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ABSTRACT Model predictive control (MPC) is the result of the latest advances in power electronics and
modem control. It is regarded as one of the best techniques when it comes to handling of nonlinearities in
the intrinsic model of induction motor (IM). Conventional MPC utilizes weighting factors in the objective
function that are tuned after rigorous experimental work which can be improved by utilizing the more mature
intelligent optimization techniques like NSGA-II etc. In this study, the weighting factor optimization for
the conventional MPC control of IM based on NSGA-II with TOPSIS decision-making criteria is studied.
A control algorithm is designed, and an experimental test setup is made to obtain the results of this intelligent
MPC which are compared with conventional MPC based on some performance indices like torque and flux
ripple, switching frequency loss etc.

INDEX TERMS DTC, dynamic inductionmotormodel, FOC, finite set controlmodel non-dominated sorting
genetic algorithm, predictive control, TOPSIS.

I. INTRODUCTION
The fundamental difference of electrical drive systems to
mechanical systems is the ease of control, their spontaneous
startup and fully-loaded with a simple command from even a
remote location. During the last few decades, developments in
the fields of power electronics, electric machines, and control
theories have made AC drives more viable and inexpensive
when compared in terms of drive overall performance and
cost to DC drives [1]. Among various types of AC machines,
the asynchronous machine (also called induction motor) is
the most used machine in industry, it is more robust, reliable,
efficient and low cost compared to other machines (DC &
synchronous machine) for similar applications. Increasing
concerns about the energy crisis, as well as environmental
pollution, significantly promote the development of envi-
ronmentally friendly electric-drive vehicles (EDVs) [2]–[4]
and wind energy conversion systems (WECSs) [5], which
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make the IMmore promising. Almost 11%of vehicle-traction
motor manufacturers supply IM and about 6% produce both
PMSMs and IMs. Under such circumstances, it is required to
develop novel control schemes specifically for the IM-based
applications to improve performance, enhance reliability,

Typically, the mainstream control schemes for IMs can
be categorized in three ways: scalar control, field-oriented
control (FOC), and direct torque control (DTC) [6].

Scalar control, also known as v/f control, is the
general-purpose AC motor drives control used in industrial
applications. In this scheme, the speed of AC machine is
regulated by adjusting the magnitude versus frequency ratio
of the stator voltage vector (VV) to maintain the rated air-gap
flux of the electric machine. Three-phase reference voltage
is converted to inverter gate signals by using a modula-
tor. This control law is based on the steady-state machine
model that results in poor transient behavior of the drive
also because of the absence of feedback loop the direct
electromagnetic-torque control becomes impossible. How-
ever, there is no denying that scalar control has several
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advantages, such as simple implementation, low cost, and
sensor-less motion. In addition, IM drives with scalar control
produces satisfactory steady state response, making them
suitable for low power rating applications, such as pumps and
fans.

Before FOC (also named vector control or decoupled-
current control) was developed, motor control engineers had
been plagued by a problem for years: Is it possible to control
an AC machine like a DC machine, i.e., can the electro-
magnetic torque and excitation flux be decoupled and con-
trolled, respectively? This problem was not addressed until
field-oriented control was proposed in the late 1970s. It has
been reported in literature that the way torque is produced
in both AC and DC motor is rather similar [1]. The basic
principle of the FOC is to converter the three-phase currents
of an AC machine, by using Park transformation, to the
orthogonal decoupled components of current correspond-
ing to torque and flux allowing the independent control of
field-magnetizing flux or the dynamic response of torque [7].
Following this control scheme, the dynamic response of the
electromagnetic torque of AC machines is as fast and pre-
cise as that of separately excited DC machines [6]. With
the rotor speed information, the FOC motor drive system
achieves accurate speed control with good dynamic response.
However, compared with scalar control and DTC, the FOC is
much more complicated; and accurate position feedback is
required.

