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ABSTRACT Fault detection of axial piston pumps is of great significance to improve the reliability and life
of fluid power systems. However, it is difficult to detect multiple faults on key lubricating interfaces due to
the liquid-solid coupling. This paper proposes a fault detection strategy of the three key lubricating interfaces
based on the one against all (OAA) and spare support vector machine (SSVM). The parameter sparsity is
imposed to deal with the performance degradation of OAA-SVMmodel as a result of the imbalanced dataset.
Experimental investigations on the benchmark dataset and axial piston pumps are carried out. Results show
that the OAA-SSVM model accuracies of the benchmark dataset and axial piston pump are 96.67% and
95.83%, respectively, which are better than the OAA-SVMmodel. The recall rates of the bearing fault 3 and
pump fault 2 can decrease by 13.33% and 10.00%, respectively. And the false discovery rates of the normal
bearing and normal pump can be reduced by up to 7.58% and 6.24%, respectively. Besides, the OAA-SSVM
model can improve the feature sparsity. Results show that the proposed method is effective in detecting
multiple faults of axial piston pumps.

INDEX TERMS Axial piston pumps, multiple fault detection, one against all, spare support vector machine.

I. INTRODUCTION
The fluid power system plays an important role in the applica-
tions of the industrial hydraulics and mobile hydraulics with
the advantage of high power density [1]–[3]. An axial piston
pump is the critical power source of the fluid power system.
Its failure may cause the system breakdown and economic
losses [4]–[6].

The typical configuration of an axial piston pump is shown
in Fig. 1. There are three key lubricating interfaces, which are
marked using the red dotted lines: the interface between the
swash plate and slipper, the interface between the piston and
cylinder block, and the interface between the cylinder block
and valve plate [7]–[9]. During rotation, oil films form in
these interfaces. And these thin oil filmswork as a key bearing
and sealing part in an axial piston pump [10]. Common faults
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FIGURE 1. Typical configuration and common faults of an axial piston
pump.

on these lubricating interfaces include the slipper wear, piston
wear, cavitation, etc [11].

Many literatures have been developed for the fault diagno-
sis of axial piston pumps. These literatures can be divided into
four main categories: model-based, signal processing-based,
artificial intelligence-based, and hybrid methods. Recently,
the latter two methods are more widely used. A method
based on the convolutional neural network [12] and image
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recognition based method [13] were proposed to detect
the wear faults of the interface between the slipper and
swash plate, and the valve plate. The fault of worn slippers
was detected through the cyclostationary analysis [14] and
extreme learning machine [15]. Rolling bearings faults of
axial piston pump were detected by the minimum entropy
deconvolution based on simulation-determined bandpass fil-
ter [16], [17]. Loose slipper and slipper abrasion were pre-
dicted through a modified echo state networks model [18].
The fault of one single piston loose shoes was detected
through the intermittent chaos and sliding window symbol
sequence statistics [19]. The fuzzy C means clustering algo-
rithm was employed to identify faults of the worn swash
plate, loose piston shoe, and worn piston shoe [20]. Fault
features of the loose slipper, slipper wear, and center spring
wear were extracted by the local mean decomposition and
improved adaptive multiscale morphology analysis [21]. The
layered clustering algorithm was presented to classify the
five faults abrasion of valve plate, insufficient inlet pressure,
roller bearing wear, swash plate eccentricity, and clearance
increases between piston and slipper [22]. There will be com-
plex liquid-solid coupling between the three key lubricating
interfaces, and this coupling makes it is difficult to detect the
multiple faults on these interfaces.

The support vector machine (SVM) has been widely
employed as a fault classifier of rotating machineries due to
its simpler structure, better generalization ability, and faster
classification speed [23], [24]. The SVM is originally used for
binary classification while most cases in practice are multi-
class classification [25]. Many strategies have been proposed
to extend the binary SVM to multiclass classification. The
common strategies include ‘‘one against all (OAA)’’, ‘‘one
against one (OAO)’’, and ‘‘direct acyclic graph (DAG)’’. For
the OAA method, it constructs m SVM submodels when
solving the classification problem with m classes. For the
OAO method and DAG method, m (m-1)/2 SVM submod-
els are combined to deal with the m classes problem. The
OAA method is with a better classification speed due to
a less number of SVM submodels in comparison to the
OAO method and DAG method. It should be pointed out
that when constructing the single SVM submodel, there
will be imbalanced training dataset. This imbalance may
diminish the classification robustness and decline the model
accuracy.

