
SPECIAL SECTION ON MOBILE MULTIMEDIA: METHODOLOGY AND APPLICATIONS

Received November 7, 2019, accepted November 24, 2019, date of publication December 6, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958060

Channel Estimation Capacity Enhancement
for Multigroup Multicasting Multimedia
Networks With DnCNN
TIANYI ZENG , YAFENG WANG , JUNYAO LI , AND SHUAI HOU
Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Yafeng Wang (wangyf@bupt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61871049.

ABSTRACT In Time Domain Duplex (TDD) massive MIMO systems, multi-group multi-casting becomes
a promising technology since it supports services of mass content distribution. Based on the nature of
transmitting common message to groups of users simultaneously, there exists a rich literature discussing
the resource allocation under various constraints. However, the practical acquisition of CSI has not been
fully explored when the number of multi-groups is large and the band is narrow. The insufficient sounding
reference signal resources lead to the limited Channel Estimation Capacity (CEC). Under this case, even
with Multi-User (MU) channel estimation techniques, some users still cannot be estimated in-timely, which
introduces degradation. Aiming at this problem, in this paper we provide a preliminary exploration on CEC
enhancement. Based on Denoising Convolutional Neuron Network (DnCNN), which is recently proposed
and has succeeded in image denoising, we propose MU-DnCNN Channel Estimation (M-DnCNN CE).
M-DnCNNCE includes three parts. First, we modify the utilization of SRS sequences. Then we establish the
feature maps and propose M-DnCNN to denoise the signals. Finally, a matched channel restoration method
is provided. The practical 3-D MIMO channel model is utilized to evaluate the performance. Compared
with DFT-based and conjugated separation methods, results show that the performance of M-DnCNN CE is
robust and superior, and the CEC is remarkably improved on the premise of satisfying latency constraint.

INDEX TERMS Multi-user channel estimation, multi-group multi-casting, DnCNN, 3-D MIMO, mobile
intelligence.

I. INTRODUCTION
With the rapid development of 5G technologies, such as net-
work slice [1], physical layer coding [2], D2D [3]–[5], mobile
edge caching [6], [7] and other IoT technologies [8]–[11],
many streaming media application services emerge, and the
services targeted at mass content distribution is expected to be
popular [12]. Of particular interest is Multi-Casting (MCa),
which refers to the case where multiple messages are trans-
mitted simultaneously but each message is addressed to
a group of users [13]. These users may require similar
location-based information or some multimedia entertain-
ments such asmobile TV, IPTV and other applications. Under
this case, compared with the inefficient traditional unicast
technologies that ignore the nature of traffic demand for
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common messages, Multi-Group Multi-Casting (MGMCa)
becomes a promising technology [14]. The 3rd Generation
Partnership Project (3GPP) is discussing details of corre-
sponding techniques, such as evolved Multimedia Broadcast
Multicast Service (eMBMS) and so on.

To enhance the system performance of MCa services,
there exists a rich literature investigating the efficient
resource allocation technologies, which includes the design
of precoder, the group formation, the reduction of com-
putational complexity and the combination with emerging
techniques [15]–[25]. The constraints considered in those
researches are in varied forms, such as per-cell power con-
straints, capacity of backhaul and single-cell or multi-cell
scenarios. However, the most fundamental premise of these
works is the knowledge of channel information, which can
also be coined as imperfect or perfect Channel State Infor-
mation at Transmitter (CSIT). More precisely, only in [15],
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[17], [19] the imperfect CSIT is researched, while the others
tend to assume perfect CSIT and partial CSIT. Just as pointed
in [14], the channels are assumed to be slow-fading, perfectly
estimated and always available for Base Stations (BS). This
assumption of CSIT is too ideal. Much work is remained to
coordinate the this assumption with the practical acquisition
of CSI, especially in following two cases.

First, the scenario of large amount of MCa groups has
not been explored yet, which is the common case of imper-
fect CSIT. Actually, though perfect channel estimation is
assumed, the accurate CSI acquired by BS is still limited
and unable to support the MCa for vast quantity of MCa
groups, because with the increasing number of antenna of
user equipments, the resources of Sound Reference Sig-
nal (SRS) becomes limited [26]. Besides, if we consider
the Doppler effect [22], this insufficiency of CSI (imperfect
CSIT) will be aggravated. Note that this problem is different
from the case of [15]. More precisely, some CSI errors of this
problem are caused by channel aging, and the practical 3-D
MIMO channels show different characteristics fromRayleigh
channels, thus the assumption of Gaussian-distributed errors
is questionable and the asymptotic theory may not be valid.

Second, for some multi-rate MCa transmission technolo-
gies, such as rate-splitting where the unicast and MCa exist
at the same time, the individual CSI of each user is also
needed. In addition, the sufficient individual CSI can help
BS make better use of Degree of Freedom (DoF) with tech-
niques such as Block Diagonalization (BD) precoder to serve
multi-antenna users [21]. Under this case, letting intra-group
users use the same pilot to reduce the overhead and suppress
the pilot contamination [19], [27] is not a preferred scheme.
However, it is a questionable problem whether the current
Multi-User (MU) channel estimation technologies can sup-
port the estimation of a large amount of intra-group users.

