
SPECIAL SECTION ON ADVANCED COMMUNICATIONS AND NETWORKING TECHNIQUES
FOR WIRELESS CONNECTED INTELLIGENT ROBOT SWARMS

Received November 12, 2019, accepted November 29, 2019, date of publication December 9, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958328

Anti-Jamming Communications in UAV Swarms:
A Reinforcement Learning Approach
JINLIN PENG 1, ZIXUAN ZHANG 2, QINHAO WU 3, AND BO ZHANG 1
1Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing 100010, China
2College of Computer, National University of Defense Technology, Changsha, China
3College of Electronic Science, National University of Defense Technology, Changsha, China

Corresponding author: Bo Zhang (bo.zhang.airc@outlook.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 91648204 and Grant 61601486, in part
by the Research Programs of National University of Defense Technology under Grant ZDYYJCYJ140601, and in part by the State Key
Laboratory of High Performance Computing Project Fund under Grant 1502-02.

ABSTRACT Intelligent unmanned aerial vehicle (UAV) swarm may accomplish complex tasks through
cooperation, relying on inter-UAV communications. This paper aims to improve the communication perfor-
mance of intelligent UAV swarm system in the presence of jamming, by multi-parameter programming and
reinforcement learning. This paper considers a communication system, where the communication between
a UAV swarm and the base station is jammed by multiple interferers. Compared with the existing work,
the UAVs in the system can exploit degree-of-freedom in frequency, motion and antenna spatial domain
to optimize the communication quality in the receiving area. This paper proposes a modified Q-Learning
algorithm based on multi-parameter programming, where a cost is introduced to strike a balance between
the motion and communication performance of the UAVs. The simulation results show the effectiveness of
the algorithm.

INDEX TERMS Intelligent UAV swarm, anti-jamming communication, multi-parameter joint programming,
antenna pattern, motion cost.

I. INTRODUCTION
With the rapid development of artificial intelligence, intelli-
gent unmanned aerial vehicle (UAV) is widely used in daily
life [1], [2]. Intelligent UAVs have been used in disaster relief
[3], environmental monitoring [4], marine search, rescue [5]
and other fields. However, the energy constraint of the UAVs
[6], [7], along with the scarcity of spectrum resources and
interference, the communication design within the intelligent
UAV swarm become an important constraint on its practical
application [8], [9].

The communication system of an intelligent UAV swarm
is shown in Figure 1. Firstly, the UAVs are communication
nodes of high mobility, and each UAV may serve as trans-
mitters, relays and receivers. Secondly, UAV swarm demands
multi-channel access and networking in the presence of
jamming, but the omni-directional antenna generally used
for inter-UAV coordination may reduce spectrum efficiency.

The associate editor coordinating the review of this manuscript and
approving it for publication was Hui Cheng.

FIGURE 1. Diagram of communication scenario.

Thirdly, a UAV is usually energy-constrained, which should
be taken into account in UAV communication design.

At present, the UAV systems mainly rely on anti-jamming
techniques such as frequency hopping and spread spectrum
to maintain reliable point-to-point control links between the
ground station and the UAVs, which provide limited data
transmission capabilities due to channel utilization penalties
[10], [11]. These solutions may not support the high-speed
data transmission required in UAV swarms, such as inter-
UAV data consensus and multi-UAV coordination [12].
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Against the background, this paper considered the
joint communication-motion-antenna programming in UAV
swarms to combat jamming [13]. Specifically, autonomous
frequency selection, beam synthesis and motion control in
intelligent UAV swarm are jointly optimized to improve the
anti-jamming capabilities. However, two challenges need to
be addressed. Firstly, it is difficult to capture and model
the effects of complex electro-magnetic environment on
swarm UAV communication system. Secondly, it is challeng-
ing to solve the problem of joint communication-motion-
antenna programming in UAV swarms. Therefore, this paper
is devoted to the design of effective algorithm which may
generate reasonable action policy for intelligent UAV swarm.