DTC was initially proposed by a German engineer,
Depenbrock [8], and two Japanese scholars,
Takahashi and Noguchi [9], in the 1980s. Even though
DTC was proposed after FOC, it is regarded as the most
ground-breaking control scheme for AC drives also an able
substitute for FOC [10]. Contrary to FOC, DTC selects
stator flux and electromagnetic torque as two decoupled
control parameters to control respective quantities directly
without controlling the middlemen, e.g., the armature cur-
rents. The advantages of DTC are simple implementation,
fast dynamic torque response and invariance to disturbances
or parametric variations [1]. The dynamic response of
electromagnetic-torque for a DTC drive is almost 10 times
quicker than other AC drive systems. In conventional DTC,
for each control cycle, an appropriate voltage vector is
selected from the all intrinsic vectors of the inverter in
accordance to the two control outputs of hysteresis con-
trollers (comparators) to generate gate signals for the inverter.
This feature leads to the drawbacks of irregular torque and
flux pulsations together with additional harmonic losses.
Therefore, reducing the torque and flux ripple levels of the
conventional DTC system while retaining its intrinsic merits
has become a subject of intense research [11].

In contrary to these mainstream control techniques there is
a growing more efficient control technique (based on the dis-
crete model of induction motor) known as Model Predictive
Control. In this paper, the performance of finite control set
model predictive torque control (FCS-MPTC) of three-phase
induction motor (TPIM) fed with three leg six switch inverter

(B-6 inverter) is studied through simulations. The idea is
to optimize the weighting factors for the cost function in
the conventional FCS-MPTC for better performance. The
proposed technique leads to reduced input phase current,
torque and flux ripple also improves the switching frequency
losses.

The remainder of this paper is structured as follows:
Section II brief literature overview of MPC section III
describes the discrete model of the induction motor
used for conventional MPC. Section IV briefly intro-
duces the B-6 inverter and its SV control architecture.
Section V and VI are dedicated to MPC control and the pro-
posed optimization strategy. The results obtained are dis-
cussed in Section VII using tabular and pictorial illustrations.
Finally, last section concludes the paper.

II. LITERATURE REVIEW OF MPC
In the literature, there have been a lot of attempts to improve
the performance of the IM drive. The major problem with the
DTC is the steady state torque ripple. Historically, a great
amount of improved DTC techniques has been developed
from various perspectives to suppress the ripple levels and
lower the demand on the hardware, as well as the sampling
rates. The basic idea is to increase the number of available
voltage vectors to better correct the errors of torque and stator
flux magnitudes. One effective technique for ripple reduction
is to use the SVPWM, commonly used in the FOC-based
three-phase motor control systems, into the DTC [12]. The
investigated SVM-DTC technique in [13], first acquired ref-
erence voltage in synchronously rotating frame of reference
and then by using inverse park transformation, transformed
it into stationary frame of reference, while in [14], direct
stationary frame of reference values of voltage reference is
used with no stator flux magnitude PI controller. The stator
flux is usually estimated in DTC by using pure integrator
which results in DC drifts because of non-zero initial flux of
the IM, As far as FOC is concerned, a cascaded structure of
two control loops, and outer loop for speed and an inner loop
for current, is used which limits the use of high switching fre-
quency especially desired for high power drive applications
that ultimately reduced the dynamic response of the FOC
during speed variations. The precise estimation of the flux in
required for FOC. Model reference adaptive system (MARS)
and Kalman filter based method has been utilized in [15],
[16] for flux estimation which increases the computational
complexity of the drive

In [14], the model predictive DTC calculates the future
torque states associated with all of the available voltage
vectors in the next time interval and then an optimal
voltage-vector is chosen based on the outcomes subjected
to a performance-oriented objective function. Sliding mode
observers (SMO) has best serves the purpose in [17]. Because
of the simple implementation and robustness of SMO, it has
been widely accepted for flux estimation, but the chattering
problem associated with SMO degrades the overall drive
performance.
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Furthermore, MPC techniques are simple and based on
instinctive formulation and are widely used for multi-variable
nonlinear systems because of its ability to handle the con-
straints easily and effectively. Although MPC require large
calculation and in the past, it was used solely for the pro-
cess having a large time constant especially in chemical and
process control engineering applications [18], [19], but with
the latest advent in power electronics devices along with
recent capable micro-processors have made it possible to use
MPC in motor drives [20], [21]. The MPC generates, at each
sampling moment, a control law from the minimization of
a cost function, which takes into account the error between
output prediction and future references. Usually in the cost
function, terms are added that allows to adjust the effort of
control and also improves numerical stability. Another feature
that makes MPC attractive is the possibility of explicitly
dealing with the restrictions in formulation of control [19].
Several variations ofMPC have been reported in the literature
for motor drives [22], [23] that can be classified based on
optimization methodology, prediction horizon and the cost
function as shown in Figure 1.