One straightforward solution of two aforementioned cases
is to enhance the Channel Estimation Capacity (CEC), which
means to increase the number of estimated user on nar-
row band. Though Time Domain Duplex (TDD) massive
MIMO systems have already facilitated the acquisition of
CSI, directly increasing the number of MU to be estimated
on a narrow band is not realistic. Given that the Constant
Amplitude Zero-Autocorrelation (CAZA) SRS sequences are
based on phase shift, conventional Discrete Fourier Trans-
mission (DFT) based approaches will let desired taps over-
lap [28] and the TimeDomain (TD) denoisingwill be serevely
degrade, while the Conjugated Separation (CS) methods
introduce the errors caused by the inequality of adjacent
subcarriers. Thus, new technologies should be considered to
enhance CEC.

Recently, Denoising Convolutional Neuron Net-
work (DnCNN) becomes the promising technique to tackle
with image denosing in Computer Vision (CV). In [29],
DnCNN is firstly proposed to deal with the denoising tasks
of gray and color image. By adopting the residual network
structure proposed by K. He et al. [30], [31], a wider and
deeper CNN can be implemented without concerning about

the gradient explosion or vanishment. Given a CNN structure,
the determination of the network weights can be formu-
lated as non-convex optimization programming. Compared
to the algorithms that include the manual feature extraction
procedures, for example, the BM3D or C-BM3D where the
block-matching is needed [32], the end-to-end DnCNN can
learn the features by itself with gradient descent. Though
the non-convex optimization of deep networks is mathe-
matically intractable, DnCNN can offer the state-of-the-art
performance.

Though estimating users with deep learning techniques
has the potential to be hot topic in mobile intelligence,
directly adopting DnCNN in MU channel estimation is
not realistic because of three reasons. First, DnCNN is
used to process real-numbers, while the Channel Frequency
Responses (CFRs) are complex-numbers. Second, the MU
CFRs are not matrix-wise data like images. Third and per-
haps the most significant, the end-to-end latency of utilizing
DnCNN to implement MU channel estimation and enhance
CEC must satisfy the practical constraints of 5G.

To alleviate the problem of insufficient CSI in MGMCa,
this paper focuses on MU CEC enhancement of narrow band
based on DnCNN. Facing all of aforementioned challenges
above, our contributions include:

1) Based on complex-number DnCNN which is intro-
duced in [33], we provide a feasible MU CEC
enhancement method of narrow band. The pro-
posed method includes three parts: SRS modifica-
tion, MU-DnCNN (M-DnCNN) denoising and chan-
nel restoration. In SRS restoration, we let MU use
SRS generated from different SRS sequence. In M-
DnCNN denoising, we first preprocess the CFRs and
design the suitable networkwhose parameters are given
by comprehensively considering the time complexity
and performance. In channel restoration, we separate
the MU channels based on the results outputed by
M-DnCNN.

2) The practical 3-D MIMO channel model is utilized
to evaluate the proposed method. The Normalized
Mean Square Error (NMSE) performance is provided.
Besides, the time complexity, operation time and other
parameters are also evaluated to prove the feasibility to
meet practical constraints.

Since here we aim to open the eyes of academia to implement
MU channel estimation with DnCNN or alternative deep
learning techniques, this paper only presents the preliminary
exploration based on simple configurations such as narrow
band and single cell. We emphasize that this issue is inspired
by MGMCa scenario but not limited to this case.

The organization of this paper is as follows. In Section II,
the related work including 3-D MIMO channel model, SRS
sequence generation and DnCNN is presented. In Section III,
we introduce the proposed M-DnCNN Channel Estimation
(M-DnCNN CE). Section IV provides simulation results.
Conclusions are given in Section V.
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Notations: Capital and lowercase bold letters denote the
matrix and vector, respectively. x(i) stands for the ith element
of vector x, while X(i, j) denotes the element in the ith row
and ith column of matrix X. The N × N identity matrix is
denoted as IN . (·)H stands for Hermitian transpose. x̄ denotes
conjugated value of scalar x. ‖·‖2 denotes l2 norm of vectors.

II. REVIEW OF PREVIOUS WORK
The related work includes three parts, namely the channel
model adopted in the simulation, the previous MU channel
estimation methods and DnCNN.

A. 3-D MIMO CHANNEL MODEL
In order to make better use of spatial diversity, 3-D MIMO
becomes a promising technology. In 3-D MIMO systems,
the BS is equipped by a two-dimensional uniform rectangular
array, which facilitates the BS to utilize the vertical dimension
and enhance the accuracy of beams. In [34], the genera-
tion method of 3-D channel is provided. The calculation of
channel coefficient between any pair of BS antenna and user
antenna is given in [34].With the channel coefficients, the TD
wireless channels of can be obtained. By implementing DFT
on TD Channel Impulse Responses (CIRs), the CFRs of
frequency domain can be calculated.

B. EXISTING MU CHANNEL ESTIMATION METHODS
Numerous works with respect to channel estimation are pro-
vided in previous reaserches, but they are mainly focused on
single-user channel estimation. Classical pilot-aided channel
estimation methods, such as Least Square (LS), DFT and
Minimum Mean Square Error (MMSE), are well studied in
terms of estimation accuracy, time complexity and other prac-
tical constraints. By contrast, the researches of MU channel
estimation are still needed to be explored. During estimating
MU wireless channels, the received signals of BS should not
only be denoised, but the superimposed signals be separated.
Under this case, the phase shift of SRS sequences are of
great help. With the characteristic that different users have
equal inter-separation of phase, the MU channel estimation
methods can be divided into two categories, namely the CS
method and DFT-based approaches.