In order to address the above challenges, the reinforcement
learning approach is adopted. Firstly, reinforcement learning
does not need to model the complex environment as a whole,
and it only needs to evaluate all candidate actions taken by
the UAVs. Secondly, reinforcement learning is unsupervised
learning so that it directly models and analyzes data for
generating policies. Specifically, a multi-dimensional anti-
jamming reinforcement learning (MDAJRL) algorithm is
proposed, which effectively solves the problems brought by
the environment and its effectiveness is verified by simulation
experiments.

In this paper, a swarm UAV communication system
model is constructed. Specifically, A multi-dimensional
‘‘frequency-motion-antenna’’ parameter space is constructed
to support the decision-making process of the UAV com-
munication system. Then, a multi-dimensional anti-jamming
reinforcement learning algorithm based on energy constraints
is proposed. Considering the limited energy of the UAVs,
an energy constraints module is added, which effectively
improves the decision-making effect. Under the condition
of multiple UAV receivers, the algorithm tunes the antenna
beam for improving the overall communication quality of the
receiving UAVs.

This paper is organized as follows: In Section 2, we review
the recent work related to networked UAV communica-
tion and anti-jamming based on reinforcement learning.
Section 3 gives the system modelling, including the mod-
elling of antenna pattern and spectrum. In Section 4, we pro-
pose MDAJRL algorithm based on joint programming of
multi-dimensional parameters, and introduce a cost module
to restrict the motion of the relay UAV. Section 5 illustrates
the simulation results, which prove the effectiveness of the
proposed algorithm. We conclude our work in Section 6.

II. RELATED WORKS
UAV communication network is widely applied in mil-
itary and civil fields, such as ground surveillance, anti-
jamming, data transmission and other fields. In the research
of UAV anti-jamming communication network, [14] pro-
posed a power control and channel selection method based
on correlation vector regression, which gave the minimum
power of data transmission link. Reference [15] proposed
a power allocation scheme with cooperative anti-jamming

policy to improve the anti-jamming ability of ad hoc network
communication under limited resources. In [16], by optimiz-
ing the transmitting power of communication UAV and jam-
mer, it could improve the confidentiality to the greatest extent.
A comprehensive tutorial of aeronautical ad-hoc communi-
cation is given by [17], summarizing the research in mobil-
ity model, network scheduling and routing. Reference [18]
proposed an adaptive coding and modulation for high-rate
data transmission in aviation communications.

At present, there are some anti-jamming communication
researches based on reinforcement learning. Reference [19]
studied the anti-jamming communication policy under
unknown environment. They used the spectral waterfall as
the basis for establishing theMarkov decision process (MDP)
and achieved spectrum programming under jamming condi-
tions. Reference [20] extended the parameters of communi-
cation system to joint frequency-motion programming based
on a hotbooting deep Q-network. It accelerated the iteration
process and improved the ability of the agent to resist jam-
ming. Reference [21] designed a deep reinforcement learning
method for heterogeneous information fusion and realizes
intelligent anti-jamming in high frequency band. Reference
[22] proposed a multi-agent cooperative anti-jamming algo-
rithm. It could not only effectively avoid external malicious
jamming, but could also deal with the interference between
users. Reference [23] used the broadband spectrum sensing
capability of cognitive radio to accelerate the learning process
of reinforcement learning, and achieved a better policy set
than traditional Q-Learning. Reference [24] proposed a real-
time reinforcement learning algorithm based on Q-Learning,
which achieved better real-time policy by using broadband
spectrum sensing and greedy policy.

Most research of UAV ad-hoc network considered power
allocation, adaptive coding and modulation according to mit-
igate jamming from the environments, which achieve better
communication quality and data transmission rate. In the field
of anti-jamming research based on reinforcement learning,
most researchers built Markov decision process based on
feedback of electromagnetic environment to facilitate pro-
gramming in the spectrum domain. Some studied the opti-
mization of learning speed, which improved the efficiency
of iteration [25]. Some considered the programming of geo-
graphic parameters and used the motion of UAVs to optimize
the model [20], [26].

