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ABSTRACT Graphene/silver nanowire composite films have great potential as transparent conductive
electrodes in the field of optoelectronic devices. So far, antioxidant and reducing the junction resistance
are two major parameters in the silver nanowire electrode studies. In this paper, a pseudo-biological inspired
structure for transparent electrodes was proposed by combining hybrid diameters silver nanowire network
with the chemical vapor deposition-grown (CVD-grown) graphene as a passivation layer. Compared with the
traditional structure, the silver nanowire network with this novel structure of human vascular tissue network
greatly reduced the sheet resistance. An environmentally friendly liquid, deionized water, was selected for
the generation of capillary forces at the liquid bridge, thereby improving the wire junction problem. After
welding with the capillary force, the increase in the value of the figure of merit (FoOM = opc / oop) acted a
pivotal part in improving conductivity with excellent optical performance. In addition, graphene was chosen
as an encapsulation layer to protecting silver nanowires from oxidation while improving electrical properties.
Compared with the silver nanowire films with a diameter of 20 nm, the opc / oop of the graphene/silver
nanowire composite film increased by 69.6 % with a sheet resistance of 26.4 2/sq. More importantly,
graphene is supposed to protect silver nanowires from oxidation and moisture, which makes the composite
films promising as electrodes for underwater optoelectronic devices or a possible development in high
humidity environments.

INDEX TERMS Capillary force welding, graphene, hybrid diameters silver nanowire network,

pseudo-biological structure.

I. INTRODUCTION

As the indispensable component of optoelectronic devices,
transparent electrodes (TEs), which are widely used in
organic light-emitting diodes (OLEDs), organic photovoltaic
cells (OPVs), touch screens, electrochromic devices, solar
cells and so on, are facing enormous challenges in order
to meet the needs of human daily work life [1]-[7].
Indium tin oxide (ITO) has been the most widely used
TEs as a conductive film, even though it has a series
of shortcomings [8], [9]. Generally, ITO has extreme low
sheet resistance (10 ~ 20 2/sq), but its transmittance is
severely affected in the near-infrared wavelength range due
to the high-temperature fabrication process. Moreover, the
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development of ITO in transparent electrodes is limited
by scarce resources of indium and the complex processing
flows [10], [11]. Several candidates with different dimensions
expected to replace ITO have been proposed by the pre-
decessors, including conductive polymers [12], carbon nan-
otubes [13], metal nanowires [14]-[16], graphene [17], [18],
etc. Among these candidates, silver nanowire (AgNW) based
electrodes stand out due to their excellent optoelectronic
properties [19]-[21]. In addition, the fabrication process of
the AgN'W electrodes is simple, so that large-scale industrial
production can be realized. However, there are still many
problems to be solved in the practical application of AgNW
electrodes.

AgNW has some innate drawbacks due to the inher-
ent material and structures. First, AgNW films are usually
made by spin coating or spraying, so that the wires are
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just loosely stacked together at junctions, resulting in high
electrical resistance. The nano-gap at the junctions hinders
the transport of charge carriers and reduces the conductiv-
ity of the AgNW electrodes [22]. A series of methods for
effectively improving the contact at the wire junctions have
been proposed, including mechanical pressing [23], thermal
heating [24], addition of soldering agents and so on [25].
However, there are many undesirable cracks generated dur-
ing thermal healing process [26], [27]. Mechanical pressing
destroys useful structures of AgNW films [28], and extra
impurities could be introduced during the addition of sol-
dering agents. Recently, capillary force, which is a driving
force to form tightly-packed structures, has been suggested
as a method for effectively welding metal nanowire films.
Meng et al. reported that the mechanical property and elec-
trical performance of InpO3 networks has been improved by
a capillary-driven welding process [15]. This method is low
cost and environmentally friendly at room temperature, which
does not require any specific equipment and the soldering
agent is deionized water (DI water) without introducing any
impurities. During the evaporation of DI water at the junc-
tions, capillary forces are created at the nanogaps, which are
equivalent to some mechanical pressure to bind the nanowires
together.