CS is an engineering solution of MU channel estimation.
In CS method, it is proposed to denoise and separate the MU
channels in frequency domain. Given that CSmethod is based
on the phase difference caused by cyclic shift, the pilot points
on the same subcarriers between different MUs are generated
with the same base sequence but different phases. The phase
difference is caused by cyclic shift indexes of antenna ports
(which can be denoted with ncs,p̂SRS, and the details are pro-
vided in III-A). Under this case, LS method is the first step
of CS method, which can help to eliminate the phase shift
of the user to be estimated while shift the phases of other
MU users with fixed proportion. After that, by averaging
the signals on adjacent subcarriers, the estimated channel is
obtained. Repeating the procedures for subcarriers of MU

users, we can obtain the channels. However, CSmethod is just
a preliminary MU estimation approach. CS method almost
does nothing about denoising but separates the channels of
MU. When the channels on a number of adjacent subcar-
riers are not very similar, the performance will suffer from
two aforementioned kinds of errors together and degrade
severely.

Different from the CS method, DFT-based approaches are
proposed to estimate MU channels in TD. DFT-based meth-
ods are based on the property that the desired energy concen-
trates on several taps while the noise spreads the whole TD
region. In Classical DFT-based (C-DFT) method, four steps
are included, namely LS estimation, Inverse DFT (IDFT)
transformation, extra-window denoising and intra-window
denoising. With the help of the property that different users
have different cyclic shift indexes, by implementing LS esti-
mation and IDFT transformation we can let the desire taps of
different MU users locate on different region. Extra-window
denoising means to extract the desired taps of the user under
estimation, while intra-window denoising stands for nulling
the noise taps in the window with the denoising threshold,
which can be calculated according to the assumed number of
significant taps. The drawbacks of C-DFT are obvious. First,
it fails to utilize the property of multiple antennas. Second,
it did not discuss how to determine the number of signifi-
cant taps, which may introduce severe degradation when the
significant taps number are apparently different in practical
wireless channels. In our previous work [28], the Enhanced
DFT-based (E-DFT) method is proposed. E-DFT is based
on that the number of significant taps between Line-of-Sight
(LoS) and None-Line-of-Sight (NLoS) users are much differ-
ent, and includes LoS/NLoS identification, the donoising of
LoS/NLoS users and existence test. During the the donois-
ing of LoS/NLoS users, the determination of significant tap
number is introduced, and the existence test zeroing the taps
using the spatial stationary property of 3-D channel model.
However, even with E-DFT, it is not realistic to enhance the
CEC capacity. More precisely, for the case of narrow band,
the number of taps in the window is inverse proportional to
the number of MU users. Under this case, the intra-window
denoising will be invalid, which is the major challenge in
CEC enhancement for MU chanel estimation.

C. DnCNN
DnCNN is a rising technology for image denoising. There are
several image denoising techniques existing besides DnCNN,
such as BM3D, LSSC and WNNM. By assuming nonlocal
self-similarity (NSS) models to exploit image priors, these
methods can achieve decent performance. However, they
have two major drawbacks compared with DnCNN. First,
the models involved in those methods are usually non-convex
problems and the parameters are manually chosen, there
always exists room to improve. Second and more important,
the optimization of those methods is time-consuming and
complex [29]. Given that the latency is a significant constraint
in practical cases and the end-to-end learning of DnCNN is a
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FIGURE 1. The pipelines of common real-number and complex-number DnCNNs.

natural advantage, DnCNN is more preferred to combine the
channel estimation in wireless communications.

In deep learning based denoising, gradient descent is the
key method to search the local optima for problems. The
challenge of conventional deep learning based regression
is the vanishing or exploding gradient. DnCNN solves this
problem based on the researches in [30], [31]. There are three
important components as follows.
•Convolutional layer (Conv). The convolution is donewith

block-wise and the unit of convolution is filter, which is equal
to the channel number of the next layer. Note that the channel
in DnCNN represents the dimension of data and is different
from the wireless channel. To distinguish from the wireless
channel, we coin the channel in DnCNN as ‘CH’. Conv is
used to extract high-layer features from the Input Feature
maps (IFmaps). The results can be called with Output Feature
maps (OFmaps). Conv finds the features in a larger area and
reduces the complexity compared to full connection.
•BatchNormalization (BN). BN helps to resolve the gradi-

ent explosion or gradient vanishing. For a very deep network,
the changes of amplitude will be accumulated with extracted
features passing the layers. If the gradient is small, then only
the weights of first several layers can be updated and the
change of the layers afterwards can be neglected. On the
other hand, if a large gradient exists in the first several layers,
the weights of last several layers will fluctuates severely and
even obtain invalid extreme values. BN solves this problem
by normalizing the data over a batch of samples. Then for
each layer, its IFmaps can be regarded as ‘‘original samples’’.
Though it may sacrifice some features, BN guarantee the
updating steps as valid values.

• Restricted Linear Unit (ReLU). ReLU introduces non-
linearity. It filters the negative values while keeps the
non-negative values unchanged. ReLU is the common
used non-linearity unit for Convolutional Neuron Net-
works (CNNs).

The Conv, BN and ReLU together form the middle layer
of DnCNN. In [29], 20 layers are configured for blind
denoising. Besides the middle layers, the input layer is con-
sisted of Conv and BN, while only one Conv is used as
the output layer. With this structure, DnCNN denoises the
images by learning Gaussian noise rather than the content of
images. The noise is the factor that more impacts the accu-
racy. This makes DnCNN an extendable denoising technique
for the various desired information polluted by Gaussian
noise.

As the signals in wireless communications are always
complex-numbers, complex-number DnCNN is needed to
process the wireless signals. Since the Cauchy-Riemann
condition is strict, the complex-number is not differen-
tiable anywhere. The method which separates the real-part
and imaginary part of complex-number into adjacent CH,
which is introduced in [33], becomes a simple but fea-
sible way to handle this case. Besides, the complex-
number BN and ReLU is introduced as well. The common
real-number and complex-number DnCNNs are depicted
in Fig. 1.