In this paper, the OAA and spare support vector machine
(SSVM) based method for the multiple fault detection of the
three key lubricating interfaces is proposed, where parameter
sparsity is imposed to deal with the effects of the imbal-
anced dataset. The remaining sections of this paper are orga-
nized as follows. Firstly, theoretical background is introduced
in section II. Secondly, the flowchart of the OAA-SSVM
methodology is presented in section III. Then, application
on the benchmark dataset is conducted in section IV. The
experimental investigation on axial piston pumps is carried
out in section V. Finally, conclusions and future works are
given in section VI.

FIGURE 2. Description of the SVM algorithm.

II. THEORETICAL BACKGROUND
A. SVM ALGORITHM
As shown in Fig. 2, the aim of the SVM for the binary
classification is to find a separating hyper-plane, which can
separate the dataset (xi, i = 1, 2, . . ., N) into two categories
(yi = ±1) with the maximized margin. + indicating data
points of class +1, and − indicating data points of class –1.
The data points used to construct the separating hyper-plane
are called support vectors.

The parameters of the separating hyper-plane, (ω, b), can
be calculated as follows.

(ω, b) ∈ argmin
1
2
‖ω‖22 + C

N∑
n=1

Hω,b (xi, yi) (1)

where ω and b refer to an N-dimensional vector and a scalar.
C represents the regularization parameter, which adjusts the
trade-off between the misclassification rate and dataset spar-
sity.Hω,b(xi, yi) denotes the hinge loss function, which equals
max{0, 0, 1−yi(ωTxi+b)}.

B. SSVM ALGORITHM
The SVM algorithm may promote the dataset sparsity
because only a few features actually contribute to defining the
parameters (ω, b). In addition, the large class imbalance may
weaken the dataset sparsity and diminish the classification
robustness. The SSVM was proposed to accomplish the fea-
ture selection and classification jointly. The SSVM algorithm
can induce the parameter sparsity by imposing a `1 norm to
the first term of (1). And a square hinge loss function,H2

ω,b(xi,
yi), is imposed on the penalization term of (1). In order to deal
with imbalanced dataset, the penalization term consists of
two weighted sums of the imbalanced dataset. The separating
hyper-plane, (ω, b), can be calculated as follows.

(ω, b) ∈ argmin ‖ω‖1 + C
N−1∑
n=1

H2
ω,b

(xi, yi)

+C
N−1
N+1

N+1∑
n=1

H2
ω,b

(xi, yi) (2)

where N−1 and N+1 are the numbers of the two class.
In order to deal with the non-differentiable optimization

problems of the `1 norm in the SSVM, the forward backward
splitting algorithmwas utilized, where the proximity operator
of the `1 norm was calculated on a gradient descent step of
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the square hinge loss function.

Pro[l1 norm(ωl1 )]=argmin
1
2

∥∥ωl1−ω
∥∥2
2+l1 norm(ωl1 ) (3)

The parameter ω at the zth iteration can be calculated as
follows.

ωz
= Pro[ωz−1

−
1
D
∇H2

ω,b
(ωz−1)] (4)

where D refers to a constant of gradient descent step, ∇H2
ω,b

denotes the Lipschitz-continuous gradient of the square hinge
loss function.

C. OAA ALGORITHM
In the OAA strategy, the mth model (m = 1, 2 . . ., M) is
trained with the specified dataset where the labels of the
mth class are set with +1 and the labels of other classes are
set with −1. Then, the parameters (ω, b)m of the separating
hyper-plane of themth model are obtained. The testing dataset
is fed to themth trained model. A voting strategy of the testing
results is utilized to determine the predicted results of all m
models, where if the testing results show the dataset is in
the mth class, then the vote of this class is added by one, on the
contrary, the vote of other classes is increased by one. The
predicted class is decided according to the maximum vote.
In condition that some classes own equal vote, the class with
a lower index is chosen as the predicted result. This strategy
is called the ‘‘Max Wins’’ criterion.