Another disadvantage of AgNW is that they are easily
oxidized to AgO or Ag,O when exposed to water or air,
which results in AgNW films instability and high electrical
resistance [29]. At the same time, the AgNW films exhibit a
high surface roughness at the wire junctions, which generate
high leakage current or even cause the devices to failure [30].
In order to overcome these two shortcomings, combining
AgNW with graphene to form a graphene/AgN'W composite
film may be a feasible method. Firstly, as a highly conductive
two-dimensional material, graphene provides more channels
for charge transport, further improving the electrical proper-
ties of the composite film. Secondly, graphene can act as a
passivation layer, which effectively isolates the water vapor
from the AgN'W and ensures the antioxidation stability of the
composite electrode.

In this paper, a novel pseudo-biological stacked structure
for TEs was proposed by combining two different diameters
of AgNW with the CVD-grown graphene as a passivation
layer. Inspired by the hierarchical structure and function
of human blood vessels, hybrid nanowire electrodes were
put forward, which were based on AgNW with different
average diameters and lengths. Afterward, the AgNW net-
works were subjected to DI water for capillary welding, and
the electrical properties were improved. The AgNW films
were encapsulated by graphene, and the graphene/AgNW
composite electrodes further improved the conductivity with
negligible loss of transmittance. Moreover, the composite
electrode encapsulated by graphene exhibits excellent oxi-
dation resistance. Therefore, the composite film has great
potential applicability in transparent optoelectronic devices.
The fabrication procedure of graphene/AgNW composite
electrodes is schematically illustrated in Figure 1.
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Il. EXPERIMENTAL

A. MATERIALS

All chemicals and reagents in this work were acquired
from commercial sources unless otherwise noted. Silver
nanowires with an average diameter of 100 nm and the length
of 100~200 um (LDNW, nanowires with longer diameters)
were purchased from Nanjing XFNANO Materials Tech. And
the ones with an average diameter of 20 nm and an average
length of 12 m (SDNW, nanowires with smaller diameters)
were obtained from Sigma-Aldrich.

B. FABRICATION PROCESS OF THE AgNW FILM

The Si0,/Si substrates were washed with acetone, ethanol
and DI water for 10 minutes respectively to remove impu-
rities and organic matters from the surface. Subsequently,
UV treatment was used to increase the hydrophilicity of the
Si0,/Si surface. Considering the trade balance between sheet
resistance and transmittance of the electrode, it was finally
determined that the concentration of LDNW was 0.8 mg/ml,
and that of SDNW is 1 mg/ml. Then, two kinds of AgNW
with different diameters were spin-coated on the substrate
sequentially, wherein the LDN'W were coated firstly. Finally,
the AgNW film was welded by capillary forces. The DI water
vapor was directed to the sample surface for 10s, and the
distance between the jet and the sample was 5~8 cm. Two
kinds of AgNW with different diameters were stacked to
form a new film, which structure just likes human vascular
networks.

C. FABRICATION PROCESS OF GRAPHENE

Graphene films were synthesized by chemical vapor deposi-
tion (CVD) on an electropolished Cu foils surface using a gas
mixture of Ar, Hy and C,H,, where C,H, was the reaction
precursor. First, the copper foil (25 mm thick, 99.8 %, Alfa
Aesar) was washed by electropolishing, which was a mixed
solution of orthophosphoric acid (50 mL), ethanol (50 mL),
isopropanol alcohol (10 mL) and urea (1 g) at the voltage of
7V for 90s and dried with N5 blow. Second, the dried copper
foils were placed into the CVD horizontal tube furnace. The
entire system was annealed under a mixed gas (Ha: Ar = 1:9)
atmosphere for 30 minutes at 1000 °C. Third, 5 sccm acety-
lene was introduced for 15 mins, and graphene was fabricated
on the Cu foils due to chemical reactions. Finally, one side
of the sample was spin-coated with poly-methyl methacry-
late (PMMA, Sigma-Aldrich, dissolved in chlorobenzene
with a concentration of 40 mg/mL) and the other side was
exposed to Ar plasma (40 W, 60 s) to obtain a single layer of
graphene.