In summary, the joint programming of multi-parameters
in UAV communication systems is not fully studied in the
literature. Many of the above literatures only regard spec-
trum or power allocation as the optimization objective, while
the location of the agent and other parameters are not fully
used, hence limiting the decision-making and anti-jamming
performance.

III. SYSTEM MODEL
A. MODELING BACKGROUND
This paper considers the intelligent programming of com-
munication network composed of UAV swarms and ground
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FIGURE 2. Grid modeling of the system.

base stations under jamming conditions. In this scenario,
the communication system is composed of a ground base
station, a relay UAV and a UAV swarm. The communication
system is jammed maliciously by adversarial jammer UAVs.

The above scenarios are modeled as shown in Figure 2.
In order to quantify the parameters of each agent conve-
niently, grid modeling is introduced, as shown in Figure 2.
The position of the agent is represented by two-dimensional
coordinates [x, y], and the beam pointing is represented by
the azimuth angle shown in the Figure 2. The ground base
station, the relay UAV and receiver UAV swarm constitute the
communication system. Its task is to transmit the data from
the ground base station to the relay UAV (communication link
1), and then extract the spectrum from the relay UAV and
forward it to the receiver UAV swarm (communication link
2). It is assumed that the direct link is negligible due to high
pathloss. The frequency bands used in the two transmission
processes are different, so there is no problem of mutual
interference.

The ground base station is fixed and its transmitting fre-
quency is tunable. The relay UAV moves in a certain area.
Its transmitting frequency, beam pointing, mainlobe width
and position are tunable. After receiving signal from the
ground base station, the relay UAV filters and forwards the
signal in the transmitting signal band, and transmits the signal
to the receiver UAV swarm in the new band. The receiver
UAV swarm is composed of multiple UAVs, and the swarm
distributes into a receiving area of certain shape.

There are two types of jammers. The fixed jammer is the
long-distance ground-based jamming equipment. Its position
and antenna mainlobe width remain unchanged, and its fre-
quency and beam pointing are tunable. The fixed jammer can
track and jam the relay UAV. The mobile jammer is deployed
over an UAV, which may adapt the frequency and position,
while keeping the beam pointing and mainlobe width. The

TABLE 1. Tunable parameter list of agents.

mobile jammer only jams the receiver UAV swarm. The
tunable parameters of the above agents are given in Table 1.

In the case of malicious jamming, the communication
system enables multi-parameter decision-making, so that
each receiver UAV may receive signal with better quality.
To ensure the communication quality for every UAVs in
the swarm, the UAV formation is essentially different from
the common channel power allocation model. In traditional
channel power allocation research, a channel gain is often
allocated to each channels and its policy is to adjust chan-
nel gain parameters under different jamming modes. In this
paper, the aim is to improve the signal-to-interference power
(SIR) of the whole communication system by combining
the three dimensions of ‘‘frequency-motion-antenna’’. Since
the shape of the UAV swarm formations may be irregular,
a certain number of receivers are arranged in this scenario,
and their average SIR level represents the communication
status of the swarm.

B. ANTENNA PATTERN MODELING
Antenna pattern refers to the pattern of antenna radiation
intensity distribution with spatial angle. Considering that
the relay UAV mainly carries small phased array antenna
(uniform linear array), according to the general theory of
phased array antenna, the pattern of uniform linear array is
as follows:

E(θ ) =

∣∣∣∣∣ 1N sin[N2 (
2π
λ
d1 sin θ − ϕ)]

sin[ 12 (
2π
λ
d1 sin θ − ϕ)]