III. PROPOSED METHOD
A. OAA-SSVM METHODOLOGY FOR MULTIPLE FAULT
DETECTION
In the traditional OAA-SVMmodel, the dataset is imbalanced
when training the mth submodel. And the SVM is only suit-
able for the balanced training dataset. The minority samples
of the imbalanced dataset will be distorted due to the sub-
optimal classification of the SVM. In order to deal with the
accuracy decline caused by the imbalanced dataset, a multiple
fault detection methodology based on the SSVM algorithm
is proposed, which can improve the classification robustness
of dataset with large class imbalance [26]. Details of the
OAA-SSVM methodology are shown in Fig. 3. Firstly, raw
vibration information is picked up from the diagnostic objects
by the signal collection module. Different features revealing
fault characteristics are extracted from the raw vibration sig-
nal. The dataset with extracted features is divided into the
training dataset and testing dataset independently. The train-
ing dataset with multi faults is fed to the OAA-SSVMmodel.
During the training process of the mth SSVM submodel,
the training labels of the mth class are set with +1 while the
labels of other class are set with−1. After training, m SSVM
submodels with hyper-plane parameters (ω, b)1, (ω, b)2, . . . ,
(ω, b)m are constructed. Then, the testing dataset is employed
to test the trained OAA-SSVM submodels in turn. Testing
results from m SSVM submodels are synthesized based on
the ‘‘Max Wins’’ criterion. At last, the predicted results of
the OAA-SSVM model are determined.

FIGURE 3. Flowchart of the OAA-SSVM methodology.

B. STATISTICAL FEATURE EXTRACTION
In order to capture the weak fault characteristics embedded
in the background noise, 20 features extracted by the signal
processing techniques in the time domain, frequency domain,
and time-frequency domain are listed in Table. 1. These
features are selected based on our prior knowledge. And they
can reveal the fault characteristics from different aspects. The
features F1-F6 are calculated from the time domain wave-
forms. x(n) (n = 1, 2, . . . ,N ) is the raw vibration signal in
the time domain and N denotes the data length. F1 and F2
are the root amplitude and root mean square, respectively,
which are related to the signal energy. F3, F4, F5, and F6
refers to the kurtosis value, crest factor, clearance factor, and
impulse factor, respectively. They are sensitive to the impulse
information [27]. The features F7-F12 are extracted from the
frequency spectrum obtained through the Fourier transform
[28], [29]. s(k) and f (k) (k = 1, 2, . . . ,K ) denote the ampli-
tude and frequency of the k th spectrum line, respectively.K is
the spectrum line number. F7, F8, and F9 can reveal the loca-
tion of the main frequency in the spectrum. The convergence
characteristics of the spectrum power are reflected by features
F10, F11, and F12. s1 refers to the frequency center. It can be
calculated as follows.

s1 =
K∑
k=1

f (k) s (k)

/
K∑
k=1

s (k) (5)

The collected vibration signals are not always station-
ary due to the fault impact [30]–[32]. The wavelet packet
transform (WPT) has been widely used to deal with the
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TABLE 1. Specifications of the statistical features.

non-stationary signals in the time-frequency domain [33].
The WPT owns a good resolution in both low and high
frequency domain by matching the frequency band adap-
tively. Hence, apart from the features extracted in the time
domain or frequency domain, features F13-F20 are utilized
to represent the subband energy ratio. xi(j) (i = 1, 2, . . . , 8)
is the ith subband decomposed by the WPT. m denotes the
decomposition level (typically m = 3).

IV. APPLICATION ON THE BENCHMARK DATASET
A. DESCRIPTIONS OF THE BENCHMARK DATASET
In this section, the OAA-SSVM methodology is applied to
the benchmark dataset, which is provided by the bearing data
center website of the Case Western Reserve University [34].
The test rig of the benchmark dataset is shown in Fig. 4,
which consists of an electric motor, a torque transducer, and
a dynamometer. Single point faults (0.007 inches) were intro-
duced at the inner raceway (fault 1), rolling element (fault 2),
and outer raceway (fault 3) of the bearing through the electro-
discharge machining. The motor load was 0 horsepower and
the speed was around 1796 r/min. Drive end bearing vibra-
tion data were collected with the sampling frequency being
48000 Hz.

Vibration signals and corresponding spectrums of the four
bearing conditions (normal bearing, fault 1, fault 2, and fault
3) are shown in Fig. 5, respectively.

The length of the time domain waveform is 24000 points
(0.50 s). The frequency of spectrums ranges from 0 Hz to
6000 Hz. It is found that the amplitudes of the four bear-
ing conditions are different. The amplitudes of the normal
bearing, fault 1, fault 2, and fault 3 are around 0.25, 3, 0.6,
and 1.5, respectively. The frequency spectrums of the four
bearing conditions are shown in Fig. 5 (b), (d), (f), and (h),

FIGURE 4. Test rigs of the benchmark dataset.

