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ABSTRACT The latest generation of Global Navigation Satellite System (GNSS) satellites are transmitting
signals on three or more frequencies, it brings new opportunities and challenges for data integration inMulti–
GNSS Experiment (MGEX). To reduce the convergence time, less computationally intensive method is
three-carrier ambiguity resolution (TCAR). But the three combinaitons can not be found in precise point
positioning (PPP) yet, especially for the third generation BeiDou Navigation Satellite System (BDS-3).
This contribution concentrates on the multi-frequency carrier-phase integer combinations for BDS-3 in
PPP. More specifically, the triple-frequency plane is degraded to two-dimensional plane for BDS-3 under
the assumption of a low observation noise. And then third frequency coefficient should be limited as a
constraint, considering that inter frequency bias (IFB) is dynamic quantity. Thereafter, a new searching
algorithm based on the Satisfiability Modulo Theories (SMT) is presented to search the optimal integer
combinations fast. Meanwhile, ionosphere-free combinations are exhibited and are not suitable for TCAR.
Futhermore, the availability of the SMT-based searching algorithm (SMTSA) is verified. Finally, the most
interesting carrier-phase combinations that can be used for PPP ambiguity resolution are screened out
for later research. Meanwhile, in order to give a referenced comprehensive assessment of the integer
combination, some valuable combinations for BDS-3 are displayed. It provides scientific support for the
triple-frequency AR which has less convergence time than dual-frequency AR. Moreover, it also gives the
important and valuable reference for future research on multi-frequency ambiguity–enabled PPP.

INDEX TERMS Carrier-phase integer combinations, multi-frequency, precise point positioning, The third
generation BeiDou navigation satellite system, three-carrier ambiguity resolution.

I. INTRODUCTION
Precise point positioning (PPP) utilizes dual-frequency pseu-
dorange and carrier-phase observations in single receiver
to generate high-accuracy positioning solutions by using
precise satellite orbits, clock corrections and other error
models [1], [2]. One major drawback of PPP is the long
convergence time. It can range from tens of minutes to several
hours [3].

The main problems on restricting the convergence of PPP
include the ambiguities of non-integer properties. In stan-
dard PPP, the carrier-phase ambiguity is a combination of
the integer ambiguity term and hardware-dependent biases
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originating from the satellites and receivers, thus resulting in
the carrier-phase ambiguity term being a real-valued quantity.
This is true for any single receiver positioning using carrier-
phase measurements, which explains why PPP requires an
extended convergence period to reliably estimate these ‘‘float
ambiguities’’. The measures to solve the problem of the
long convergence time is mainly contained the ambiguity
resolution. Since 2007, a number of researchers have been
making progress on the challenge of resolving carrier-phase
ambiguities in PPP processing [4]–[6]. Correcting integer
ambiguity-fixing can shorten the convergence time, thus it
potentially improves the accuracy and consistency of PPP
solutions, and enables instantaneous positioning in real time.

The most efficient method for ambiguity resolution (AR)
is the least squares ambiguity decorrelation adjustment also
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known as the LAMBDA method [7]. It is characterized
by a linear transformation based on the variance-covariance
matrix which best decorrelates the unknown ambiguity
parameters. This leads to a transformation matrix Z which
always contains the optimal set of integer combinations for a
given station-satellite geometry. Although bootstrapping can
also be applied and performs well [8], [9]. The LAMBDA
method guarantees the best success-rate performance as
shown by Teunissen [10]. However, the determination of the
decorrelating transformation matrix Z and subsequent integer
search imposes a certain computational burden.

Less computationally intensive methods exist and work
by using predefined one-to-one carrier-phase combinations
that retain the integer nature of the ambiguities. In the dual
frequency case, a widely used combination in AR is the wide-
lane with a wavelength of 86.2 cm in Global Positioning
System (GPS). Extensions to the triple frequency case include
three-carrier ambiguity resolution (TCAR) developed by
Forssell et al. or cascade integer resolution (CIR) proposed by
Jung et al. [11], [12]. Compared with the LAMBDA method,
these approaches use a predefined 3×3 transformationmatrix
Z, which does not take into account the correlation between
the ambiguities of different satellite-pairs due to receiver-
satellite geometry [13]. For this reason, the combinations are
considered to be ‘‘geometry-free’’ for AR. The ambiguity-
fixing is normally done using integer bootstrapping, also
known as sequential rounding or cascaded AR [14].