FIGURE 1. Classification of MPC.

Based on optimization methodology, in classical MPC,
the result of optimization problem is the converter output
voltage which later modified to get the required gating pulses,
whereas in FCS-MPC [24], the discrete possible voltage
vectors associated with the converter are tested in a cost
function, and the minimum cost associated to a voltage vector
is selected thereby giving the pulses directly. In terms of
prediction horizon, long prediction horizon MPC predicts the
future states for more than two steps i.e. Np > 2 (number
of predictions) [25], while in short prediction horizon MPC,
only the next future state is predicted. As far as classifica-
tion based on cost function is concerned, there are many
trends that have been reported in literature. Predictive current
control (PCC) [24], [26]–[28] and Predictive torque control
(PTC) [29]–[31] are the most general classification in terms
of cost function. In PCC, cost function is composed of min-
imization of the error between stator currents, whereas in
PTC, cost function evaluates minimum of the error in the
torque and stator flux with respect of the reference values.
Cost function can be augmented to include more goals like
minimum switching frequency, suppressing certain harmon-
ics, limiting the maximum value of motor parameters for
protection purposes etc. [32].

Since the weighting factors of conventional FCS-MPTC
depends also on the operating condition of the drive so

designing these weighting factors for variable speed IM
drive based on MPC is very challenging [33]. A lot of
researchers have proposed different methods that incorpo-
rates weighting-factor calculations in the main MPC algo-
rithm. Even to date there is no analytical method to find the
optimal weighting factor for FCS-MPC. Mostly in literature
the weighting factor is adjusted based on different iterative
valuation methods [34].

The earliest method proposed in [35] to select the weight-
ing factor was based on the rated stator flux and torque
as a starting point and later tuned manual during the drive
operation. In [36], analytical relationship for the weight-
ing factors of FCS-MPC was formulated that shows the its
dependence on the operating condition of the drive. Here
the optimized weighting factor relation was determined in
relation to changing torque and flux. It was observed during
the actualMPC algorithm that the weighting factor updates its
value each time the operating condition was changed. In [31]
torque and stator flux reference values for FCS-MPTC was
converted to flux equivalent vector that helps eliminates the
need of weighting factor. In [29] another weighting factor
elimination algorithm was proposed where the resultant solu-
tions of cost function for each voltage vector is sorted &
ranked. The VV with the highest rank is selected but the
computational cost of this method grows exponentially with
increasing switching states (voltage vectors) and the size of
prediction horizon. Sugeno fuzzy method based online opti-
mization of weighting factor for four switch two leg inverter
fed IM was proposed in [37] but this work was only restricted
to MATLAB simulation and no experimental validation was
given. Particle swarm optimization based FCS-MPTC was
proposed in [38] where the simple minimization of cost func-
tion was replaced with PSO in order to improve the steady
state torque ripple. In [39], [40] optimized weighting factor
was given in terms of rotor flux and reference voltage for
matrix inverter fed IM. Here the author only studied the
effect of weighting factor optimization for torque and ignore
the switching losses in the inverter. Similarly, FCS-MPTC
with online optimal weighting factor selection based on TOP-
SIS decision-making was studied in [41] based on the same
performance criteria. In [42], author proposed an improved
weighting factor elimination version of FCS-MPTC by cre-
ating a loop-up table of four vectors to be used with the
cost function evaluation of FCS-MPTC technique. The pro-
posed algorithm not only suggested the major improvement
over the conventional FCS-MPTC technique but also con-
siderably reduces the computational time owing to the fact
that only four vectors are used instead of seven for MPTC
cost function. To counter the torque ripple in steady-state
or during load variation, A. Ammar et al. replaced the con-
ventional PI modulator for external speed regulation loop
with a fuzzy-logic controller [43]. The authors reported a
reduction of torque ripple from 2 Nm to 0.5 Nm for the slow
speed region. One other advantage of using the fuzzy logic
controller was it drastically reduces the time of speed reversal
also established experimentally in [43]. Lately, switching
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variation associated with FCS-MPTC, due to the absence of
any switching frequency modulator, was studied in [44]. The
author proposed to use a mandatory zero vector with an active
vector to be applied at the inverter alternatively for constant
switching variation. Also, the computational time improve-
ment was made because only active vectors were used with
the cost function calculation. The one major disadvantage of
their proposed algorithm is slow dynamic response to speed
change because of switching a zero vector in every other
sampling instant. F. Wang et al. in 2019 proposed their par-
allel predictive torque control (PPTC) algorithm for IM [45].
In PPTC, both torque and flux cost optimization were done
simultaneously, and an adaptive mechanism was introduced
to choose the optimal vector to switch at the inverter selected
from three sorted arrays. Although the proposed method
gives minor improvements over the torque and flux ripple
in comparison to conventional FCS-MPTC, but the compu-
tational complexity of the algorithm makes it unrealizable to
parametric variations.