III. SYSTEM MODEL
A. SRS SEQUENCE GENERATION
According to [40], the generation of SRS sequence includes
two parts, namely cyclic shift and the base sequence. The SRS
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sequence generation can be described with

r
p̂,ncsSRS
û,v̂ (m)=exp(jmαp̂,ncsSRS )r̂û,v̂(m), 0≤ m <MRS

sc (1)

where r and r̂ stand for SRS sequence and base sequence,
respectively, û denotes the group number, v̂ denotes the base
sequence number within the group,MRS

sc represents the length
of SRS, and for the (ncsSRS)

th sequence and the antenna port p̃,
the phase of cyclic shift αp̂,ncsSRS is calculated with

αp̂,ncsSRS
= 2π · ncs,p̂SRS/n

cs,max
SRS , (2)

where the ncs,max
SRS is the number of cyclic shift and

ncs,p̂SRS =
(
ncsSRS + n

cs,max
SRS p̂/Nap

)
mod ncs,max

SRS , (3)

where Nap is the number of total antenna ports.
The calculation of base sequence r̂ can be given by

r̂(m) = xq
(
m mod NRS

ZC

)
, 0 ≤ n < MRS

sc , (4)

where xq denotes the qth root Zadoff-Chu sequence, and NRS
ZC

is the largest prime number such that NRS
ZC < MRS

sc and
represents the length of xq, which can be calculated with

xq(m)=exp

(
−j
πqm(m+ 1)

NRS
ZC

)
, 0 ≤ m ≤ NRS

ZC − 1 (5)

where q is given by

q =
⌊
q̂+ 1

/
2
⌋
+ v̂ · (−1)b2q̂c. (6)

where q̂ can be calculated with

q̂ = NRS
ZC · (û+ 1)

/
31, (7)

In this paper we let p̂ = 0 to simplify the SRS sequence gen-
eration. The number of SRS sequences adopted is preferred
to be a divisor of ncs,max

SRS , and the phase of adjacent sequences
are usually equally distributed.

B. THE SUPERIMPOSED RECEIVED SIGNALS
We consider the number of antenna of BS is NT, assume the
length of comb-type arranged SRS and the bandwidth to be
estimated are M subcarriers. Let K denote the number of
MUs. The received signals of BS can be given with

y =
∑K

k=1
hk · Sk + n, (8)

where both y, hk and n are inM ×1 dimension and represent
received signals, channel transform vector of user k and
additive Gaussian noise whose variance is σ 2

n , respectively,
and pilot matrix Sk ∈ CM×M whose diagonal elements are
pilot points standing for the SRS sequence for user k .

IV. M-DnCNN CHANNEL ESTIMATION
To enhance the channel estimation capacity on narrow band,
in this section we provide the M-DnCNN CE.

A. OVERVIEW OF M-DnCNN CE
In classical DnCNN based image denoising, DnCNN can
estimate element-level noise for one image, which is help-
ful to combine DnCNN with channel estimation. However,
in MU channel estimation, especially on narrow band, one
difficulty is to separate the received signals into different
wireless channel of users. It is not realistic to restore MU
channels with each CFR individually. One natural charac-
teristic can be utilized is that a segment of adjacent sub-
carriers are likely to have similar complex-numbers. Benefit
from this property, we can regard those CFRs are with same
complex-number values, and establish equation set to sep-
arate the wireless channels of different users. The pipeline
of proposed M-DnCNN CE is given in Fig. 2. But for the
ease of understanding, we will illustrate the method with the
order of M-DnCNN denoising, channel restoration and SRS
modification. Note that the training and testing of M-DnCNN
is separated. We train the M-DnCNN offline and estimate
users by testing online. This separation makes it possible to
estimate MUs on the premise of satisfying 5G end-to-end
latency. The network is fine-tuned periodically because the
fine tuning can already to meet the requirements of accuracy
and generalization errors.

B. M-DnCNN DENOISING
Similar to the conventional methods, our M-DnCNN denois-
ing starts from the LS estimation, but the different part is
that we adopt the same SRS sequence to implement LS
estimation. More precisely, we assume the pilot matrix SHk0
as a constant matrix and k0 is an integer between 1 and
K . By learning the noise on each subcarrier and antenna,
M-DnCNN can help to output the superimposed channels
which is consisted of channels of different users.

We assume the parameters of M-DnCNN is 2. We denote
the LS estimation of nth received signals using pilot matrix
Sk0 as hLSn,k0 , and its rearranged IFmap as ĤLS

n,k0
. Similarly,

we use n̂Fn,k0 to stand for the flattened vector of OFmap which
is rearranged from nn · SHk0 . Let M and NB represent the
number of subcarriers and the batchsize, respectively, and
loss function of M-DnCNN can be described with

L(2)=
1

M ·NT ·NB

NB∑
n=1

∥∥∥f (2;βĤLS
n,k0 )− βn̂

F
n,k0

∥∥∥2
2
, (9)

where f (2;βĤLS
n,k0

) represents the training function whose
results are in vector form, and the β is an amplification
factor introduced to compensate the amplitude defects of
samples and facilitate the setting of Learning Rate (LR). For
simplicity, we omit k0 in the following parts.
The major steps of M-DnCNN training/testing include:
• Step 1: The pre-process of IFmaps/OFmaps. We think

keeping the initial spatial-frequency dimension helps to
learn the inner relationship and potential features. we sep-
arate the real/imaginary parts of hLSn into different chan-
nel. and arrange the LS estimation on every antenna into
the matrix ĤLS

n . More precisely, the dimension of ĤLS
n is
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FIGURE 2. The pipelines of M-DnCNN CE (from left to right).