D. FABRICATION PROCESS OF THR

GRAPHENE/ AgNW HYBRID FILM

The Cu foil was etched by the Marble’s reagent and reserve
the PMMA/graphene film. Then, the PMMA/graphene film
was rinsed by DI water and transferred to the AgNW film.
After removing PMMA by acetone, the graphene/AgNW
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FIGURE 1. Schematic illustration of fabrication procedure of graphene/AgNW composite electrodes.

hybrid film was obtained. Finally, the sample was annealed
at 120 °C in order to volatilize all solvents.

E. CHARACTERIZATIONS

Nanostructures of the composite electrodes were presented
through optical microscope (KEYENCE, VHX5000), atomic
force microscope (AFM, BRUKER) and field-emission scan-
ning electron microscope (FE-SEM, Ultra 55 Zeiss). The
sheet resistance of the TEs was characterized by The
Hall Measurement System (ACCENT HL5550LN2). And
the UV-vis spectra (U-3900H) were applied to character-
ize optical properties of the TEs. The Raman spectra of
graphene were characterized by a Raman microscopy system
(LabRAM HR XploRA) with the laser wavelength is 532 nm.
During the tape test, a 10-mm-wide piece of 3M tape was used
to verify the adhesion of AgNW to the substrate.
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FIGURE 2. (a) The 3D model diagram of the human vascular network [31].
(b) Transmittance of AgNW films with different diameters, the inset graph
is the scene through the hybrid AgNW film.

IIl. RESULTS AND DISCUSSION

A novel pseudo-biological structure was proposed in this
paper, which likes a human vascular network. The 3D
model diagram of the human vascular network was shown
in Figure 2a. The human vascular network mainly includes:

177946

arteries, veins and capillaries, in which the arteries and veins
are relatively thick blood vessels, while the capillaries are
relatively thin blood vessels. Arteries, veins, and capillaries
perform their duties. The diameter of the arteries and veins
is larger, so the flow rate of blood is fast and unimpeded.
In contrast, capillaries with a smaller diameter are distributed
widely and bring blood vessels to subtle tissues. This struc-
ture was applied to the AgNW film in this paper, which means
a hybrid film of AgNW with different diameters (HDNW,
hybrid nanowires with different diameters). The LDNW with
better electron transport properties were responsible for most
of the charge movement. At the same time, there were fewer
junctions in the network formed with the LDNW due to
its longer length. As shown in Figure S1, we selected the
minimum critical path for the transmission of the two kinds of
silver nanowires in the AgNW film, and labeled the number
of nodes. It can be seen that there were fewer junctions in the
network formed with the LDNW obviously. Similar results
can also be found in the previous literature [32]. While the
SDNW filled the lacunae that uncovered by LDNW, mak-
ing the entire film more oriented toward a two-dimensional
plane. On another aspect, the film filled by the SDNW
became denser, which is more conducive to charge collec-
tion in device applications. Therefore, TEs with this human
vascular inspired structure has great prospects in device
manufacturing.

In addition, the photoelectric property was improved
by adopting this human-like vascular structure. Figure 2b
showed the transmittance of AgNW films with different
diameters. It is seen clearly that the transmittance of LDNW
film was only 80.6 % at 550 nm, which is much lower than
the SDNW ones (98.4 %). However, the sheet resistance of
SDNW networks was 288 €2/sq, while the sheet resistance
of the LDNW ones was only 13 2/sq. Therefore, we selected
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their respective advantages and spin-coated AgNW films with
this pseudo-biological structure, which greatly reduced the
sheet resistance with little loss of the transmission. The trans-
mittance of hybrid AgNW film increased to 94.5 %, which
was nearly 14 % higher than the transmittance of the film
composed of the LDNW. The inset graph of Figure 2b shows
the scene through the hybrid AgNW film on glass; the red
dotted rectangular shows the area of the sample with the size
of 3 x 2.5 cm?. No vision disparity is observed in the graph,
which also confirms the uniformity and transparency of the
hybrid films.

