The simulation result of the point doubling operation on the
curve Ed is shown in Figure 8, where 518.5 clock cycles
are required to double the point (x1, y1, z1) that makes
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TABLE 3. Performance comparison of the proposed ECPM module with other designs over Fp-256.

another point (x2, y2, z2) on the curve. Few extra clock
cycles than the estimated value are spent because of some
offset delays. Figure 9 shows the simulation result of the
point addition operation, where (x1, y1, z1), (x2, y2, z2) are
the additive points and (x3, y3, z3) is the resultant point.
The addition takes 1030.5 clock cycles. The simulation result
of the ECPM is shown in Figure 10. It spends 262.130k
clock cycles, which is less than the estimated value. The
reason behind this reduction in clock cycles required is that
the ECPM deals with a number of modular multiplication
operations in its interim states. If the multiplier of any interim
multiplication is smaller than 256 bits in size, it requires
less than 129 clock cycles to be completed. This results in
a reduction in the latency of ECPM.

V. PERFORMANCE COMPARISION WITH
SIMILAR WORKS
A performance comparison of our proposed ECPM design
with other available designs for ECPM over Fp-256 is pre-
sented in Table 3. Shah et al. [37] proposed an ECC processor,
adopting an RSD representation for carry free arithmetic that
provides high throughput for ECPM. This processor occupies
65.6K slices on Virtex-6 FPGA and takes 0.47 ms with a
throughput of 546.42 kbps to perform point multiplication

on the NIST recommended prime curve P-256. Although
the processor is faster, it consumes more slices and is less
efficient than our processor in terms of AT product. Their
processor offers high-speed computation, costing more hard-
ware resources, which is not suitable for resource-constrained
devices. The processor reported in [43] is reconfigurable for
different field orders and safe from SPA attacks. It takes 1066
clock cycles for point addition, 1325 clock cycles for point
doubling, and 610k clock cycles for point multiplication,
whereas our processor requires 1029, 516, and 262.7k clock
cycles for the point addition, point doubling, and point mul-
tiplication, respectively. This processor consumes 9.4k slices
with additional 14 DSP slices on Virtex-4 FPGA and requires
29.84 ms with 8.58 kbps throughput to perform ECPM. Our
processor is faster and provides higher throughput than the
processor. Hossain et al. [42] proposed a high-performance
ECC processor, providing both ASIC and FPGA implementa-
tions. Their processor utilizes 11.3k slices on Kintex-7 FPGA
and takes 3.97 ms with a throughput of 78.28 kbps to per-
form ECPM. The processor consumes 1.3 times more slices
and is 2.2 times slower than our processor implemented on
the same series FPGA. The throughput of our processor
is also higher than that of their processor. Moreover, their
processor does not provide any protection against SCAs
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FIGURE 11. Performance comparison in terms of AT product.

as it is based on the double-and-add algorithm in which
point addition and point doubling are performed sequentially.
Asif et al. [26] proposed an RNS-based ECC processor
that performs ECPM on 21 keys simultaneously. Although
their ECPM module provides 10.5 times higher through-
put, it expends 2.7 times more slices and is exactly two
times slower than our ECPM module implemented on the
same FPGA. The major contribution of their work is to
perform ECPM on 21 keys simultaneously providing high
throughput (1816.20 kbps) by taking the advantages of RNS-
based implementation in which the arithmetic modules are
divided into several groups and processed one by one for fast
arithmetic operations.