Previous research into three-carrier combinations has been
somewhat piecemeal. Odijk and Teunissen showed that
adding a third frequency will drastically increase the number
of possible combinations and provide further Ionosphere-
Free (IF) integer combinations [15]. Han and Rizos proposed
several combinations which have longer effective wave-
lengths and less noise [16]. Richert and El-Sheimy con-
centrated on the mitigation of multi-path and troposphere
biases [17]. Feng summarized the mathematical model of
combination in detail [18]. Gu and Li respectively analyzed
performance of PPP-AR for the BeiDou Navigation Satellite
System (BDS) with triple frequency data by different uncal-
ibrated phase delay (UPD) models [19], [20]. Thereafter,
Deng compared performance of pseudorange and carrier-
phase combinations for BDS in PPP-AR [21]. But they
are not integer carrier-phase combinations. Cocard made a
systematic analysis of integer combination form and selec-
tion method for GPS in double-difference (DD) applica-
tions [22]. The optimal integer combination, which is an
optimal integer combination coefficient set of an observation
model with respect to the unit cycle, makes AR success
rate large. Zhang made their research extend to BDS on
the base of the Cocard [23]. Li further researched on the
combinatorial selection method for four Global Navigation
Satellite Systems (GNSS) [24]. In conclusion, the existing
selection methods analyzed combination coefficient on GPS
or BDS well. But there is almost no research literature on
selection of combination coefficient for the third generation
BDS (BDS-3). Hence, when TCAR method is used to realize

PPP-AR for BDS-3, it is necessary to analyze carrier-phase
integer combination.

It has been shown that explicitly accounting for the iono-
sphere can permit rapid or even instantaneous resolution of
ambiguities after cycle slips [25]. In contrast, Geng used
a method of ionospheric prediction using ambiguity-fixed
parameters from the PPP solution to correct the wide-lane
carrier-phase observation [26]. Collins and Bisnath showed
straightforward examples of covariance analysis to explain
why the ionosphere helps ambiguity resolution [27]. The
ionosphere-free combinations are special for PPP. Whether
they are suitable to become extra-wide-lane, wide-lane, and
narrow-lane for BDS-3 in PPP is not solved.

If PPP users use the positioning model where the inter
frequency bias (IFB) is derived to the third frequency P3 or
L3, it is necessary to carefully consider the absolute value
of coefficient of the third observation [28]. The IFB can be
estimated with other unknown parameters as a time invariant
constant [29]. But the time-varying part of IFB has an influ-
ence on the convergence time and positioning performance in
PPP [30], [31]. IFB should be considered when combination
coefficients are chosen.

Furthermore, the frequencies of BDS-3 (1575.42 MHz,
1176.45 MHz, 1268.52 MHz) are similar to those of GPS
(1575.42 MHz, 1227.60 MHz, 1176.45 MHz). To search the
feasible solution set, the range of coefficients are same as
those in GPS. Traversal searching algorithm (TSA) will take
too much time to process iterations, especially the number
of feasible solutions is small when searching constraints are
strict [22], [23]. How to optimize algorithm to reduce the
processing time is also a valuable problem.

Aiming at four problems about ambiguity-fixing in PPP-
AR, we fast select all feasible carrier-phase integer combina-
tions which contain extra-wide-lane, wide-lane and narrow-
lane. The primary contributions of this paper are summarized
as follows.

1) We prove that combination coefficients can be
mapped to ionosphere delay and lane-number under
the assumption of a low observation noise in
BDS-3. The dimensionality can be reduced by one-
dimension to simplify selecting carrier-phase integer
combination.

2) The IFB constraint is added to select optimized carrier-
phase integer combinations, considering the influence
of the variable IFB on positioning. All feasible combi-
nations, which contain extra-wide-lane, wide-lane and
narrow-lane, are selected.

3) The SMT-based searching algorithm (SMTSA) is pro-
posed to decrease the processing time of searching task.
Comparedwith TSA, SMTSAdecreases the processing
time of searching feasible solutions to 25%.