The latest work on weighting factor optimization for
FCS-MPTCwas reported in [32] where the author applied the
NSGA-II to find the Pareto optimal front for optimal weight-
ing factors and evaluate each solution based on switching
loss, total harmonic distortion, torque and flux ripple perfor-
mance criteria. Here the only drawback was that author didn’t
consider the variable speed drive and no decision-making was
made for the best compromised weighting factors.

Based on the above literature review and the latest reported
work for FCS-MPTC with optimized weighting factors in
[32], an improved algorithm with best compromised weight-
ing factors obtained through the combination of NSGA-II
with TOPSIS decision-making criteria is proposed. Average
switching frequency reduction (ASFR) is implemented to
eliminate the use of weighting factor for switching frequency
term in the cost function. ASFR helps in the reduction of com-
putationally time and somewhat avoids the intrinsic over cur-
rent problem usually encounters with conventional MPTC.
The proposed algorithm also caters the problem of peak rush
current during the speed change by selecting zero vector as
the optimal vector to be switched at the inverter whenever the
predicted current exceeds the rated value of IM.

III. DISCRETE MODEL OF THREE PHASE
INDUCTION MOTOR
Three phase inductionmotor dynamicmodel can bewritten in
different forms depending on the selected frame of reference.
In stator frame of reference, the stator and rotor voltage
equations for the squirrel cage motor can be written as [34]

vss = Rssi
s
s + pψ

s
s (1)

0 = Rsr i
s
r + pψ

s
r − jωsrψ

s
r (2)

here, the superscript is for frame of reference and the sub-
script is for stator and rotor quantities. Similarly, for the flux
linkages

ψ s
s = Lss i

s
s + L

s
mi
s
r (3)

ψ s
r = Lsr i

s
r + L

s
mi
s
s (4)

Choosing quadrature (α − β) stator currents and rotor flux
as state vectors, the above dynamic model can be represented
in state space form as

ẋ(t) = A (ω(t)) x(t)+ Bu(t) (5)

where, x(t) =
(
iαs i

β
s ψ

α
r ψ

β
r

)T
are state variables and

u(t) =

(
vαs v

β
s

)T
are the quadrature stator voltages.

Here, also the above subscript shows the (α − β) stationary
frame of reference and the below subscript represents the
stator/rotor quantities. Matrices A and B are defined as

A =



−
1
τ ss

0
ksr

Rσ τ ss τ sr

ksr
Rσ τ ss τ sr

0 −
1
τ ss

−
ksr

Rσ τ ssωsr

ksr
Rσ τ ss τ sr

Lsm
τ sr

0 −
1
τ sr

−ωsr

0
Lsm
τ sr

ωsr
−1
τ sr


(6)

B =



1
Rσ τ ss

0

0
1

Rσ τ ss
0 0
0 0

 (7)

here, ksr =
Lsm
Lsr

is the rotor coupling factor, Rσ = Rss + k
s
r
2 Rsr

is the equivalent resistance, τ ss =
Lσ
Rσ

is the stator transient

time constant, and τ sr =
Lsr
Rsr

is the rotor time constant.
The electromagnetic torque can be defined as

T = 1.5np
(−→
ψ s
s ×
−→
iss
)

(8)

where np is the number of pole pairs.
Since FCS-MPTC is a control algorithm that exploit the

discrete nature of the intrinsic voltage vectors of SSTPI,
it requires model of IM to be represented in discrete form.
Using the Taylor series approximation, the discrete state
space model of IM can be written as

x(k + 1) = Adω(k)x(k)+ Bdu(k) (9)

where, A = I + TsA, Bd = TsB and Ts is the sampling time
for MPC.