Liu et al. [31] presented a duel-field ECC processor,
adopting a modified radix-4 interleaved modular multipli-
cation that consumes 12k slices on Virtex-4 FPGA and
takes 12.60 ms to perform ECPM over either a prime
field or a binary field of 256 bits. They provided both
ASIC and FPGA implementations over duel-field showing
power analysis attacks resistance. Compared with their pro-
cessor, our processor is faster and provides higher throughput.
In [39]–[41], Javeed et al. proposed ECC processors over
prime fields that occupy 20.6k, 13.2k, and 35.7k slices on
Virtex-4 FPGA and take 3.91, 5, and 2.96 ms, respectively,
to perform ECPM. Our processor is more efficient in terms
of AT product and provides higher throughput than these
processors. A high-speed RSD-based ECC processor was
proposed by Marzouqi et al. [36]. They adopted a Karatsuba
multiplier for modular multiplication in which each of the
two n-bit operands is split into two n/2-bit segments and
multiplications are performed with the four n/2-bit segments
recursively to compute the product. The processor consumes
8.7k slices on Virtex-5 FPGA and requires 2.26 ms with a
throughput of 113.27 kbps. It offers significantly improved
performance for using RSD-based modular arithmetic in
which addition and subtraction can be performed without

representing 2’s complement. The processor reported in [35]
is almost the same as the processor reported in [36], but it
shows little bit worse performance on the same FPGA.A scal-
able ECC processor was developed by Loi et al. [30], which
supports all five NIST recommended prime curves without
reconfiguring the hardware. This processor occupies 7k slice
with additional 8 DSP slices and 2 BRAMonVirtex-4 FPGA.
It takes 5.46 ms in 993.7 clock cycles with a throughput
of 46.88 kbps. Our processor is faster and better in terms of
both AT product and throughput than the processor.

In [32], Ghosh et al. proposed an SCA-resistant ECC
processor based on the double-and-add-always method,
which consumes 20.1k slices on Virtex-4 FPGA and requires
7.70 ms with 33.25 kbps throughput to perform ECPM.
In particular, they focused on side-channel security but did
not pay enough attention to the processor speed. A flexible
hardware ECC processor was proposed by Ananyi et al. [29]
that can be used for all five NIST recommended prime
curves without reconfiguring the hardware. They used both
the binary and NAF algorithm [1] for scalar multiplica-
tion individually along with a regular multiplier with fast
modular reduction replacing the conventional Montgomery
modular multiplication. On Virtex-4 FPGA, their proces-
sor utilizes 20.8k slices with additional 32 DSP slices and
takes 6.1 ms/6.90 ms to perform ECPM by the NAF/binary
method. The processors reported in [22], [24], [34], [38]
have higher AT products and lower throughputs than our
processor. However, these processors are implemented on
some backdated FPGAs, which are now obsolete. AT product
can be a measure of the efficiency of an ECC processor as
there is a trade-off between time and area. A lower value
of AT product ensures better performance of the processor.
Figure 11 shows the performance comparison of our ECPM
design with the other designs tabulated in Table 3 in terms
of AT product. The AT product of our design is compara-
tively low, which guarantees our design as more efficient for
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FIGURE 12. Performance comparison in terms of throughput.

IoT applications. Figure 12 shows the performance compari-
son in terms of throughput, which is another measure of the
efficiency of an ECC processor. The processor reported in
[26] provides the highest throughput among the processors
enlisted in Table 3 as it operates 21 keys simultaneously.
Owing to the processor’s high relative value, its throughput is
not shown in the same chart. The throughput of our processor
is higher than that of the other designs, except the throughputs
reported in [26] and [37]. It is worth noting that the updated
FPGAs are manipulated to implement our design. The sig-
nificant improvements in area and delay ensure better perfor-
mance of our design. However, due to the implementations
of the described processors on different FPGA platforms,
a fair comparison is not possible. The earlier FPGAs such as
Virtex-5, Virtex-4, Virtex-II-Pro, and Virtex-E are omitted to
implement our proposed ECC processor because of their high
power consumption and having less number of input/output
blocks (IOBs).