4) We find all feasible combinations for BDS-3 in
PPP-AR. The ionosphere delay in PPP is so conspic-
uous that ionosphere-free combinations are preferred.
But there are high noise and narrow-lane for the carrier-
phase integer combinations with ionosphere-free.
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The remainder of this paper is organized as follows.
Section 2 analyzed lane-number for BDS-3 and defined the
bound of lanes. Thereafter, section 3 presents the mathemat-
ical model of the lane, ionosphere, noise and IFB and sim-
plified the dimensionality of selecting carrier-phase integer
combination. Section 4 presents all searching constraints in
PPP and improves the searching algorithm to decrease the
processing time. Furthermore, section 5 verifies the avail-
ability of the algorithm and gives all possible combinations.
Meanwhile, all feasible combinations, which contain extra-
wide-lane, wide-lane and narrow-lane, are displayed. Finally,
some conclusions are given in section 6.

II. PRELIMINARIES
For a single epoch observation between one satellite and one
receiver, the combining undifferenced pseudorange Pc and
carrier-phase Lc observation with respect to the unit meter
can be expressed as follows [18].

Pc =
(if1)P1 + (jf2)P2 + (kf3)P3

if1 + jf2 + kf3
(1)

Lc =
(if1)L1 + (jf2)L2 + (kf3)L3

if1 + jf2 + kf3
(2)

The combining frequency is displayed as follows [32].

fc = if1 + jf2 + kf3 (3)

According to equation (2) and (3), it has

8c = i81 + j82 + k83 (4)

where 8 is the carrier-phase observation with respect to the
unit cycle. To use TCAR or CIR, the coefficients i, j, and k
are integers to guarantee combining ambiguity as an integer.

There are four civil signals (B1I, B1C, B2a, and B3I)
for BDS-3. Considering the compatibility of BDS and other
GNSS systems, the B1C is used to have the same frequency as
other GNSS systems. The three frequencies are 1575.42MHz
(B1C), 1176.45 MHz (B2a), and 1268.52 MHz (B3I).

fi = mif0 (5)

where f0 is the basic frequency (10.23 MHz) as same as GPS.
So m1 = 154, m2 = 115, m3 = 124, correspondingly.
According to equation (3) and (5), it can get

fc = mf0 (6)

m = im1 + jm2 + km3 (7)

where m is called the lane-number [22].
The largest wide-lane has a lane-number m = 1 and a

wavelength of about 29.305 m. Fig. 1 shows the wavelengths
for the first 15 wide-lanes. Based on the lane-number m,
combinations may be divided into four groups, compared
with three groups presented by Cocard [22].

1) A extra-lane region: 0 < m < 39. The combining
wavelength is larger than the combiningwavelength Lc,
whose frequency is (f1 − f2) in BDS-3.

FIGURE 1. Wavelengths in meters as a function of the lane-number m for
the first 15 largest wide-lanes 1 ≤ m ≤ 15.

2) An wide-lane region: 39 ≤ m ≤ 115. The combining
wavelength is between the largest basic wavelength
L2 and the combining wavelength Lc.

3) An intermediate-lane region: 115 ≤ m ≤ 154. The
combining wavelength is between the largest basic
wavelength L2 and the smallest basic wavelength L1.

4) A narrow-lane region: m > 154. The combining wave-
length is smaller than the smallest basic wavelength L1.

III. THE COMBINING MATHEMATICAL
MODEL OF BDS-3
A. DIMENSIONALITY REDUCTION OF COMBINATION
COEFFICIENTS
1) THE LANE PLANES
For a given lane-number m, there are an infinite number of
combinations with the same wavelength. The triplet (i, j, k)
has only to satisfy equation (7).

154i+ 115j+ 124k = m (8)

which corresponds to the equation of a plane in the i-j-k space.
The normal vector nlane to the plane is given,

nlane = (m1,m2,m3)
T
= (154, 115, 124)T (9)

Meanwhile, the equation (8) corresponds to a linear Dio-
phantine equation in three terms. A Diophantine equation is
an equation in which only integer solutions are allowed. The
equation (8) has a general solution given by, i

j
k

 =
 1 23 9

17 −6 154
−17 −23 −154

mα
β

 (10)

where α and β are arbitrary integers.
Geometrically, all m-plane are parallel. The shortest dis-

tance between two consecutive planes is δ = ‖nlane‖−1 ≈
0.00437. Symmetrical to the central zero lane plane (m=0),
they are located at constant distances of the planes having a
lane-number of -m and m, respectively. Fig. 2 illustrates this
situation. In addition, in every plane the integer combinations
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FIGURE 2. m-Planes for m=0, ±500, ±1000 and the ionosphere-free
plane in the i-j-k space for a cuboid with dimension [±10,±10,±30].

are on a regularly spaced grid, where the spacing is always
the same and given by the two vectors (23,−6, 23)T and
(9, 154,−154)T .