(a)

(®)

.8

FIGURE 3. (a, b) Schematic illustration of the welding process for AgNW
networks. (c) Schematic of the mechanism of capillary interaction
between a sphere and a plate connected with a liquid bridge.

The AgNW films formed by spin-coating were fabricated
with weak wire connections at the junctions, which led
to instability and high electrical resistance. Figure 3a and b
show the principle that the capillary soldering process applied
in AgNW networks can effectively improve the contact prob-
lem of junctions. Obviously, there were nanogaps at the wire
junctions, which formed positions with large mean curva-
ture [33]. The Kell equation predicts that liquid prefers to
condense at these nanogaps [34]. By the process of directing
water vapor onto the surface of AgNW films, the condensa-
tion occurred and a wire-to-wire liquid bridge was formed to
connect AgNW together [35]. The sample was dried naturally
in the air, and the strong capillary force was generated at
junctions, and finally the purpose of welding AgNW was
achieved during subsequent liquid evaporation. The capillary
force between nanowires was mainly composed of two parts:
the F generated at the corners between the silver nanowires
and the substrate, the F, generated at junctions between
nanowires. The Fy was calculated by the equation 1 [36]:

0
F\ = 2Dy (W + sinoz) (1

where « = 6 + ¢, D is the diameter of the AgNW. 6;
and 6, are water contact angles on the substrate and AgNW
respectively. ¢ is the angle between the silver nanowire and
the substrate. On the other hand, the diameter of the SDNW
was only 1/5 of the LDNW one, therefore the LDNW can
be approximated as a plane compared to the SDNW at the
junction position. We assumed the structure at junctions as a
model of a sphere and a plate connected by a liquid bridge
(Figure 3c). The capillary force can be estimated by the fol-
lowing equation 2 [37]:

47yRcosO

Fy= YRR
T 1+ H/d

(@)
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where R is the radius of the sphere, which is approximately
equal to the radius of the AgNW; y represents liquid surface
tension, and the value of water is 72.8 mN/m at room tem-
perature; H is the closest distance of the sphere to the plate;
6 is the contact angle; d is the immersion length and can be
calculated by the following equation 3:

d=—-H+ /H*+V/(xR) 3)

where V is the liquid volume; the value of V and 6 is
1x10° nm? and 60° respectively in a typical case. Through
the above formula, the capillary force F'; was calculated to be
15.12 nN. The distance H between AgNW at junctions was
considered as 5 nm, and the actual measured value is less than
1 nm from the AFM (Figure 8a). The value of capillary force
was calculated to be about 1.97 nN, and increased gradually
as the separation distance decreases. AgNW were tightly
compressed together through the capillary force. Moreover,
the capillary welding is self-limiting. That is, when the weld-
ing is completed, the gap between the wires disappears so that
there is almost no capillary force generated at this position.
Theoretically, the AgNW networks can be welded effectively
by this method.

The fact that the AGNW network was effectively welded by
the capillary force has been demonstrated by SEM images.
In Figure 4a, the non-welding AgNW was spin-coated onto
the substrate and simply stacked together. No deformation
occurred at junctions, and there were many nanogaps between
AgNW. In contrast, Figure 4b showed the surface topog-
raphy of the welded AgNW network. The SDNW on the
top had undergone severe deformation and embedded in the
LDNW deeply. The deformation was easily seen through a
magnification SEM image of an individual junction location
(Figure 4c). However, at the junctions where the AgNW with
the same diameter intersected in Figure 4b, the deformation
was very inconspicuous and AgNW did not appear to be
connected together. In order to verify that the welding effect
of the hybrid AgNW networks proposed in this paper was
better than the AgNW networks with the same diameter,
we performed the same welding process for the AgNW with
diameters of 100 nm and 20 nm respectively. As shown
in Figure 4d, the AgNW film consisting solely of LDNW
had no significant difference before and after welding, which
was clearly seen from the enlarged single-junction SEM
image (Figure 4e). Similarly, the welding effect of the SDNW
was not obvious, and there were only few junctions welded
(Figure 4f). Therefore, it was further explained that such an
AgNW network using a human blood vessel network struc-
ture was more easily welded to reduce the looseness of the
junctions.