VI. CONCLUSION
In this paper, a high-speed, area-efficient, SCA-resistant ECC
processor is developed for fast point multiplication exploiting
Edwards25519 curve with its projective representation. A
radix-2 interleavedmodular multiplier is adopted for modular
multiplication that requires n + 1 clock cycles to multiply
two n-bit integers. Novel hardware architectures for point
addition and point doubling are proposed that require 4n+ 5
and 2n + 4 clock cycles, respectively, to accomplish n-bit
operations. The Montgomery scalar multiplication algorithm
is used to perform ECPM as it offers fast computation with
high resistance against SCAs. All the designs are imple-
mented on the Xilinx Virtex-7 and Virtex-6 FPGA platforms
individually over a prime field of 256 bits. The proces-
sor performs single point multiplication in 262,650 clock
cycles and it takes 1.48 ms with a throughput of 173.2 kbps,

consuming 8,873 slices on theVirtex-7 FPGA. It offers higher
efficiency in terms of area-delay product and throughput
without degrading the security level. Based on the overall
performance analyses, it can be concluded that the proposed
ECC processor can be a good choice for high-speed data
encryption as well as for the privacy and security of resource-
constrained IoT devices.

APPENDIX
RESULTS VERIFICATION
The simulation results are verified by the Maple software as
follows:

Prime:

p := 2255 − 19;

5789604461865809771178549250434395392663499

2332820282019728792003956564819949 (16)

Modular multiplication

a := convert(‘‘A65A36651C61DC9BD9296745053117D

5BED58945ADD1B74575CD36D491EA2B5F’’,

decimal, hex);

7524332452089861728917338471714137590759922

5675997126742903002171622814264159 (17)

b := convert(‘‘D4304B6B328E30EE4DEC94053117D5B

ED7D067DD68DD1EEB790E734DB50B7DC3’’,

decimal, hex);

9597565307977624808446702967590763186385086

6141462094048851336995200614235587 (18)

c := convert(a · b mod p, hex);

1046D9F17DFD67D5B65D6E11B8A016D2969D96

11BBCED1EE6E7F267DF4873C08 (19)
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Curve

Ed : (−X2
+ Y 2) · Z2

= Z4
+ d · X2

· Y 2
; (20)

LHS := (−X2
+ Y 2) · Z2

; (21)

RHS := Z4
+ d · X2

· Y 2
; (22)

d := −
121665
121666

mod p; (23)

3709570593466943934313808350875456518954211387
9843219016388785533085940283555

Projective point

P1(X1,Y1,Z1) :

X1 := convert(‘‘216936D3CD6E53FEC0A4E231FDD

6DC5C692CC7609525A7B2C9562D608F25D

51A’’, decimal, hex);

1511222134953540077250115140958853151145

4012693041857206046113283949847762202

(24)

Y1 := convert(‘‘66666666666666666666666666666666

66666666666666666666666666666658’’,

decimal, hex);

4631683569492647816942839400347516314130

7993866256225615783033603165251855960

(25)

Z1 = 1; (26)

LHS := (−X2
1 + Y

2
1 ) · Z

2
1 mod p;

1086587272079549330507312378769575411096

1843205372397773524691040492703462777

(27)

RHS := (Z4
1 + d · X

2
1 · Y

2
1 ) mod p;

1086587272079549330507312378769575411096

1843205372397773524691040492703462777

(28)

The point P1(X1,Y1,Z1) is on the curve.
Point doubling

P(X2,Y2,Z2)

:= 2P(X1,Y1,Z1); (29)

X2 := (2X1 · Y1) · (Y 2
1 − X

2
1 − 2Z2

1 ) mod p;

22227142146053615383686711456592054533

481723065238328079491086165754688571991

(30)

Y2 := (X2
1 − Y

2
1 ) · (X

2
1 + Y

2
1 ) mod p;

231326128979357639473761188163029369619

45753855592497212527330206034714001367

(31)

Z2 := (Y 2
1 − X

2
1 ) · (Y

2
1 − X

2
1 − 2Z2

1 ) mod p;

477309695254115434863233454915946082009

68822454103728746637676179095643807339

(32)

X2hex := convert(X2, hex);

31241DDB9A7C254AEA224B87B7B0F909886

EC1DDFA71625B7ABA864C18300A57 (33)

Y2hex := convert(Y2, hex);