(NTr,M , 2), where NTr is the number of training antenna
and the last dimension represents CH. Finally, multiplying
amplification factor β, we obtain IFmaps/OFmaps.
• Step 2.1: The training of M-DnCNN. The structure

of M-DnCNN is based on complex-number DnCNN, while
some aspects are different: 1) We consider a larger dilation
rate to enhance the receptive field. The utilization of dilation
rate in convolution is inspired from semantic segmentation,
and the dilation rate can be regarded as the inter-separation
between the pixels of Fmaps. The reasons of adopting larger
dilation rates are that the CFRs on narrow bands may have
similar values, and a larger receptive field helps to learn
the features from a larger area; 2) We use a larger kernel
in the output layer for a better use of features extracted by
middle layers. The deceasing LRs are adopted. LR means the
amplitude that is used by the neurons to adjust their weights.
If we adopt a very large LR, it exists high possibility that the
weights cannot converge, and the results diverge from good
solutions, while always adopting relatively small LR will
cause a waste in training duration. From this sight, in order to
prevent the oscillation near the minima, it is recommended to
slow down the parameter updates by decreasing the LRs. For
epoch ne, the LR vLR can be calculated with

vLR =
v0

1+ ne · adr
, (10)

where v0 is the initial LR and adr denotes the decay rate.
• Step 2.2: The testing of M-DnCNN. The OFmaps of

M-DnCNN are in vector form. Three operations are needed to
obtain the denoised complex-number superimposed channels
whose dimension is (NT,M , 1). First, we remove the ampli-
fication by dividing the OFmap with β. Then, the divided

results are rearranged back into (NT,M , 1) dimension. Third,
we minus the initial IFmap with the rearranged results.

Note that step 1 and 2.1 are for M-DnCNN training, while
step 1 and 2.2 are for M-DnCNN testing.

C. CHANNEL RESTORATION
We denote the denoised spatial-frequency channels of nth

received signals as H̃n. The superimposed channel h̃(uT)n on
BS antenna uT, which is the uthT row of H̃n, can be given by

h̃(uT)n =

∑K

k=1
h(uT)k · SMk,k0 + e(uT), (11)

where e(uT) is the denoising error whose MSE is equal to the
loss, and SMk,k0 represents the diagonal matrix, which can be
calculated with the modified SRS sequence SMk0 and S

M
k . Note

that SMk is in vector form. Given that all the operations below
are the same for all BS antennas, thus we omit the super-
script ‘‘(uT)’’ here for simplicity. Then for mth subcarrier,
we have

h̃n(m) = hmSI · S
vec
m + e(m), (12)

where hmSI = [h1(m), h2(m), . . . , hK (m)] stands for
the MU channels on mth subcarrier, and Svecm =[
sM1 (m)s̄Mk0 (m), s

M
2 (m)s̄Mk0 (m), . . . , s

M
K (m)s̄

M
k0
(m)

]T
.

We roughly regard the CFRs on adjacent subcarriers are
with the same value. For starting index m satisfying mK =
m+K −1 ≤ M , we can establish equation set in matrix form
with

hmSI · S
Mat
(m,mK ) = h̃(n,(m,mK )), (13)
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where

SMat
(m,mK )=

[
Svecm ,Svecm+1, . . . ,S

vec
mK

]
=

 s
M
1 (m)s̄Mk0 (m) · · · sM1 (mK )s̄Mk0 (mK )

...
. . .

...

sMK (m)s̄
M
k0
(m) · · · sMK (mK )s̄

M
k0
(mK )

, (14)

and

h̃(n,(m,mK )) = [h̃n(m)+ e(m), h̃n(m+ 1)+ e(m+ 1),

. . . , h̃n(mK )+ e(mK )]. (15)

Besides, if the denoising error is small, we can neglect e(m).
Thus we can separate the channels for MUs with

hmSI = h̃(n,(m,mK )) ·
(
SMat
(m,mK )

)−1
. (16)

Given that practical adjacent CFRs may be slightly differ-
ent, another operation is done to lower MSE and the channel
for user k ′ is given by

h̃k ′ (m) =


h1SI(k

′), m ≤ 1+ bK−12 c

hKSI(k
′), m ≥ K − bK−12 c

hmSI(k
′), otherwise

(17)

Note that the sufficient and necessary condition of (16) is
that SMat

(m,mK )
must be invertible. However, the configurations

in specifications cannot fulfill the non-singularity of SMat
(m,mK )

when K is larger than ncs,max
SRS . To solve this problem, SRS

must be modified to match the proposed M-DnCNN CE.