Considering the actual application of electrode in opto-
electronic devices, the AgNW electrode should meet cer-
tain mechanical requirements to ensure stability. As shown
in Figure 5, the tapping test was used to evaluate the mechan-
ical properties of the AgNW electrode with or without the
welding process [38]. A piece Scotch tape (3M) was pressed
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FIGURE 4. (a) SEM microimage of non-welded AgNW network with the human blood vessel network structure. (b) Low- and
(c) high-magnification SEM images of welded AgNW network with the human blood vessel network structure. (d) Low- and
(e) high-magnification SEM images of the welded LDNW network. (f) SEM microimage of the welded SDNW.

Welded

Non-welded

Before taping

After taping

FIGURE 5. Tapping tests of AgNW with/without welding process.

against the surface of the AgNW film, and then pulled away
from the film. The optical microscope was used to observe the
adhesion of the sample on the substrate. The stickiness of the
tape made it easy for the non-welding AgNW to fall off during
this process. In contrast, in the AgNW films with welded,
the density of AgNW reduced by a very small amount. There
was significant improvement compared to the non-welded
sample. Therefore, it was confirmed that the welding process
enhanced the adhesion of the AgNW to the substrate, which is
consistent with the previous report [39]. This ensures the sur-
vival of the AgNW film during fabrication of the composite
electrode in the subsequent wet transfer of graphene.

It is well-known that AgNW is easily oxidized to AgO
or Ag>O when exposed to water or air. In order to enhance
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antioxidation stability, graphene was used to encapsulate the
hybrid AgNW film. The graphene used in this composite
electrode was synthesized by copper-catalyzed CVD method.
During the growth process, the graphene grew on both sides
of the copper foil [40]. The presence of graphene on the
back of the copper foil affected the subsequent process, such
as etching the copper foil and graphene transfer processes,
thereby affected the performance of the single-layer graphene
(SLG). The quality and numbers of graphene layers affect
the resistance and transmittance of the composite electrode
deeply [41]. As shown in Figure S2a, there were many extra
strips on the transferred graphene, resulting in a decrease
in transmittance and an increase in surface roughness [42].
Therefore, it is necessary to remove the graphene on the
backside of the copper foil. By optimizing the Radio Fre-
quency (RF) process, the appropriate parameters are deter-
mined (RF power: 40 W, time: 60 s). Of course, excessive
RF power and overtime cleaning would cause the graphene
film to be damaged. As shown in the Figure S2c, there
were many cracks on the graphene film, which reduced the
electrical properties of graphene. Conversely, if the cleaning
time was insufficient or the RF power was too low, it would
result in cleaning incompletely (Figure S2d). After exposing
to Ar plasma for 60 s, smooth and flat SLG was obtained
(Figure S2b).

The Raman spectra, average Raman spectra of 3 points of
graphene on the SiO,/Si substrate (Figure 6a), further verified
the effect of plasma treatment. The shift of the three typical
peaks of graphene was not obvious: D peak (~1350 cm™),
G peak (~1580 cm™!) and 2D peak (~2700 cm~!). However,
the D peak decreased significantly, even almost disappeared,
which indicated there were few defects of graphene [43].
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FIGURE 6. (a) Raman spectra and (b) transmittance of CVD-grown graphene. (c) AFM image and height profile of the SLG with size 2 x 2

pm and its 3D image.

At the same time, the ratio of the intensity of the G and 2D
peak (Ig/I>p) decreased after plasma treatment. The Ig/Iop is
about 0.5, and the half-width of the 2D peak is about 33 cm L,
which presents typical features of SLG [44]. Moreover, the
transmittance of the graphene increased to 97 % at the wave-
length of 550 nm after cleaning treatment (Figure 6b). As one
layer of TEs, high transmittance is extremely important for
transparent optoelectronic device.