∣∣∣∣∣ (1)

where N is the number of elements, d1 is the spacing of
elements, ϕ is the phase difference of elements, λ is the oper-
ating wavelength, and the corresponding carrier frequency
is f . Since the radiation energy of phased array antenna
pattern is generally concentrated in the mainlobe and the
first sidelobe, in order to simplify the modeling process,
the pattern is approximated by the sinc function of y =
sin(ux)/ux. Figure 3 shows the comparison of the true pattern
and the approximate pattern under the conditions of N = 70,
d1 = 1cm, f = 2.4GHz, u = 1.8π .
It can be seen that the sinc function has good approxi-

mation in the range of mainlobe and first sidelobe. There-
fore, the sinc function is used to model the antenna pattern.
Because the pattern with wider mainlobe radiates more
energy, it is necessary to restrict the pattern energy of antenna.
All antenna patterns are normalized according to the antenna
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FIGURE 3. Comparison of true and approximate patterns.

pattern energy when the zero power mainlobe width is 30◦.
That is, when the antenna mainlobe is wider than 30◦, the
maximum value of the pattern is less than 1.0, otherwise it is
greater than 1.0.

IV. ALGORITHM DESIGN
Based on the system model of Section 3, this section
designs a reinforcement learning algorithm to solve themulti-
parameter optimization in UAV communication system.

A. PROBLEM FORMULATION
At present, reinforcement learning is an important anti-
jamming method, which does not need to model the environ-
ment. It is to produce correct policies through the interaction
between agents and environment where the reward suggests
the feedback from environment to agents. The purpose of
reinforcement learning algorithm in our communication sys-
tem is to generate the adaptive policies given the jamming
form, so as to maximize the SIR of the whole receiving area.
Therefore, it is necessary to set up a reasonable reward stan-
dard according to the system topology. Thus, the calculation
method of SIR is given first.

Since the continuous pulse in time domain can be regarded
as a continuous rectangular window function, its spectrum
can also be regarded as a sinc function. When designing the
spectrum, we consider that the width of the mainlobe of
the spectrum is the zero-power bandwidth of the signal, and
the central angle of the mainlobe is the position of the current
carrier frequency. The signal transmission process is that the
relay UAV receives the spectrum transmitted by the ground
base station and the fixed jammer at the same time. The relay
UAV extracts and forwards the two spectrums according to
the range of the transmitting signal band. The receiver UAV
swarm receives the converted signal forward by the relay
UAV and the signal from mobile jammer together. Then the
receiver UAV swarm calculates the SIR of the signal within
the transmitting band of relay UAV. The parameters of each
agent are shown in Table 2.

The instantaneous spectrum of communication signals
received by a receiver UAV can be expressed by:

Prt = StPtLtF1Rg1Rg2Lr (2)

TABLE 2. The parameters of each agent.

The instantaneous spectrum of jamming signals received
by a receiver UAV can be expressed by:

Prj = Sj1Pj1Jg1Lj1F1Rg1Rg2Lr + Sj2Pj2Jg2Lj2 (3)

Formula for calculating SIR in passband of a receiver UAV
can be expressed by:

SIR = 10 log 10(F2Prt/Prj) (4)

The sum of SIR of the receiver UAVs will be used as
reward in reinforcement learning, which reflects the overall
level of communication quality in receiving area. In order to
show the signal transmission process more clearly, we give
the spectrums of the relay UAV and a receiver UAV at a
certain time. In Figure 4, the spectrum transfer diagrams are
plotted, given the carrier frequency range of communication
link 1 is 2.35-2.4 GHz and that of communication link 2 is
2.4-2.45 GHz. Figure 4 (a) is the spectrum received by the
relay UAV, and Figure 4 (b) is the spectrum received by the
receiver UAV.
State and action are important parameters in reinforcement

learning. Usually an agent takes an action and reaches a
certain state, so that the action is usually a process quantity.
In this problem, the cost of changing parameter in commu-
nication systems is largely unrelated to process volume (e.g.,
frequency). Therefore, the combination of jamming parame-
ters at each time is regarded as a state, and the combination
of communication parameters at each time is regarded as an
action.
In this problem, the decision-making process of communi-

cation system has obvious Markov property, that is, no after-
effect. Therefore, MDP can be used to construct system
decision-making model to assist agents in making optimal
decisions.
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FIGURE 4. Spectrum transfer diagram: (a) spectrum received by relay
UAV; (b) spectrum received by a receiver UAV.