D. SRS MODIFICATION
The current configuration in specification fails to support
the case when K > N cs,max

SRS . Besides, if we only use the
SRS sequences obtained from the same base sequence by
shifting the phases, it may sacrifice the latent features due
to the inner-relationship between different sequences. Given
that different base sequences are linearly independent and the
phase granularity is limited, we propose to modify SRS as
follows.
•When K > N cs,max

SRS , we let N cs,max
SRS = K . It is not be hard

to find that the maximum estimated MU can be expanded
to M . This can be seen the operation of decreasing phase
granularity.
•We adopt different of base sequence to form a new SRS

sequence. More precisely, here we only adopt different û
while we set v̂ = 0 for simplicity. For user k ′, we first obtain
his initial sequence of K points with

SInik ′ =
[
sMu1,k ′ (0), s

M
u2,k ′ (1), . . . , s

M
uK ,k ′ (K − 1)

]
, (18)

where for 0 ≤ m < K , sMk ′ (m) can be given by

sMu,k ′ (m) = r0,k
′

u,0 (m)

= exp(j2πn
k ′

K
) · r̂u,0(m), (19)

where 0 ≤ n < K and u stands for the group number for user
k ′. Note that for any two users k ′ and k ′′, their group number
ûk ′ and ûk ′′ are unequal. Finally, we obtain SMk ′ with

SMk ′ = SInik ′ ·6rep, (20)

where 6rep ∈ CK×M stands for the matrix which aims to
repeat the initial sequence nr = M/K times, and6rep is given

by 6rep =

[
I(1)K , I

2
K , . . . , I

(nr)
K

]
.

It can be easily found that the modifications above will
not change the property of constant amplitude and zero-
autocorrelation. Besides, we can also find that SMat

(m,mK )
is

invertible. This is due to the reason that different base
sequences are linearly independent, and the matrix formed by
a set of linearly independent vectors must be with full rank.
Though using only one base sequence in (18) can also meet
the requirements for the non-singularity of SMat

(m,mK )
, letting

adjacent subcarriers adopting different pilot points generated
with various group can dig the latent feature better.

Since it is a preliminary exploration in this paper, the afore-
mentioned equations only show the simple case where K
is a divisor of M . However, for the case where K is not
a divisor of M , the solution can be given in the similar
way. We can let the subcarriers whose number is equal to
the maximum multiple of K adopt the above operations to
enhance the CEC capacity. For the rest of subcarriers, if the
steam splitting scenarios are considered, we can use reminder
of subccariers to estimate the channel of high-rate users. For
example, when K = 11 and M = 24, two subcarriers are
left. We can use these two subcarriers to estimate two of users
who require better performance. The design of this case can
also comprehensively consider other prior information such
as LoS/NLoS conditions. Note that the utilization of the rest
of subcarriers may need to train other M-DnCNN models.

E. COMPLEXITY ANALYSIS
We utilize FLoating-point Operations Per Second (FLOPS)
to evaluate the time complexity. For the fairness during the
comparison, we consider the time complexity of estimating
one sample, which means that we consider the time complex-
ity of estimating the channels on NTr antennas for K MUs.
The time complexity of M-DnCNN CE consists of

two parts: the time complexity of channel restoration and
M-DnCNN denoising that includes Conv and BN. The time
complexity of ReLU are neglected. In [35], the detailed algo-
rithm of BN is provided. The procedures includes calculating
mini-batch mean, mini-batch variance, normalize and scale
and shift. The time complexity of BN TBN can be given by

TBN ≤ O ((NIL + NML)MNTr) . (21)

We use less-than-equal symbol in (21) because the operations
of calculating mean and variance are shared. Inspired by [36],
[37], the time complexity of Conv can be described with

TConv=O
(
MNTrN 2

CH

NIL+NML+NOL∑
n=1

L2Ker(n)

)
, (22)
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TABLE 1. Time complexity of four MU channel estimation methods.

where LKer(n) stand for the length of kernel of layer n. Then
the time complexity of M-DnCNN denoising is given by

TM-DnCNN = TConv + TBN, (23)

and it is not hard to find that TBN � TConv, thus we have

TM-DnCNN≈O
(
MNTrN 2

CH

NIL+NML+NOL∑
n=1

L2Ker(n)

)
. (24)

As the results of inversion for
(
SMat
(m,mK )

)−1
are constant, they

can be pre-calculated, thuswe do not consider this part of time
complexity. Then the time complexity of channel restoration
in (16) and (17) can be calculated with

TCR = O
(
K 2(M − K + 1)NTr + KMNTr

)
≈ O

(
K 2(M − K + 1)NTr

)
. (25)

Given that TCR is much smaller than TM-DnCNN, we use
TM-DnCNN to approximately calculate the time complexity of
M-DnCNN CE. Based on this result, the typical complexi-
ties calculating structure matrix presented in [38] and time
complexity in [28] and [39], the time complexity of four MU
channel estimation approaches are provided in Table 1.

Though it seems that the time complexity of M-DnCNN
CE is much larger than three conventional MU channel
estimation methods, M-DnCNN operates on GPU and deep
learning based platform and the operating time is acceptable.
The corresponding operation information will be provided in
section IV-C.

V. SIMULATION RESULTS
A. SYSTEM CONFIGURATION
The experiments are carried out with Keras whose backend
is Theano, which runs on a PC with Intel (R) Xeon (R)
E5-2620 v2 CPU (2.10GHz) and a Nvidia Titan X GPU
(12G). The system parameters are provided in Table 1.

The generation of training and testing datasets includes two
steps. First, we drop the users using 3-D channel model spec-
ified by 3GPP to generate a large amount of wireless chan-
nels, which we call as original datasets. Then we randomly
combine K users to obtain training samples and add the noise
according to the total received signal and the SNR. The sec-
ond step is repeated until the number of samples is the same
as configured size of training dataset. We take an example for
the generation of training dataset when SNR is 0 dB.WhenK
is 12, the number of single-user wireless channels in original

TABLE 2. Simulation parameters.

dataset is 12000. By randomly combining non-repetitive K
users we can obtain 1000 received signals. Then we add
the noise according to 0 dB SNR and obtain 1000 training
samples. The operations above are repeated for 50 times to
obtain the training dataset that contains 50000 samples. As for
testing dataset, we only need to repeat the aforementioned
two steps for 2 times.