As shown in Figure 6c, the roughness of the graphene was
just 0.8 nm, which was not much different from ITO (RMS
= (0.7 nm) [45]. It is easy to find there were some inevitable
wrinkles on the surface, which designed to maintain its ther-
modynamic stability, just like many other 2D materials [46].
These wrinkles would cause the failure of optoelectronics
when graphene is used as an electrode alone [22]. Unbe-
lievable, when graphene is transferred to the AgNW net-
work, some of the wrinkles occurred and wrapped around
the AgNW tightly, increasing the surface contact area and
enhancing adhesion [47]. Therefore, these wrinkles bond
the graphene, the AgNW and the substrate together closely,
which reduced the roughness of the composite electrode and
increased the adhesion of the electrode to the substrate.

Generally, the two factors of sheet resistance and transmit-
tance mutually restrict each other [47]. The figure of merit
(FoM = opc / oop) was proposed to balance the transmit-
tance and the sheet resistance as equation 4 [48], [49]:

9pc _ Z—Ol 4)
o0P 2R (T_i - 1)

where opc is direct current; opp is optical conductivity;
Zy is the impedance of free space (377 2); Rs and T are
sheet resistance and transmittance, respectively. The high
value of the opc / oop means higher transmittance and low
sheet resistance. As shown in Figure 7, it was seen that the
FoM of the TEs consisted of only a single diameter of silver
nanowires was at small value (< 80), even if the LDNW
electrode had a lower sheet resistance. The FoM of the hybrid
AgNW film with the pseudo-biological structure reached
92.5 with low sheet resistance. Furthermore, after the AGNW
film was welded and encapsulated by graphene, the ratio
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FIGURE 7. Sheet resistance versus optical transmission at 550 nm of
different TEs. The dotted line inside indicates four different values of FoM
= 25, 50, 100 and 200. The data at both ends of the arrow represent the
performance of the electrode before and after welding.

was further increased to 145.3 and 157.0 respectively. The
sheet resistance of the composite film was finally maintained
at 26.4 Q/sq, which demonstrated this novel structure was
more suitable of the composite electrodes with better opto-
electronic performance. Subsequently, the electrodes were
compared with other transparent conductive electrodes that
have been reported, including graphene/AgNWs [50], [51],
AgNWs [47], AgNWs/ PVB [52], roll-to-roll CVD-
graphene [53], roll-to-roll RGO [54], CuNW [55], doped
SCNT [56], SCNT-graphene [57] and commercial ITO [47].
The results show that the graphene/ AgNWs composite elec-
trode reported herein showed a relatively lower square resis-
tance with higher transmittance. There were some reported
electrodes with higher FoM than ours, but long-term stabil-
ity or worse transparency may be factors limiting possible
application. Moreover, in our paper, we demonstrated that
the performance of the composite film with this new structure
exhibited much better performance than that of the original
films in many aspects. The significance of this study was to
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AN

FIGURE 8. AFM images, height profile of (a) the non-welding AgNW network, (b) the welded AgNW network, and (c) the AgNW/graphene
composite film. Low magnification SEM images of (d) the AgNW network and (e) the AgNW/graphene composite film with size 2 x 2 pm.

provide a possibility for the structure of the silver nanowire
or other materials composite electrodes.