FIGURE 5. Vibration signals and corresponding spectrums of the four
bearing conditions.

respectively. Vibration amplitudes of the normal bearing are
mainly concentrated in the frequency band 0-1000 Hz and
4000-4500 Hz. The spectrum distribution of the fault 1 is
wider than that of the other conditions, which ranges from
400 Hz to 4500 Hz. The amplitudes of the fault 2 are mainly
located in the frequency band 0-1500 Hz and 2500-4400 Hz.
The amplitudes of the fault 3 are mainly concentrated in the
frequency band 2500-3500 Hz.

For each bearing condition, 100 samples were constructed
as the training dataset and 30 samples were employed
as the testing dataset. The length of single sample was
512 points. During the process of statistical features extrac-
tion, the wavelet function, sym4, was used. 20 features F1-F20
of the training dataset under four bearing conditions are
shown in Fig. 6. As can be seen from Fig. 6 (a), (b), (g), and
(j), four bearing conditions can be distinguished using fea-
tures F1, F2, F7, and F10, obviously. The normal bearing and
the fault 1 can be detected using the features F16 as shown in
Fig. 6 (p). In Fig. 6 (c), (d), (e), (f), (i), (k), (l), (o), (s), and (t),
the features F3, F4, F5, F6, F11, and F12 of the fault 1 are
different from other conditions. And features F9, F15, F19, and
F20 of the normal bearing are different from other three con-
ditions. Features F8, F13, F14, F17, and F18 are shown in Fig. 6
(h), (m), (n), (q), and (r), respectively, and no feature differ-
ences can be identified among the four bearing conditions.

B. PERFORMANCE ASSESSMENT
Model performance of the OAA-SVM methodology and
OAA-SSVM methodology is compared in the application
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FIGURE 6. Comparisons of the 20 features between the normal bearing,
fault 1, fault 2, and fault 3.

of the benchmark dataset. Results of these two models are
shown in Fig. 7. The ordinate represents the model accuracies
Acctr(calculated from the training dataset) and Accte (calcu-
lated from the testing dataset). And the abscissa indicates the
regularization parameter C . It ranges from 1.00 × 10−3 to
1.00 × 102, which is given on a logarithmic scale. As can
be seen from Fig. 7 (a), the training accuracy Acctr increases
with the increase ofC due to the fact that a largerC can reduce
the misclassification rate. There is an intersection point when
C is around 2.31 × 10−2. The maximum Acctr 100.00% of
the OAA-SVM model and OAA-SSVM model occurs when
C is around 3.05 and 1.23 × 101, respectively. The testing

FIGURE 7. OAA-SVM and OAA-SSVM model accuracies Acctr and Accte for
the bearing.

TABLE 2. Acctr and Accte for the bearing with C = 7.56× 10−1.

accuracy Accte is shown in Fig. 7 (b). The maximum Accte
of the OAA-SSVM model is 96.67%. It occurs when C is
around 7.56×10−1. And the Accte is with no further increase
as C increases. The optimized C was chosen as 7.56× 10−1

based on the criterion that a minimum C makes the model
accuracy, Accte, to be the largest while avoiding the issue
of the over-fitting. The model accuracies Acctr and Accte
for the bearing with C = 7.56× 10−1 are shown in Table. 2.
The training accuracies Acctr of the OAA-SVM model and
OAA-SSVM model are 99.25% and 99.75%, respectively.
And the testing accuracies Accte of these two models are
93.33% and 96.67%, respectively. Comparing to the OAA-
SVM model, the Acctr and Accte of the OAA-SSVM model
can increase by 0.50% and 3.34%, respectively.