In the decision-making process of an agent, a standard
Markov decision-making process can be described by a
quaternion shown in (5).

M = (S,A,Psa,R) (5)

S : represents a set of states
A : represents a set of actions.
Psa : represents the state transition probability matrix of the

system.
R : In the decision-making process, there is S × A→ R.

In this case, R is used to represent the reward
function.

B. MULTI-DIMENSIONAL ANTI-JAMMING
REINFORCEMENT LEARNING ALGORITHM
This paper considers Q-learning algorithm as the basic frame-
work to design the algorithm. The features of Q-Learning
are as follows: Firstly, Q-Learning is to solve the optimal Q
value by directly solving the bellman optimal equation, rather
than to choose the Q value of the optimal policy among the
infinite policies π . Secondly, by incremental improvement,
Q-Learning can achieve policy improvement. Thus, learning
from any state can be realized, which can converge to the
optimal value function.

In our UAV communication system, the combination of
jammer parameters constitutes the environment. The agent
here refers to the communication system. S represents the
overall state of the communication system. A represents the

combined action of the communication system in the three
dimensions of ‘‘frequency-position-antenna’’. Psa matrix is a
full-1 matrix. R value represents the reward of the algorithm
after taking an action in a certain state. The communication
policy and jamming policy of all combinations are used to
form the R table.
R-Table Computing Module: For each combination,

the SIR is calculated according to (4) and then recorded in
the R table. Usually, R table is a combination of different
states and actions. In this scenario, each time step (or the
corresponding jamming policy) is regarded as a state, and the
communication policy to be adopted at the current moment is
regarded as an action to construct the R table.
Policy Iteration Module: After the R table is generated and

energy cost added, the basic Q-Learning algorithm is used
to learn the jamming scenarios within 10 steps. The iterative
refresh formula is as follows:

Q(st , at )←Q(st , at )+α[rt+1+λmax
a
Q(st+1, at )−Q(st , at )]

(6)

Among them, α is the learning rate and λ is the discount
factor, which is used to describe the expected sum of multi-
step rewards. The policy generated by the algorithm at each
time step is regarded as the current action, and R table is
accessed according to the combination value of (s, a).
Cost Constraint Module: This module is included in Policy

Iteration Module. Because the current R table does not con-
sider the motion range of the relay UAV in the two consecu-
tive time steps, so the relay UAV may move in a wide range.
For example, in order to avoid jamming better, the relay UAV
may move from the leftmost to the rightmost in the adjacent
time. However, this is not realistic as the motion speed and
energy carried by UAV is limited. Therefore, we introduce
an energy cost constraint module, whose main function is
to measure the cost allocation problem in multi-dimensional
parameter programming. Its core idea is to use the following
cost factor ctotal to restrict reward when Q-Learning accesses
R value.

Specifically, the modified Q-Learning algorithm calculates
the reward multiplied by the current cost factor ctotal at each
step of each iteration. Parameters are specified as follows: c1
represents the transmitting frequency cost of ground station.
c2 represents the transmitting frequency cost of relay UAV.
c3 represents beam pointing cost of relay UAV. c4 represents
mainlobe cost of relayUAV. c5 representsmotion cost of relay
UAV. ctotal is determined by the following equation:

ctotal = 0.025c1+0.025c2+0.025c3+0.025c4+0.9c5 (7)

For c1, c2, c3 and c4, they are 0.95 if the current action
changes from the previous time step. They are 1 if the current
action remains unchanged. For c5, it is 0.95 if the motion
range of relay UAV is less than 3. It is 0.01 if the motion
range of relay UAV is not less than 3. In practice, the values
of the cost factorsmay be tuned according to the specificUAV
platforms. In this paper, the cost of relay UAVmotion is set to
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TABLE 3. The Pseudocode of MDAJRL algorithm.