We emphasize the following four points.

1) Since 3-D channel model fails to support the updat-
ing of user location, we generate the original datasets
by dropping many times. More precisely, we drop
100 users each time, and then we drop 80/120 times
to obtain 8000/12000 samples for original dataset.
In our preliminary exploration, we consider a rela-
tively stationary case, which means that the mobility of
vehicles and pedestrians will not impact channels too
much. In this way, the channels in original datasets can
nearly meet the generalization of training datasets.

2) As the selection of MUs in MU channel estimation is
based on resource allocation schemes in MGMCa, for
any one user, he can be estimated with any other users
together. Thus the combination of channels in original
datasets is closer to practical cases.

3) The addition of noise is from the perspective of BS and
the superimposed channels of MUs are desired signals.
Besides, the Gaussian noise is added independently on
each subcarrier according to the noise power. Though
we want the SNR to be a single value for a training/
testing dataset, the SNR of the samples is dispersive.
This characteristic is good for practicability and we do
not bother to train on multiple SNRs.
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FIGURE 3. The NMSE performance of four methods. The CFR shift operation of (17) is done for CS and ncs,max
SRS = K . The significant tap number

Ms = 1. k1, k2, γ , β and α in [36] are configured as 0.75, 0.6, 0, 0.25 and 1.25, respectively.

4) The number of BS antenna is configured as 256 when
generating the original samples. We choose 16 adjacent
antennas from 256 total antennas to establish IFmap
andOFmaps.More precisely, we select antennas whose
indexes are 1−16 for simplicity. As long as the selected
antennas are adjacent, the indexes will not impact the
performance.

B. PERFORMANCE ANALYSIS
The NMSE performance of four channel estimation
approaches are provided in Fig. 3, and the results of two
MU configurations are given in subfigures Fig. 3-(a) and
Fig. 3-(b). The estimation results are collected from every
antenna and user. More precisely, each point in Fig. 3 is the
mean of 2000×16×8(12) = 192000(288000) NMSE results.
The simulation parameters of comparison methods are given
in the caption of Fig. 3. The configurations are based on our
simulation experience and we have empirically determined
that it produces good solutions. Note that µ3 = 0 means the
existence test for taps in E-DFT are canceled, because the
M/K is too small to have the taps containing pure noise.
From Fig. 3, E-DFT shows a better performance than

C-DFT when K = 8, since it can distinguish the LoS and
NLoS users and provide a better TD denoising for LoS users.
When K is increased, both the NMSE results of C-DFT and
E-DFT degrade, but the performance of E-DFT degrades
more severely. This is mainly due to the reason that its
LoS and NLoS identification becomes more inaccurate and
the mismatch between the denoising method and LoS/NLoS
conditions may zero the desired taps. CS method shows the
worst NMSE results whenK = 8, because it merely separates
the MU channels based on the LS estimation results while the
denoising ability of LS estimation is limited. The good part
of CS method is the robustness when SNR is small, and a
larger K only impacts the NMSE performance when noise
is small. This degradation is due to the fact that the CFRs
of the adjacent subcarriers are severely unequal for some

NLoS users, and the averaging between more subcarriers will
aggravate this problem.

Compared with three classical methods, the proposed
M-DnCNN CE realizes a great improvement for both K = 8
and K = 12 cases, and when SNR is 0 dB the perfor-
mance gaps increase to 10 dB and 8 dB, respectively. This
enhancement comes from the good denoising ability of M-
DnCNN. Though the mathematical description of received
signals for MU channel estimation is a set of wireless chan-
nels multiplied by different SRS sequences, the received
signals can be regarded as the wireless channels for one
‘‘virtual’’ single user multiplied by one of SRS sequences.
Actually, this idea has already been embodied in the prepro-
cessing step of M-DnCNN where a fixed SRS sequence is
adopted. Then the samples in training datasets can be seen
as a huge amount wireless channels of virtual single users
distributed in the cell. Given that we consider a relatively
stationary case, the users whose locations are near may have
similar wireless channels. M-DnCNN is an end-to-end net-
work that can automatically find the users that may have
similar channels. Benefit from big amount of data and the
zero-mean property of noise, the M-DnCNN can predict the
noise on each subcarrier. This utilization of similar channels
can also be explained with theory of Wiener filter based
denoising. The similar channels from different neighbor users
just like the channels of one user collected from other OFDM
symbols. The M-DnCNN can multiply those channels with
different weights to restore the desired channels. Though
M-DnCNN still faces the same problem as CS, its denoising
ability achieves the great improvement. Please note that the
assumption of stationary is used to describe the degree of
stability in spatial domain rather than time domain.

According to the simulation results in Fig. 3, the NMSE
of conventional methods is too large when SNR is small,
thus the estimation accuracy can hardly support the transmis-
sion afterwards. Actually, if the comb-type arrangement and
classical methods are adopted, the number of MU is usually
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FIGURE 4. The loss curves for different SNR and number of MU.

FIGURE 5. The NMSE performance considering different SNR bias or antenna groups.

set no larger than 4 users. Just as depicted in Fig. 3, three
comparison methods fail to estimate MUs that is not less than
8 users. M-DnCNN CE can guarantee that NMSE is always
smaller than -6.5 dB, thus we can say that M-DnCNN CE
achieves the CEC enhancement and the CEC is tripled.