Confusion matrices of the training and testing dataset are
shown in Fig. 8 with C = 7.56× 10−1. As can be seen from
Fig. 8 (a) and (b), for the training dataset of the OAA-SVM
model, the recall rates of the normal bearing, fault 1, fault
2, and fault 3 are 100.00%, 100.00%, 100.00%, and 97.00%,
respectively. The false discovery rates of these four conditions
are 1.96%, 0.00%, 0.99%, and 0.00%, respectively. For the
testing dataset of the OAA-SVM model, the recall rates of
the normal bearing, fault 1, fault 2, and fault 3 are 100.00%,
100.00%, 96.67%, and 76.67%, respectively. The false dis-
covery rates are 16.67%, 0.00%, 6.45%, and 0.00%, respec-
tively. The OAA-SSVMmodel confusion matrices are shown
in Fig. 8 (c) and (d). For the training dataset, the recall rates of
the normal bearing, fault 1, fault 2, and fault 3 are 100.00%,
100.00%, 100.00%, and 99.00%, respectively. The false dis-
covery rates are 0.00%, 0.00%, 0.99%, and 0.00%, respec-
tively. For the testing dataset of the OAA-SSVM model,
the recall rates are 100.00%, 100.00%, 96.67%, and 90.00%,
respectively. The false discovery rates are 9.09%, 0.00%,
3.33%, and 0.00%, respectively. The false discovery rate of
the normal bearing is the highest due to the ‘‘Max Wins’’
criterion. The confusion matrices show that the recall rate
of the fault 3 in the testing dataset increases by 13.33%.
In addition, the false discovery rates of the normal bearing
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FIGURE 8. OAA-SVM and OAA-SSVM model confusion matrices of the
bearing.

FIGURE 9. Feature weights of the four OAA-SVM and OAA-SSVM
submodels with C = 7.56× 10−1.

and the fault 2 in the testing dataset can be reduced by 7.58%
and 3.12%, respectively.

In order to validate the feature sparsity of the OAA-SSVM
methodology, feature weights of the four submodels are
shown in Fig. 9. For the 1st submodel of the normal bearing,
features F1, F10, F16, F17, and F20 make contributions. For
the 2nd submodel of the fault 1, only features F3, F7, and
F8 take effect. For the 3rd submodel of the fault 2, features
F1, F2, F3, F4, F8, F9, F14, F16, F17, F18, F19, and F20 were
included. For the 4th submodel of the fault 3, features F1,
F3, F5, F7, F8, F11, F13, F15, F16, F18, and F19 contribute
to the OAA-SSVM model. The feature number of the four
submodels was reduced by 15, 17, 8, and 9, respectively.
These features contributing to the OAA-SSVM submodels

FIGURE 10. Arrangement of the testing rigs.

are useful for classification due to their differences among
the four bearing conditions, which is shown in section IV-A.
This indicates the OAA-SSVMmethodology with the feature
sparsity is effective in detecting the multiple faults of the
benchmark dataset.

V. EXPERIMENTAL INVESTIGATION ON AXIAL PISTON
PUMPS
A. DESCRIPTIONS OF THE TESTING PUMP AND RIGS
An experimental investigation was conducted in the axial
piston pump to validate the applicability of the multiple fault
detectionmethodology. The detailed parameters of the testing
pump are described as follows [35]. The testing pump is with
9 pistons. Themaximum output pressure is 35MPa. The rated
driving speed is 1500 r/min. The maximum displacement is
40 m3/r. The overall dimension is about 333 mm × 200 mm
× 230 mm.
The schematic diagram of the test rigs is shown in Fig. 10.

The driving motor is connected with the testing pump
through the drum-gear coupling and torque-speed sensor. The
input torque and speed signals are collected by the torque-
speed sensor. The input speed is controlled by the frequency
converter. The output pressure of the testing pump is set by the
pressure relief valve. A pressure sensor and pressure gauge
are utilized tomeasure the output pressure. The output flow of
the testing pump is monitored by a flow meter. The vibration
information on point 1 is acquired by the data collection
module, which consists of the data collection front end and
laptop. The sampling frequency of the front end is 48000 Hz.

B. MULTIPLE FAULT ARRANGEMENTS
In this section, multiple fault arrangements on the three key
lubricating interfaces of the testing pump are introduced.
As shown in Fig. 11 (a), the fault of the interface between the
swash plate and slipper was the failure of hydrostatic support
caused by the blocked hole of the slipper (fault 1). The fault of
the interface between the piston and cylinder block was the
piston wear (fault 2). As shown in Fig. 11 (b), considering
that the features of piston wear are weak, three pistons with
0.03 mm wear in the diameter direction were distributed on
the marked positions. The fault of the interface between the

178182 VOLUME 7, 2019



S. Xia et al.: SSVM-Based Fault Detection Strategy on Key Lubricating Interfaces of Axial Piston Pumps

FIGURE 11. Multiple fault arrangements of the testing pump.

cylinder block and valve plate was the pitting defect (0.5 mm
×0.3mm) on the surface of the cylinder block (fault 3), which
is shown in Fig. 11 (c).