90%, and the other four parameters are set to 2.5%. These five
parameters are only for simulation experiment. In the actual
situation, these need to be measured based on the real agent,
and the proportion is consistent since the energy consumption
of UAV motion far exceeds that of communication circuit
reconfiguration.

In summary, the design overview of the MDAJRL algo-
rithm is given in Figure 5. First, the algorithm calculates
the R value according to the underlying environment of the
communication system, and stores the R value in the R table.
Second, the algorithm iterates policy according to R table,
in which cost constraint module is included. Finally, the algo-
rithm generates the policy according to the final Q table.
The pseudocode of the algorithm is as in Table 3:

V. SIMULATION RESULTS
We give the range of optional parameters for each agent in
the experimental group first. In order to describe the topology
between agents in the experiment more clearly, we give the
schematic diagram of the system in Figure 6. On the basis of
grid modelling in Figure 2, the position and beam pointing of
each agent are depicted.

The range of carrier frequency of ground base station is
from 2.35 to 2.39 GHz. The moving area of relay UAV is
discretized into 9 coordinates. The range of beam pointing of
relay UAV is from 48◦ to 132◦. The range of carrier frequency
of relayUAV is from 2.41 to 2.45GHz. The range ofmainlobe
of relay UAV is from 40◦ to 60◦.

A. EXPERIMENTAL GROUP 1 (EFFECTS OF SWARM
TOPOLOGY)
The purpose of this experiment is to give the results under
symmetrical and asymmetrical topology of receiver UAV

FIGURE 5. Structure diagram of MDAJRL algorithm.

FIGURE 6. Schematic diagram of the system.

swarm. When the topology of receiver UAV swarm is sym-
metrical in topology (group A1), the beam of relay UAV
points to the geometric center of the UAV swarm by default.
Because there are fewer combinations of relay UAV policy at
this time, the algorithm will generate policies in a relatively
short time. When the topology of receiver UAV swarm is
asymmetric (group A2), the beam pointing of relay UAV will
be determined by the policy generated from the algorithm.
More computational time is needed to generate the correct
policy.

1) SYMMETRICAL RECEIVER UAV SWARM
In this experiment, a symmetrical receiving region is con-
structed, which is shown in Figure 7. The beam pointing of
the relay is always the geometric center of the receiving area.
In this way, the beam pointing of the relay UAV is related to
the location of relay UAV, thus greatly reducing the iteration
time required by the algorithm.

The time sequence diagram is Figure 8. The dots in the
figure represent the positions of each agent. Lines represent
the 3dB width range of the agent antenna. Frequency chart,
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FIGURE 7. The distribution of receiver UAV swarm in group A1.

cost curve chart and receiver SIRs are shown in Figure 9,
where we also generate random policy and default policy to
compare with the experimental one.

Random policy refers to the selection of 10 groups ran-
domly from the combination of communication policies with
SIR greater than −30 dB. The default policy refers to the
combination of policies adopted by the ground base station
and the relay UAV without knowing any prior information of
the receiver UAV swarm.

In this experiment, the default policies are set as follows:
carrier frequency of ground base maintains at 2.37 GHz.
Location of relay UAV is fixed and its beam swings back and
forth within the range from 63◦ to 117◦(azimuth). The carrier
frequency of relay UAV maintains at 2.43 GHz. Mainlobe of
relay UAV maintains at 50◦.
The time sequence diagram in Figure 8 displays the main-

lobe policy and motion policy of each agent. It can be seen
that the trend of relay UAV motion is affected by the change
of the beam scanning of the fixed jammer. It shows the trend
of ‘‘driving’’ by the beam of fixed jammer, moving from the
left to the right. For antenna policy of relay UAV, the accuracy
of beam pointing plays a decisive role in the overall SIR
level of the receiver UAV swarm, and the energy efficiency
depends onwhether themainlobe width is well attached to the
receiver UAV swarm. Because of the energy conservation of
antenna pattern, the radiation of mainlobe will be weakened
when wider mainlobe is used. If the mainlobe is too narrow,
it cannot cover all receiver UAVs. From Figure 8, the antenna
of relay UAV may fit the receiving area by selecting a proper
mainlobe width, where the effectiveness of UAV antenna
programming is illustrated.