3324984C6CC933DB69B782FC3AC951F60A47

AA662BBE321C924B2CD95E2D7FD7 (34)

Z2hex := convert(Z2, hex);

6986C5796B577C574098D1FA3B426292EBD3

6100339299D16374A93D0278DE6B (35)

LHS := (−X2
2 + Y

2
2 ) · Z

2
2 mod p;

14257827564153152177618646674144930263

258981471995311157715869811222802398658

(36)

RHS := (Z4
2 + d · X

2
2 · Y

2
2 ) mod p;

142578275641531521776186466741449302632

58981471995311157715869811222802398658

(37)

The point P2(X2,Y2,Z2) is on the curve.
Point addition

P3(X3,Y3,Z3)

:= P1(X1,Y1,Z1)+ P2(X2,Y2,Z2); (38)

X3 := (Z1 · Z2) · ((Z1 · Z2)2 − d · X1 · X2 · Y1 · Y2)

· (X1 · Y2 + Y1 · X2) mod p;

486486965447326892655482177467703806707

00852015464354409478254962863764117893

(39)

Y3 := (Z1 · Z2) · ((Z1 · Z2)2 + d · X1 · X2 · Y1 · Y2)

· (X1 · X2 + Y1 · Y2) mod p;

102233186467548420628471405367836356632

41585183638036131330339830039109727844

(40)

Z3 := ((Z1 · Z2)2 − d · X1 · X2 · Y1 · Y2) · ((Z1 · Z2)2 − d

·X1 · X2 · Y1 · Y2) mod p;

442873371259287912693267726997931746701

69251757745971849161619481968471365865

(41)

X3hex := convert(X3, hex);

6B8E2FBC776B7E13CE4AA95335C6B1F390A

06B8F524BAF4EC23753B1C9EB9985 (42)
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Y3hex := convert(Y3, hex);

169A317C0CBFFF7865588CE7671602170B9D

F112A9F752EEDF75F68803EC7664 (43)

Z3hex := convert(Z3, hex);

61E9BE98A68F5565E79965B0C47B14857CBD

699B053F91018B5F4B631D02D8E9 (44)

LHS := (−X2
3 + Y

2
3 ) · Z

2
3 mod p;

522885066891130133978983003361202017972

03233085082252270359527499222193912400

(45)

RHS := (Z4
3 + d · X

2
3 · Y

2
3 ) mod p;

522885066891130133978983003361202017972

03233085082252270359527499222193912400

(46)

The point P3(X3,Y3,Z3) is on the curve.
ECPM:

Q(X ,Y ,Z )

:= k · P1(X1,Y1,Z1); (47)

k := convert(‘‘F7344B6B328E30EE4DEC94053117D

5BED7D067DD68DD1EFB790E734DB50BF

F8A’’, decimal, hex);

1118136701684496852148517084725671534397

28431793055142389748562888767010766730

(48)

X := convert(‘‘418C35235C43D6DC9EDE83D8416F

DD200F2E1F970BE315CE05B50C4E30C2

DB2C’’, decimal, hex);

2964806049285244060500256493619101320810

8092379879492838096424254541215750956

(49)

Y := convert(‘‘2344076B7DFAE1F494C47BF5E826B

A747140832D18014FEFBFF0D9D680909F49’’,

decimal, hex);

1595114651102521823626575422170809986924

8117732142349431414053770575976898377

(50)

Z := convert(‘‘7D4646C30A3AAF4F6EFB02FA43982

41EA5B914CE13A28964335F7F8347D8453C’’,

decimal, hex);

5666327374795392532911297730501156658928

5004630062187933838000388139120084284

(51)

LHS := (−X2
+ Y 2) · Z2 mod p;

3479564379561153075169248997932189004986

4611059662848206302998766542724113696

(52)

RHS := (Z4
+ d · X2

· X2) mod p;

3479564379561153075169248997932189004986

4611059662848206302998766542724113696

(53)

The point Q(X ,Y ,Z ) is also on the curve.
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