IV. THREE LEG SIX SWITCH INVERTER
The two-level voltage source inverter with three legs having
two switches per leg is one of the most commonly used
inverters with IM shown in Figure 2. It is also termed as six
switch three phase inverter (SSTPI) or B6-inverter.

Because of six switches this inverter has eight distinct
switching states that leads to six active and two zeros vectors.
The space vector (SV) diagram of SSTPI is shown in Figure 3
where, vectors (v1 − v6) are termed as active or voltage vec-
tors whereas (v0, v7) are the two intrinsic zero or null vectors.
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FIGURE 2. 2L-VSI with three legs.

FIGURE 3. SV diagram of SSTPI.

Zero vectors do not contribute anything in terms of output
voltage, but they are extremely important to minimize the
switching loss of the inverter.

The input voltage applied by this inverter to IM, in station-
ary frame of reference, can be calculated as

u(t) = Tc × Sabc(t) (10)

here, Sabc(t) represents the switching state of the upper
switches of each leg and Tc is the Clarke transformation
matrix given as

Tc =
2
3

 0 −

√
3
2

√
3
2

1 −
1
2

1
2

 (11)

V. FINITE CONTROL SET MODEL PREDICTIVE TORQUE
CONTROL OF INDUCTION MOTOR FED WITH SSTPI
The block diagram of FCS-MPTC of IM is shown in Figure 4.
The workflow of this control technique is further explained
below which is repeated for each control cycle.

FIGURE 4. Block diagram of FCS-MPTC.

A. MEASUREMENT
The rotor speed along with stator stationary frame of refer-
ence currents are usually measured with external sensors as
shown in Figure 4.

B. ESTIMATION
The estimation of stator flux can be done in either close loop
or in open loop. Close loop observer with constant gain are
more robust [37], but increases the computational cost of
MPC overall. Stator flux can be estimated using open loop
estimator with current and voltage equations of IM [29], [34].
Using the rotor dynamics, the rotor flux is estimated as

ψ̂ r
r = −τ

s
r
dψ r

r

dt
+ Lsm̂i

r
s (12)

It is to be noted that the inductance, resistance and
rotor/stator time constants are independent of coordinate
transformation.

Using the zero-order hold (ZOH), the discretized version
of Eq. 12 can be expressed as

ψ̂ r
r (k) = e

Ts
τ sr ψ̂ r

r (k − 1)+ Lsm(1− e
Ts
τ sr )̂irs (k − 1) (13)

The stator flux is then estimated at the ‘k’ interval as

ψ̂ r
s (k) = ksr ψ̂

r
r (k)+ L

s
σ̂ i
r
s (k) (14)

Eqns. (12-14) are expressed in rotating frame of reference
and a suitable coordination transformation (Park Transforma-
tion) is required to convert the quantities from rotating frame
of reference to stationary frame of reference. It is usually done
as follow

xs = ejθr . xr (15)

where, xs represents the stationary frame of reference quan-
tity, xr represents the rotating frame of reference quantity and
θr represents the rotor position.

C. PREDICTION
Using Eq. (9) and Eqns. (14-15), stator flux and torque of
induction motor are predicted for the ‘k + 1’ interval as

ψ̂ r
s (k + 1) = ksr .ψ̂

r
r (k + 1)+ Lsσ̂ i

r
s (k) (16)

ψ̂ s
s (k + 1) = ejθr .ψ̂ r

s (k + 1) (17)

T̂ (k + 1) = 1.5np

(
−−−−−−→
ψ̂ s
s (k + 1)×

−−−−−→
iss(k + 1)

)
(18)

D. OPTIMIZATION
In FCS-MPTC a predefined cost function is used to evaluate
the cost for all the possible intrinsic VVs shown in Figure 3.
A voltage vector is selected which gives the minimum cost
for the function value. The cost function associated with the
conventional FCS-MPTC is

gi =
N∑
h=0

∣∣Tref (k + h)− T̂ (k + h)∣∣
+λ ∗

∣∣ψref (k + h)− ψ̂ s
s (k + 1)

∣∣ (19)

VOLUME 7, 2019 177599



M. H. Arshad et al.: Weighting Factors Optimization of Model Predictive Torque Control of IM Using NSGA-II

where, gi is the cost for the ‘i’ voltage vector, ‘h’ represents
the simulation step index and ‘N ’ represents the total simu-
lation steps. Instead of taking the quadratic error between the
reference and predicted values, absolute error is used because
of computational simplicity.