The frequency chart shown in Figure 9 (a) proves the
effectiveness of the frequency policy. It can be seen that the
communication frequency and the jamming frequency keep
a good isolation at each time. From the 7th-8th frames of the
sequence diagram, it can be seen that the correct policy cannot
be generated by relay UAV motion at these two moments,
but the jamming can still be avoided by frequency selection.
It shows that in the multi-dimensional programming model
and algorithm established in this paper, each agent takes
advantage of the degree of freedom.

Although Figure 9 (a) shows that the policies in the
frequency domain can avoid the jamming frequency well,
according to the spectrum modeling shown in Figure 4,
the agent cannot completely avoid the jamming spectrum

FIGURE 8. The time sequence diagram of experimental group A1.

in the frequency domain. This is because in the real scene,
the signal is usually finite in time domain. Based on the theory
of signal processing and linear system, the signal must be
infinite in frequency domain. Thus, the spectrum components
may also be outside the passband. After introducing the
motion dimension, the agent may achieve a higher SIR by
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FIGURE 9. Simulation results of group A1: (a)Frequency chart (b) Receiver SIR contrast chart (policy with/without relay
UAV motion) (c) Cost curve (d) Receiver SIR contrast chart (policy of MDAJRL) (e) Receiver SIR contrast chart (random
Policy) (f) Receiver SIR contrast chart (default Policy).

selecting the location where the antenna radiation of jammer
is weak. This result is shown in Figure 9 (b), which sug-
gests the UAV motion may contribute to a SIR improvement
of 4-5 dB.

Cost curve shown in Figure 9 (c) proves the effectiveness
of the designed algorithm, and also reflects the minimum
number of iterations required for convergence. It can be seen
that in the initial stage of iteration, the value of ctotal in the
initial stage is small, because the UAV policy is uncertain
and the energy consumption is large when it adopts large
moving pace. This cost is computed into the Q value table
by R value access link in MDAJRL algorithm. In the process

of continuous learning, agents grasp the influence of spatial
scale on relaymotion, and gradually restrain their ownmotion
until the balance between motion cost and SIR is achieved.
As the number of iterations increases, the value of cost factor
ctotal becomes higher, and converges when it reaches about
0.95. There are six curves in Figure 9 (d) (e) (f) respectively,
which represent the trend of SIR of six UAV receivers in
the swarm over time. Compared with the random policy and
default policy shown in Figure 9 (e) and (f), the receiver SIR
contrast chart shown in Figure 9 (d) suggests that the current
communication policy improves the overall SIR level in the
receiver UAV swarm zone.
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FIGURE 10. The calculation time of different scales and iteration times.

In order to quantify the complexity of R table calculation
and policy iteration, we give the computational time required
by different scales and iterations times under the current
experimental group conditions. R table calculation is realized
by MATLAB (version of 2014a), and policy iteration is real-
ized by Pycharm (version of 2018.3.5). We use Intel (R) core
(TM) i5-8300h CPU @ 2.30ghz processor, and the operating
system is Windows 10. The results are shown in Figure 10.
The scale in Figure 10 (a) refers to the number of policy
combinations jointly determined by transmission policies and
jamming policies, which reflects the problem complexity.
The results show that the computational time grows linearly
with the problem scale and number of iterations.

2) ASYMMETRICAL RECEIVER UAV SWARM
Compare with experimental group A1, the area of receiver
UAV swarm is set to irregular arrangement, as shown in
Figure 11. In this experiment, the beam pointing of the relay
UAV is no longer determined solely by the location of relay
UAV, but is generated according to the MDAJRL algorithm.
Other setting remains unchanged. Thus, the number of com-
munication policy combinations is greatly increased. The
algorithm needs longer operation time. For simplicity, we no
longer give time sequence diagram here.