2) THE IONOSPHERE PLANES
The first order of the combination ionosphere noise is shown.

Ic = −f 21
i/f1 + j/f2 + k/f3
if1 + jf2 + kf3

I1 (11)

ν = −f 21
i/f1 + j/f2 + k/f3
if1 + jf2 + kf3

(12)

ν = f1(i/f1 + j/f2 + k/f3) (13)

where ν is the ionosphere amplification factor with respect to
meter (IAFM), ν is the ionosphere amplification factor with
respect to cycle (IAFC).

In PPP, we should guarantee the ionosphere is eliminated
in every step for the one-to-one ambiguity resolution (e. g.,
TCAR and CIR). This is the most important issue for PPP
instantaneous or rapid ambiguity-fixing [33], [34]. That is
to say, we can get an ionosphere-free plane according to
equation (11), any integer pairs (i, j, k) should in this plane.
The IAFC ν can be converted to an equation about lane-

number.

ν = m1(i/m1 + j/m2 + k/m3) (14)

Namely,

7130i+ 9548j+ 8855k = 7130ν = νi (15)

Equation (15) corresponds again to a set of parallel planes
in the i-j-k space. The central plane is given by νi = ν = 0
and corresponds to the IF-plane in Fig. 2.

The Diophantine solution of equation (15) is given by, i
j
k

 =
 149 0 154
−1533 −115 −115
1533 124 0

 νiα
β

 (16)

Similarly, all ν-plane are parallel. The shortest distance
between two consecutive planes is about 0.48. Symmetrical

to the central zero ionosphere plane (ν=0), they are located at
constant distances of the planes having a ionosphere amplifi-
cation factor of −ν and ν, respectively.

3) INTERSECTION OF LANE PLANES AND
IONOSPHERE PLANES
We look for the intersection between an arbitrary lane plane
given by its lane-number m and an arbitrary ionosphere plane
given by its ion-number νi. By introducing the parameterized
form of an ionosphere plane (16) in the m-plane of equation
(8), it obtains,

2151α + 10491β = m− 9149νi (17)

An explicit solution is obtained by solving the Diophantine
equation 717α + 3497β = p,[

α

β

]
=

[
1073 3497
−220 −717

] [
p
s

]
(18)

By substituting equation (18) into equation (16) one
obtains an explicit solution for the combination, which is of
the type, i

j
k

 =
 149 −33880 −110418
−1533 −98095 −319700
1533 133052 433628

 νip
s


=
−→x s + sδ

−→
i (19)

where s is an arbitrary integer.
The i–j–k space is converted into the m–νi–s spacing.

We assume that the observation noise should be lowest to fix
the value of s. This can be done by first calculating a real
value for s [22].

s = round(sreal) = round(
δ
−→
i
T−→x s

δ
−→
i
T
δ
−→
i
) (20)

When m and ν are given, the combination, which is on the
m–ν line and nearest to the origin in the i-j-k space, is unique.
Namely, the combination (i, j, k) is unique for a given integer
pair of m and ν.

B. PROPAGATION OF THE OBSERVATION NOISE
For the purpose of simplicity, the noises on all three fre-
quencies expressed in either meter or cycle are the same.
It corresponds to the case where a phase lock loop (PLL) is
able to track the carrier-phase with an uncertainty described
by a standard deviation of typically 0.1–1% [35]. Assuming
statistical independence, the combined noise, εcL in L, and
εc8 in8, are expressing in the equations (21) and (22), where
εcL and εc8 are the noise variance with respect to meter and
cycle on a single carrier observation. µ denotes the noise
amplification factor with respect to meter (NAPM), and µ
is defined as a noise amplification factor with respect to
cycle (NAPC).

εcL =

√
(if1)2 + (jf2)2 + (kf3)2

if1 + jf2 + kf3
ε0L (21)

177452 VOLUME 7, 2019



H. Qin et al.: Optimal Carrier-Phase Integer Combinations for Modernized Triple-Frequency BDS

or

εc8 =

√
i2 + j2 + k2ε08 (22)

where

µ =

√
(if1)2 + (jf2)2 + (kf3)2

if1 + jf2 + kf3
(23)

µ =

√
i2 + j2 + k2 (24)

We assume that the noises on all three frequencies
expressed in cycle are the same to describe the noise level for
BDS-3 [36]. According to equations (24), if the observation
noise of the combination is especially small, we know that
except for the origin, the better integer pairs for us to choose
is the one that near the origin as much as possible.