E. CONTROL LAW APPLICATION
The cost function defined in Eq. (19) makes a single objective
optimization problem. ‘λ’ is the weighting factor used to
give formal preference between the conflicting objective.
The voltage vector corresponding to the minimum value
of Eq. (19) is determined and applied for the next control
period.

Vopt = arg min
{v0,...,v7}

gi (20)

VI. STATOR FLUX WEIGHTING FACTOR OPTIMIZATION
USING NON-DOMINATED SORTING GENETIC
ALGORITHM-II
In conventional FCS-MPTC, only two objectives, error
between the torque reference and estimated torque, and error
between the stator flux reference and estimated stator flux,
are used. However, the weighting factor used with the stator
flux absolute error needsmanual tuning for acceptable perfor-
mance which is very cumbersome. Using heuristic optimiza-
tion techniques this problem can be solved very effectively.

In this paper a cost function of the following formwas used
for FCS-MPTC

gi =
N∑
h=0

λ1 ∗
∣∣Tref (k + h)− T̂ (k + h)∣∣
+ λ2 ∗

∣∣ψref (k + h)− ψ̂ s
s (k + 1)

∣∣ (21)

here, λ1, the weighting factor associated with the control
of torque target value, can have value either positive or
zero based on the desired torque error band whereas, λ2,
the weighting factor associated with flux error, is used for
defining the preference between torque and flux error dynam-
ics.
λ1 can be defined as

λ1 =

{
0, if

∣∣Tref (k + h)− T̂ (k + h)i∣∣ ≤ Tband
λT , if

∣∣Tref (k + h)− T̂ (k + h)i∣∣ > Tband
(22)

here, λT is chosen to be ‘1’. Similarly, for λ2 the following
relation is used

λ2 = λψ
Tnorm
|ψnorm|

(23)

where, ‘Tnorm’ and ‘ψnorm’ are the nominal values of IM.

A. NON-DOMINATED SORTING GENETIC ALGORITHM-II
The weighting factors in conventional MPTC technique
effects the drive performance. Also, the cost function for
MPTC usually has two conflicting objectives to be optimized,
a global multi-objective algorithm can provide set of the
best solutions rather than a single solution obtained using

traditional multi-objective solving methods like weighting
method and ε-constraint method, known as the Pareto solu-
tions or non-dominated solutions. The basic features of any
multi-objective global optimization are:
• Search for Pareto front (convergence)
• Maintain the diversity in solutions for next generations
to cover the whole range of optimal possibilities (diver-
sity)

NSGA-II is a global multi objective optimization algo-
rithm proposed, as an improvement over NSGA-I algorithm,
by Deb et al. in 2002. By introducing the elite strategy
based on the crowding distance and rank operator of fast
non-dominated sorting algorithm, the computational com-
plexity of the algorithm is reduced. The other difference
between NSGA-I and NSGA-II is the diversity in chromo-
some population. Compared with traditional multi-objective
solving methods, such as weighting method and ε-constraint
method, this method is not affected by proper constraint limit
settings, target weights, etc.

Each individual solution in NSGA-II contains the value of
parameters to be simultaneously optimized. The pseudo code
for NSGA-II is shown in Algorithm 1.

Algorithm 1 Pseudo Code for NSGA-II
1: Initialize random population N of dimensions size equal

to parameter size in the search space
2: while Termination condition not reached do
3: for Each individual solution xi do
4: Perform genetic operations (crossover & mutation)
5: Evaluate fitness of all xi’s in population
6: Rank all xi’s based on dominance
7: Calculate crowding distance for every xi
8: if Rank of xi ≥ xj then
9: Select xi
10: end if
11: while Population size < N do
12: Select xi’s based on crowding distance
13: end while
14: end for
15: end while

It is to be noted that the multi-objective evolutionary opti-
mization algorithms returns a specific number of solutions
called the Pareto solutions. To get the best compromised
solution, a decision making method is usually used after the
optimization to get the best solution out of all the solutions in
Pareto front.