Vibration signals and corresponding spectrums of the four
pump conditions (normal pump, fault 1, fault 2, and fault 3)
are shown in Fig. 12, respectively.

FIGURE 12. Vibration signals and corresponding spectrums of the four
pump conditions.

As shown in Fig. 12 (a), (c), (e), and (g), the vibration
amplitude of the fault 1 is around 100, which is larger than
that of other conditions. Amplitudes of the normal pump,
fault 2, and fault 3 are around 6, 5, and 6, respectively.
It is hard to classify the four pump conditions based on the
waveforms in the time domain. The frequency spectrums of
the four pump conditions are shown in Fig. 12 (b), (d), (f),
and (g), respectively. The vibration amplitudes in the piston-
passing frequency and its harmonics are obvious due to the
excitations from oil suction and extrusion. Some differences
in the frequency spectrums can be found. For the normal
pump, amplitudes are mainly concentrated in the 1st, 2nd, and
3rd order harmonics and the frequency band 3000-5000 Hz.
For the fault 1, amplitudes are mainly distributed in the 1st,
2nd, 3rd, 7th, and 10th order harmonics and the frequency band
4000-5000 Hz. For the fault 2, amplitudes are mainly concen-
trated in the 1st, 2nd, 3rd, 5th, and 7th order harmonics and the
frequency band 3000-5000 Hz. For the fault 3, amplitudes are
mainly located in the 1st, 2nd, 3rd, and 7th order harmonics and
the frequency band 2000-5000 Hz.

TABLE 3. Acctr and Accte for the testing pump with C = 6.14.

In order to train and test the OAA-SSVM model for
multiple fault detection, the training dataset with 100 train-
ing samples and the testing dataset with 30 testing samples
were constructed for the normal pump, fault 1, fault 2, and
fault 3, respectively. The training dataset and testing dataset
were independent. A single sample of the dataset was with
512 points. Features of single sample in the time domain and
frequency domain were calculated according to the formulas
described in section III-B, for the feature extraction of the
WPT subbands, the wavelet function was sym4. Twenty fea-
tures F1-F20 of the training dataset with 100 samples were
shown in Fig. 13. From Fig. 13 (h), (i), and (q), it is found
that features F8, F9, and F17 of the four conditions are quite
different. Fig. 13 (c), (e), (f), and (o) depict that there are a
little differences between the features F3, F5, F6, and F15 of
the four conditions. As can be seen from Fig. 13 (a), (b), (g),
(j), (k), and (l), the fault 1 can be distinguished among the four
conditions using features F1, F2, F7, F10, F11, and F12. While,
in Fig. 13 (d), (m), (n), (p), (r), (s), and (t), features F4, F13,
F14, F16, F18, F19, and F20 flatuate with the sample number
and no differences can be identified from these features of the
four pump conditions.

C. PERFORMANCE ASSESSMENT
Performance of the OAA-SVM model and OAA-SSVM
model is assessed in this section. Results of these two models
are shown in Fig. 14. As shown in Fig. 14 (a), the training
accuracy Acctr increases with the increase of C . There is
an intersection point when C is around 7.56 × 10−1. The
maximum Acctr of the OAA-SSVM model and OAA-SVM
model are 99.00% and 94.00%, respectively. The testing
results Accte are shown in Fig. 14 (b), the maximum Accte
of these two models are 95.83% and 95.00%, respectively.
The maximum Accte of the OAA-SSVM model occurs when
C equals 6.14. And there is no further increase of the Accte
as C increases. The optimized C was chosen as 6.14 based
on the criterion. The model accuracies Acctr and Accte for
the testing pump with C = 6.14 are shown in Table. 3. The
training accuracies Acctr of the OAA-SVMmodel and OAA-
SSVM model are 93.25% and 96.00%, respectively. And the
testing accuracies Accte of these two models are 93.33% and
95.83%, respectively. Comparing to the OAA-SVM model,
the Acctr and Accte of the OAA-SSVM model can increase
by 2.75% and 2.50%, respectively.