The loss curves for different SNR and number of MU are
depicted in Fig. 4. The loss given in (9) can be regarded the
mean square errors between predicted results and noise-free
LS-estimated results. From Fig. 4, M-DnCNN converge with
no over-fitting, thus the configurations of epoch and LR are
suitable. We emphasize that the degradation in Fig. 4-(c) and
Fig. 4-(d) can be alleviated by increasing the depth of M-
DnCNN. However, by comprehensively considering the time
complexity, we think the current setting ofM-DnCNN is good
enough to meet the requirements, thus it does not need to
make the network deeper or wider.

C. FEASIBILITY DISCUSSION
In this subsection, we will firstly discuss the performance
considering the mismatch of SNR. In practice, the SNR of
the samples to be estimated may not match the trained model,
i.e., the SNR of sample may be 2 dB but the model is trained
with the dataset whose SNR is 0 dB. Then we will discuss

the performance considering the mismatch of different anten-
nas. In our configurations, we select 1-16 antennas to train
the models for simplification. However, for massive MIMO
systems, the amount of antennas equipped by BS is larger
than 16. Here we will evaluate whether the model trained
with 1-16 antennas is suitable for the denoising of other
antennas, i.e., 17-32 antennas and so on. Finally, to prove
that the proposed M-DnCNN can meet the practical latency
constraint, we provide the relevant operation time.

The NMSE performance considering different SNR bias
or antenna group is provided in Fig. 5. The definition of SNR
bias is that the range of the difference between the SNR of
samples and that of model, and the difference is assumed
to be uniformly distributed. For example, when SNR bias is
2 dB, for any model that is trained with the dataset whose
SNR is γ , the SNRs of samples range for [γ − 1, γ + 1] dB.
For the ease of illustrations, we use antenna group to describe
different antennas. For any antenna group nAG, it stands for
the samples which is generated with the CFRs on the antennas
whose indexes range for [nAG × 16− 15, nAG × 16]. Please
note that SNR-bias 0 dB and antenna group 1 is the evaluation
configuration of M-DnCNN in Fig. 3, and the SNR bias and
antenna group are individually discussed.
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TABLE 3. Operation information : TE is offline training time per epoch;
TCE is online testing time per sample.

According to Fig. 5-(a), the SNR-bias has little impact on
NMSE performance. This is mainly due to the fact that the
SNRs of training samples are subjected to a distribution rather
than a single value. Though the existence of SNR-bias will
slightly increase the range of the SNR distribution of samples,
themodels can still covermost of cases. FromFig. 5-(b), there
is a negligible performance difference among the cases of
different antenna groups. This is because that the TD channels
of different antenna groups have similar features, and our
training strategy that using CFRs on antenna group 1 to train
the model has already caught sufficient latent features to
predict high-precision results.

The operation information for the M-DnCNN training and
testing are provided in Table 3. From Table 3, the utilization
of GPU makes it possible to finish online M-DnCNN CE on
the permise of satisfying practical 1 ms constraint. Though
the number of MU are different, the network structure and
the number of neurons are the same inM-DnCNN. Therefore,
the operation time are similar. We emphasize that the training
may be time-consuming, but fine-tuning will much faster
because of less epochs. Besides, the operation time is further
decreased with the development of equipment in the future.

However, we have to frankly state the underlying chal-
lenges. The collection of samples are based on 3-D channel
model. Though it is supported by 3GPP, there still exists a
gap between the generated and real-world channels. We think
that training and testing datasets should include the samples
collected in practice. This can help to fit our method with
the cases of real world. However, the aim of this paper is
to provide a new way to enhance the CEC capacity, and
good feasibility has been shown for the simplified case. The
results of Fig. 5 shows that the proposed M-DnCNN CE
is robust even when the samples are slightly polluted, and
using the feature maps generated with the CFRs on 16 anten-
nas is already capable of M-DnCNN based massive MIMO
denoising. In addition, the operation time TCE is less than
1 ms, which satisfies practical latency constraints, thus the
proposed M-DnCNN CE shows good feasibility.

VI. CONCLUSION
Facing the insufficient channel information caused by limited
SRS resources that is a crucial problem faced by MGMCa,
in this paper we propose M-DnCNN CE to enhance CEC
for narrow band. Three parts are included in the M-DnCNN
CE, which is SRS modification, M-DnCNN denoising and
channel restoration. We validate the feasibility of M-DnCNN
CE with 3D-MIMO channel model specified by 3GPP. The
results show that M-DnCNN CE realizes the great improve-
ment of NMSE performance especially when noise is large
compared to three conventional methods, and the CEC is even

tripled compared to the configurations of specification. The
operation time, SNR-bias and different antenna groups are
also discussed. We find that the configurations is capable of
estimating massive antennas. Besides, M-DnCNN satisfies
practical latency constraint and shows good robustness.

However, the design methodology is still in its infancy and
of exploratory nature, there are still some aspects remained
to be studied. First, does there exist the optimal configuration
forM-DnCNN that can realize the near-accurately denoising?
Second, given that the variations of adjacent CFRs between
LoS and NLoS users are different, can we use LoS/NLoS
conditions to clean the training datasets and further enhance
the MU channel estimation performance? Third, in proposed
SRS modification, more base sequences are utilized for one
BS, thus a system-level pilot allocation scheme should be
investigated to avoid pilot contamination. Fourth, the pro-
posal of M-DnCNN CE is inspired by the problem of insuf-
ficient CSI in MGMCa, but M-DnCNN based CEC enhance-
ment should not be limited to this case. Then how to improve
M-DnCNN to lend itself to various scenarios? The aforemen-
tioned problems are interesting topics, and we will resolve
them in the future work.
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