B. TOPSIS FOR BEST COMPROMISED SOLUTION
Technique for order preference by similarity to an ideal solu-
tion (TOPSIS) is a relatively easy decision-making method
proposed in [46] and is based on combining functions that
determines the relevance of a solution to an ideal solution.
The idea is to select a compromised solution out of a Pareto
front whose distance is smallest from the idea solution and
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greatest to the complement of the ideal solution. The pseudo
code for TOPSIS is given in Algorithm 2.

Algorithm 2 Pseudo Code for TOPSIS
1: Calculate the normalized decision matrix
2: Evaluate the weighted normalized decision matrix
3: Evaluate fitness of all xi’s in population
4: Find ideal and compliment of ideal solution
5: Calculate the separation distance matrix for each solution

6: Measure the relative closeness of each solution to ideal
solution

7: Rank the solutions
8: Pick the 1st one.

C. FCS-MPTC OPTIMIZATION WITH NSGA-II
To get the optimized torque and flux weighting factors, each
individual chromosome of NSGA-II (possible solution) has
two genes as given below.

xi =
[
Tbandλψ

]
(24)

1) ‘Tband ’, whose values are set between the 5% to 15%
of the nominal torque value of IM.

2) ‘λψ ’, whose value was restricted between 1 to 20.
A step speed of 30% of rated value and 75% of the rated

torque is applied during the MATLAB/Simulink simulation
for the evaluation of each possible solution. Steady-state flux
and torque ripples (Trip, ψrip) were extracted from the simu-
lation and a fitness function was defined based on combined
error between the flux and torque ripple. A Pareto front
with best compromised solution based on TOPSIS decision
method is shown in Figure 5.

FIGURE 5. Pareto front with best compromised solution.

Since, theNSGA-II is a heuristic technique greatly affected
by the randomness introduced in the solution population, this
process was repeated 5 times and an average of the best
compromised solutions obtained, after the TOPSIS based
decision making, was chosen for experimental verification.

FIGURE 6. Experimental Setup (a) Host Computer (b) Industrial Inverter
(c) Current Sensors (d) ± 15V DC Power Supply (e) dSPACE Interference
Terminal Box (f) DC Generator (g) Speed Encoder (h) Induction motor
(i) Programmable Load.

TABLE 1. Parameters of 3-8 induction motor.

VII. EXPERIMENTAL RESULTS
MATLAB r2019bwas used to first find the optimized weight-
ing factors of the cost function given in Eq. 21. The param-
eters for IM and NSGA-II used are tabulated in Table 1-2.
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TABLE 2. Parameters of NSGA-II.

TABLE 3. Average optimal solution from five runs of NSGA-II.

FIGURE 7. Measure response from Conventional FCS-MPTC drive without
Optimized Weighting Factor at no load: (a) Reference and output speed
comparison, Electromagnetic Torque response (b) Reference and actual
stator flux comparison, Input phase A current.

A simple PI controller was used for speed tracking with
Kp = 21 and Ki = 2. FCS-MPTC sampling rate was fixed
at 20 kHz which was same as the sampling frequency for
the entire model. Speed control loop sampling rate was set
to 10 kHz. The average optimized solution obtained after
applying the TOPSISmethod to the Pareto front secured from
the five different runs of NSGA-II for Tband and λψ are shown
in Table 3.

To examine the performance of proposed algorithm,
the dynamics response of the motor was measured using

FIGURE 8. Measure response from Conventional FCS-MPTC drive with
Optimized Weighting Factor at no load: (a) Reference and output speed
comparison, Electromagnetic Torque response (b) Reference and actual
stator flux comparison, Input phase A current.

the experimental setup shown in Figure 6. The experimen-
tal results for the FCS-MPTC with conventional values of
weighting factors i.e. (λ1 = 1, λψ = 1) corresponding to
‘λ2’ given by Eq. 22, and with optimized weighting factors
(given in Table 3) were obtained at no load, and with a load
of 3.5 Nm.

A. AT NO LOAD
First the IM was given an initial flux setup command just
to minimize the startup torque ripple. Then, a step speed
command of 1000 rpmwas given at 0.1s. Figure 7-8 shows the
measure response of conventional and optimized FCS-MPTC
respectively.