Confusion matrices of the training and testing dataset are
shown in Fig. 15 with C = 6.14. As can be seen from
Fig. 15 (a) and (b), for the training dataset of the OAA-SVM
model, the recall rates of the normal pump, fault 1, fault 2,
and fault 3 are 96.00%, 100.00%, 81.00%, and 96.00%,
respectively. The false discovery rates of these four conditions
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FIGURE 13. Comparisons of the 20 features between the normal pump,
fault 1, fault 2, and fault 3.

are 17.95%, 0.00%, 6.90%, and 0.00%, respectively. For the
testing dataset of the OAA-SVM model, the recall rates of
the normal pump, fault 1, fault 2, and fault 3 are 96.67%,
100.00%, 80.00%, and 96.67%, respectively. The false dis-
covery rates are 17.14%, 0.00%, 7.69%, and 0.00%, respec-
tively. The OAA-SSVMmodel confusion matrices are shown
in Fig. 15 (c) and (d). For the training dataset, the recall rates
of the normal pump, fault 1, fault 2, and fault 3 are 98.00%,
100.00%, 91.00%, and 95.00%, respectively. The false dis-
covery rates are 11.71%, 0.00%, 3.19%, and 0.00%, respec-
tively. For the testing dataset of the OAA-SSVM model,

FIGURE 14. OAA-SVM and OAA-SSVM model accuracies Acctr and Accte
for the testing pump.

FIGURE 15. OAA-SVM and OAA-SSVM model confusion matrices of the
testing pump.

the recall rates are 100.00%, 100.00%, 86.67%, and 96.67%,
respectively. The false discovery rates are 11.76%, 0.00%,
3.70%, and 0.00%, respectively. The false discovery rate of
the normal pump is the highest due to the ‘‘Max Wins’’
criterion. The confusion matrices show that the recall rates of
the fault 2 in the training dataset and testing dataset increase
by 10.00% and 6.67%, respectively. Moreover, the false dis-
covery rates of the normal pump in the training dataset and
testing dataset decrease by 6.24% and 5.38%, respectively.

In order to validate the feature sparsity of the OAA-SSVM
methodology, feature weights of the four submodels are
shown in Fig. 16. For the 1st submodel of the normal pump,
features F1, F2, F4, F5, F6, F7, F8, F9, F10, F11, F12, F17,
F19, and F20 make contributions. For the 2nd submodel of
the fault 1, only features F10 and F14 take effect. For 3rd

submodel of the fault 2, features F1, F2, F3, F5, F6, F9, F10,
F11, F12, F15, and F20 are included. For the 4th submodel of
the fault 3, features F3, F4, F8, F9, F13, F14, F16, F18, F19,
and F20 contribute to the OAA-SSVM model. The feature
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FIGURE 16. Feature weights of the four OAA-SVM and OAA-SSVM
submodels with C = 6.14.

number of the four submodels can be reduced by 6, 18, 9,
and 10, respectively. These features contributing to the OAA-
SSVM submodels are useful for classification due to their
differences among the four pump conditions, which is shown
in section V-B. This indicates the OAA-SSVM methodology
with the feature sparsity is effective in detecting the multiple
faults of the axial piston pump.

VI. CONCLUSION
In this paper, an OAA-SSVM model was proposed to detect
faults on the three key lubricating interfaces of axial piston
pump. This model takes advantages of the OAA and SSVM
algorithm for their faster classification, feature sparsity and
classification robustness of dataset with large class imbal-
ance. 20 features extracted from the time domain, frequency
domain, and time-frequency domain were used to capture
the fault characteristics. Experimental investigations on the
benchmark dataset and axial piston pumps were performed
to verify the effectiveness of the OAA-SSVM model.

The OAA-SSVM model accuracies of the benchmark
dataset and axial piston pump are 96.67% and 95.83%,
respectively, which are better than that of the OAA-SVM
model. The recall rates of the bearing fault 3 and pump
fault 2 decrease by 13.33% and 10.00%, respectively. And
the false discovery rates of the normal bearing and normal
pump are the highest due to the ‘‘Max Wins’’ criterion of
the OAA, which can be reduced by up to 7.58% and 6.24%,
respectively.

In addition, the feature sparsity of the OAA-SSVM model
was validated by the weight comparison. Results show the
proposedmethodology is effective in detectingmultiple faults
of axial piston pumps with the high model accuracy and
feature sparsity, and it can also be used in the fault detection of
other rotating machineries. Axial piston pumps are complex
dynamic systems. In order to deal with the heavy online
computation burden problem of these systems, the parity-
based fault detection approach would be the future work.
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