C. OPTIMALITY PRINCIPLES CONSIDERING IFB
If the IFB is deemed to be a time dependent quantity, its
time-variant characteristic is mainly related to the satellite
clock bias. Hence, the IFB can be treated as the time-varying
satellite inter-frequency clock bias (IFCB) and the constant
part is the inter-frequency hardware bias (IFHB).

Generally, the hardware bias is considered constant,
although the DCB has variation feature in the long term [37].
Considering all these aspects, the 1-year IFHB series is mod-
eled with a l-order polynomial function.

IFHBs =
l∑

n=0

(
dntn

)
(25)

where dn is the coefficient of the n-order term.
The IFCB can be illustrated by a combined linear and

fourth-order harmonic function [38].

IFCBs (t) = d + et +
4∑
i=1

λi sin
(
2π
Ti
t + θi

)
(26)

where d is a constant, e is the coefficient of linear term, i
is the order of the harmonics, Ti is the period, θi is initial
carrier-phase offset, and λi is the amplitude. It is important to
determine the periods of all orders for describing the IFCB
with a high-order harmonics-based composite function.

A harmonic analysis using a fast Fourier transforma-
tion (FFT) based on the single-day IFCBs of PRN01 and
PRN25 showed that the IFCB varies with apparent periods
of 12 h, 6 h, and 8 h [39].

Usually IFB is estimated as a constant IFCB in daily PPP
solution [28], [40]. It leads that estimated IFB has a residual
error. The combination need consider the influence of the
residual error. The combination IFBc is shown as follow.

IFBc =
kf3

if1 + jf2 + kf3
IFB (27)

w =
kf3

if1 + jf2 + kf3
(28)

w =
kf3
f1
= 0.8052k (29)

where w is the IFB amplification factor with respect to meter
(IFBAFM), w is the IFB amplification factor with respect to
cycle (IFBAFC).

The absolute value of coefficient of the third observation
k is proportional to IFB [28]. To reducing indirect impact on
PPP performance during time dependent variables’ amplifi-
cation, the absolute value of coefficient of the third observa-
tion k needs to be small.

IV. SEARCHING METHOD FOR OPTIMAL
COMBINATIONS
A. BASIC SEARCHING CONSTRAINTS
To fix the ambiguity accurately, optimal combination is a low
observation noise, a weak ionosphere, a low frequency, and a
low IFB. But these properties can not be implemented at the
same time. We only limit the bound of capabilities to find a
feasible set. The constraints for optimal combinations can be
illustrated as follows.

1) COEFFICIENTS CONSTRAINT
As already pointed out in equation (24), the further the coef-
ficients i, j, and k are from the origin, the higher the noise
amplification factor. The limiting coefficients i, j, and k can
roughly limit the observation noise. boundi,down < i < boundi,up

boundj,down < j < boundj,up
boundk,down < k < boundk,up

(30)

2) LANE-NUMBER CONSTRAINT
Lane-number m determines the combining frequency as
known in equation (6). A low frequency can obtain a long
wavelength. In the case of constant noise, long wavelength
is easier to fix the ambiguity. Lane-number m is limited as
follow.

boundm,down < m < boundm,up (31)

3) IONOSPHERE CONSTRAINT
Ionosphere delay is also an important factor for ambiguity-
fixing as well as observation noise. Ionosphere amplification
factor directly reflects the value of the combining ionosphere
delay and is limited by the below equation.

boundν,down < ν < boundν,up (32)

4) NOISE CONSTRAINT
Limiting noise amplification factor is the most direct way to
limit observation noise. But the bounds of noise amplification
factor are not easy to be determined. Because noise amplifica-
tion factor is far less than constraint parameters in equations
(30)–(32). A small change in the boundary may eliminate
some feasible solutions. The noise constraint is usually used
for accurate search and posterior search.

5) IFB CONSTRAINT
Limiting IFB amplification factor is the most direct way
to limit IFB, similar to noise. But IFB amplification factor
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FIGURE 3. SMT-based searching algorithm.

can not be limited with a constant threshold. The threshold
is related to Lane-number m. So we use IFB amplification
factor for accurate search and posterior search after the rough
solution set is found out by a searching algorithm.