From the visual inspection of Figure 7-8, it can be easily
seen that the proposed optimized technique outperforms the
conventional FCS-MPTC algorithm.

B. WITH LOAD
Chroma programmable load was used in constant current
mode with DC generator to load the IM. A load command
of 3.5 Nm was applied at 0.8s. The measure response for
both conventional and optimized FCS-MPTC are shown in
Figure 9-10.
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TABLE 4. Performance indices of conventional FCS-MPTC and proposed FCS-MPTC (experimental results).

FIGURE 9. Measure response from Conventional FCS-MPTC drive without
Optimized Weighting Factor with 3.5Nm load: (a) Reference and output
speed comparison, Electromagnetic Torque response (b) Reference and
actual stator flux comparison, Input phase A current.

The dynamic response of IM with optimized MPTC shows
a torque ripple of 1.43% in contrast to 6.23% with conven-
tional MPTC. Also, the input phase current is very sinusoidal
in case of optimized MPTC.

VIII. DISCUSSION
Table 4 quantifies the performance of optimized FCS-MPTC
in comparison to conventional FCS-MPTC based on torque
ripple per rated torque, flux ripple per rated flux, THD of
the input phase current, and the average switching frequency
performance indices.

The results obtained justifies the fact that proposed scheme
with optimized weighting factor best compromises the per-
formance to ripple measurement for both torque and flux,
further vindicating the usefulness of NSGA-II with TOPSIS
decision making criteria (for best compromised solution) for
the optimization of FCS-MPTC weighting factors.

FIGURE 10. Measure response from Optimized FCS-MPTC drive without
Optimized Weighting Factor with 3.5Nm load: (a) Reference and output
speed comparison, Electromagnetic Torque response (b) Reference and
actual stator flux comparison, Input phase A current.

Also, the speed tracking in case of proposed FCS-MPTC
only changes significantly during the load change while in
case of conventional FCS-MPTC, although the IM is tracking
the reference speed of 1000 rpm but the zoomed image in both
case (no load & with load) shows abrupt variations.

The optimal frequency control does show satisfactory
improvement in the switching frequency, but this can be
further improved by incorporating a new term in the cost
function of FCS-MPTC related to the switching frequency.
However, this will also increase the computational cost of the
algorithm and a delay compensation will become necessary.

Also, it is to be noted that a protection against the
over-current was also implemented with the term Im in
the cost function of studied FCS-MPTC. The reason for
over-current protection was to avoid switching a voltage
vector that might causes the IM input current to exceed the
rated value. In case of such an event, zero voltage vector
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FIGURE 11. Steady-state normalized Stator Flux Trajectory: (a) Stator Flux
Trajectory for conventional FCS-MPTC (b) Stator Flux Trajectory for
optimized FCS-MPTC.

was switched disregarding the optimal switching vector being
obtained from the prediction block.

Figure 11 shows the normalized space vector trajectory
for stator flux. Because of optimal switching frequency con-
trol, the flux space vector rotates in a circular fashion for
the proposed technique further verifying the improved THD
values for the input phase current shown in Table 4. The space
vector trajectory for conventional FCS-MPTC shows major
variations especially at the start of each rotating cycle for the
space vector.

IX. CONCLUSION
A speed control IM drive based on FCS-MPTC technique
was studied. The weighting factors in the conventional
FCS-MPTC cost function was optimized based on certain
constraints using NSGA-II with TOPSIS decision making
criteria. An experimental validation of the proposed method
was carried out. The THD value for the phase current shows
remarkable improvement over the conventional method under
no load condition. The percentage change in torque and flux
ripple is very negligible under no load and with load con-
ditions showing the robustness of the proposed technique.
Although, the peak current control was implemented for both

conventional and optimized case during the experimental
evaluation for the protection of IM, the proposed algorithm
reduces the input phase current value by about 20%. The
ASFR control does reduce the switching losses but it greatly
improves the SV trajectory of the rotating stator flux which
thereby improves the THD of stator current. This approach
can be further extended to any FCS-MPC strategy requir-
ing the design of weighting factors. Future aspects of this
research will be to use the proposed methodology for mul-
tilevel inverter-based IM drive in accordance with constraints
to balance out the capacitor bank voltage.
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