The result of experimental group A2 is shown in Figure 12.
The frequency chart is given in Figure 12 (a), which
proves the effectiveness of frequency programming.

FIGURE 11. The distribution of receiver UAV swarm in group A2.

In Figure 12 (b), the convergence of the algorithm is proved
by the cost curve. Since the number of communication policy
combinations has changed from 1125 to 10125, the number
of iterations has greatly increased. The number of iterations
required for algorithm convergence is about 9 times as much
as that in experimental group A1, and the running time has
also increased to 9 times as much as that in experimental
group A1. It consumes more computing time and requires
higher computational power. In practical use, the program-
ming method can be flexibly selected according to the actual
situation of the task.

The setting of default policy is the same as that in exper-
imental group A1. Compared with the random policy and
default policy shown in Figure 12 (d) and (e), the SIR at
the receiver UAVs are shown in Figure 12 (c) proves that
MDAJRL algorithm can still generate correct policy of relay
UAV when the programming of relay UAV beam pointing is
independent.

B. EXPERIMENTAL GROUP 2 (EFFECTS OF ANTENNA
PATTERN)
In this group, we set the antenna of relay UAV to omni-
directional to examine the effects of antenna pattern. The
conditions are the same as those in experimental group A1.
The result of experimental group B is shown in Figure 13.
Compared with Figure 9 (d), the SIR of the receiver in this
group decreases by 6-8 dB on average, due to the waste
of energy dispersed on non-intentional directions. From the
results, it can be seen that a well-tuned directional antenna
used in the relay UAV may concentrate energy and improve
the communication efficiency.

C. EXPERIMENTAL GROUP 3 (EFFECTS OF MOTION COST)
In this experimental group, we remove the cost constraint in
MDAJRL algorithm to illustrate the effectiveness of motion
constraints on relay UAV. The other conditions are the same
as those in experimental group A1.

The cost curves of experimental group A1 and C are shown
in Figure 14. Compared with the result of A1, it can be seen
that without cost constraints, the algorithm canmake the relay
UAV move in a wide range. Thus, the cost curve cannot be as
stable as that in group A1, which is almost above 0.9 after
1.6× 105 iteration times.
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FIGURE 12. Simulation results of experimental group A2: (a)Frequency chart (b) Cost curve (c) Receiver SIR contrast
chart (policy of MDAJRL) (d) Receiver SIR contrast chart (random policy) (e) Receiver SIR contrast chart (default
policy).

FIGURE 13. SIR at each receiver UAV using omnidirectional antennas.

In order to show the motion of the relay UAV under the
condition of no cost constraint, we show the moving range
of each time frame (compared with last frame) in Figure 15.

FIGURE 14. Cost curves for MDAJRL with motion costs (Group A1) and
without motion costs (Group C).

We give the coordinates of relay UAV in 10 frames in Table 4.
It can be seen that at frame 4 and 10, the relay UAV adopts
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TABLE 4. Trajectory of relay UAV.

FIGURE 15. Moving range of relay UAV in each time frame.

the policy of large-range motion rather than the incremental
motion in group A1 or A2.

VI. CONCLUSION
This paper focuses on the multi-dimensional programming
of complex UAV communication networking. A frame-
work of UAV intelligent communication system based
on ‘‘frequency-motion-antenna’’ is established, and various
parameters are set for each agent to programme.We regional-
ize the receiver UAV swarm to reflect the average SIR level of
a particular shape area. Based on the limited energy of UAV,
the reward is constrained by 3 dimensions, thus the existing
Q-Learning algorithm is improved. The simulation results
show that the policy generated by theMDAJRL algorithm can
make the antenna of relay UAV fit well on the two parameters
of beam pointing and mainlobe. The SIR of the receiving area
can also be improved by the ‘‘frequency-motion-antenna’’
joint programming. It provides a new idea for UAV anti-
jamming communication in complex scenarios.
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