The welding process also effectively reduced the surface
roughness of the AgNW networks. One of the ways to reduce
the risk of leakage current of the device is to flatten the
surface. The surface roughness of the welded AgNW was
7.4 nm, which was reduced by 3.9 nm compared with the
non-welded films. Moreover, the surface roughness of the
AgNWr/graphene composite film was further reduced [58],
and finally reached 6.4 nm. The possible reasons were
explained as follows: First, graphene was grown on cop-
per substrates. The surface morphology of the copper sub-
strate does not match the target SiO,/Si substrate. The AFM
image of the single layer of graphene showed that there
were some typical line defects such as wrinkles and ripples
in the graphene on the SiO,/Si substrate [59]. In the silver
nanowire films, there were a lot of inevitable gaps between
the silver nanowires, resulting in similar surface morphology
to the copper substrate. Therefore, the silver nanowire acted
as a “buffer” to release the structural deformation of the
graphene [60], and finally the flatter composite film was
obtained. In addition, the height difference between wire
junctions and the lines further confirmed the effectiveness
of the welding process. As shown in Figure 8a, the height
difference between the junction and the line was 20.57 nm,
which was slightly larger than the diameter of the SDNW.
The height difference reduced to 3.95 nm (Figure 8b), which
was significantly smaller than the diameter. Finally, Figure 8c
shows the height difference of the AgNW/graphene compos-
ite film was only 2.63 nm, which fully demonstrated that
the composite film was flat enough to be suitable for the
transparent optoelectronic devices.

Moisture resistance is one of the essential factors for
the commercialization of TEs. Simultaneously, the graphene
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in the composite film acted as a protective layer for the
AgNW. Under the protection of graphene passivation lay-
ers, AgNW/graphene based TEs exhibited excellent mois-
ture resistance. During tests and applications, AgNW was
inevitably exposed to the air, and the two main factors
affecting the stability are oxygen and moisture. The gran-
ular objects observed in both AFM (Figure S3) and SEM
(Figure 9a) images were predicted to be oxides of AgNW.
However, such granular objects had not been found in
the AFM (Figure 8c) and SEM (Figure 9b) image of the
AgNW/graphene composite film. The XPS of the two kinds
of films further proved this conjecture. Three distinct peaks
were shown in Figure S4, in which the two peaks at 373.4 eV
and 367.4 eV represent the presence of Ag in the form of
Ag 3d3;> and Ag 3ds,2, respectively. The peak at 367.8 eV
was the characteristic peak of AgrO, which indicated that
part of the silver nanowires was oxidized in the AgNW
films (Figure S4a) [61]. In comparison, the peak intensity at
367.8 eV was significantly reduced in the AgNW/graphene
films (Figure S4b).

In order to further verify the effect of graphene on pro-
tecting AgNW from moisture, we conducted the following
experiment: a thin strip of AgNW/graphene composite elec-
trode on glass was connected to a circuit in the atmosphere,
and applied to illuminate the LED light (Figure 9c). Next,
the AgN'W/graphene electrode was immersed in DI water for
more than 24 hours, and then illuminated the LED lamp again
(Figure 9d). It can be seen that the composite electrode was
not destroyed by prolonged exposure to moisture. The bright-
ness of the LED lamp hardly changed, which indicated that
the oxidation and shedding of composite electrodes protected
by graphene were negligible. This provides a possibility for
optoelectronic devices to develop in high humidity environ-
ments and even underwater devices.
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FIGURE 9. Low magnification SEM images of (a) the AgNW network and (b) the AgNW/graphene composite film with size 2 x 2 pm.
Luminescence experiment of LEDs connected by composite electrodes in (c) atmosphere, (d) DI water.

IV. CONCLUSION

In conclusion, we proposed a novel pseudo-biological stacked
structure as TEs, that is, a network composing of two different
diameters of AgNW combined with CVD-grown graphene
as a passivation layer. This new structure was introduced
to improve conductivity with negligible loss of transmis-
sion. The AgNW film was effectively welded by capillary
force and the conductivity ratio was increased to 145.26.
As an encapsulation layer, graphene effectively slowed the
oxidation of AgNW and provided more channels for charge
transport. The conductivity ratio of the graphene/AgNW
composite film increased to 157.04 with the square resis-
tance of 26.4 Q/sq. Moreover, the surface roughness of the
composite film was 6.4 nm, which was about 5 nm lower
than that of the original AgNW network. Hence, it has great
potential to be applied in optoelectronic devices in high
humidity environments and even underwater devices due to
its flat surface, excellent optical and electrical properties, and
long-term stability.
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