B. SMT-BASED SEARCHING ALGORITHM
According to the above constraints, TSA obtains the feasible
set by searching the whole range of coefficients i, j, and
k. It leads that the processing time is too long. But TSA
is well for weak constraint, where there is no limit for the
ionosphere amplification factor, the lane-number m and the
sum of coefficients. Because many coefficients i, j, and k
in the whole range may be feasible solutions. The optimal
algorithm is not as well as TSA. The number of feasible solu-
tions is small for strong coefficients, where there are limits
for the ionosphere amplification factor, the lane-number m
and the sum of coefficients. Algorithm optimization can take
an advantage of fast processing.

SMT checks the satisfiability of logic formulas in first-
order formulation with regard to linear integer arithmetic
(LA (Z)) or bit-vectors (BV) [41], [42]. The coefficients i,
j, and k searching problem is easily expressed in terms of
constraint-satisfaction in linear arithmetic and are thus suit-
able application domains for SMT solvers yices. If one exists
for the given searching problem, the SMT algorithms will
retrieve a feasible solution which is an ‘‘arbitrary’’ one of
multiple valid solutions. Each of these valid solutions might
have a different impact with regard to observation noise.
However, SMT can only fast capture a feasible solution and
can not obtain all feasible solutions.

To obtain all feasible solutions by using SMT, the iteration
is necessary. The SMT-based searching algorithm (SMTSA)
adds a constraint in each iteration to solve the problem about
retrieving the whole feasible solutions as shown in Fig. 3.
After bound constraints are configured, SMT solver searches
for the first feasible solution with bound constraints. If the

TABLE 1. The combinations with the ionosphere-free (The searching
ranges of i, j, and k are from -500 to 500).

solution exists, the solution set is updated. Meanwhile,
the new solution does not belong to the solution set is
regarded as a new constraint. As the constraints are updated,
SMT solver searches for another feasible solution with
updated constraints. The iteration continues until there is no
new feasible solution. At this time, all feasible solutions are
searched out and stored in the solution set.

C. IONOSPHERE-FREE COMBINATIONS IN THE PPP-AR
In the TCAR method, especially in the second step which is
the wide-lane AR, the wide-lane ambiguity fixed success rate
is higher than 98% in DD application [14]. But it is difficult
to converge for PPP, because it is not possible to eliminate
its error characteristics which is complex and difficult, and
non-integer characteristic of its ambiguities.

To allow rapid-to-instantaneous ambiguity resolution in
PPP, the required accuracy of the ionoshperic corrections
must be better than a few centimeters [34]. So we had better
use the constraints which are the ionosphere-free near the
origin in the ambiguity resolution as shown in Table 1, where
all feasible solutions F are linearly independent. Namely, for
(i1, j1, k1), (i2, j2, k2) ∈ F , it has

i1j2 6= i2j1||j1k2 6= j2k1||k1i2 6= k2i1 (33)

But the realistic situation is that the absolute value of the
combining integers satisfied these constraints are all numeri-
cally large quantities. That is to say, the large absolute values
will make high combination noise, so as to increase the
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FIGURE 4. Integer linear combinations in the plane defined by m and ν.
(Combinations with w < 5 are red, others are black.)

convergence time of PPP. Hence, we had better compromise
and consider the case of the weak ionosphere constraint.

Nonetheless, the simple weak ionospheric carrier-phase
combination constraint like in DD is not satisfy the PPP-AR.
But using the pseudorange to counteract the weak ionosphere
error caused by carrier-phase integer combination is a possi-
ble and feasible way in PPP [33].

V. COMBINATORIAL OPTIMIZATION EXPERIMENT
A. THE FEASIBLE REGION FOR COMBINATIONS
As mentioned in the previous section, we can make some
compromises to use the individual or combining pseudorange
observations in the carrier-phase combinations to achieve the
ionosphere-free purpose and effectiveness. The noise of a
pseudorange observation is too large to have a large combin-
ing coefficient in pseudorange observation, so ionosphere in
carrier-phase combinations should be small. In other words,
the next-best way for PPP AR would be to choose the most
interesting combination integers with the characteristics of
a weak ionosphere, a long wavelength, a low noise, and a
low IFB.

To roughly obtain a low observation noise, we constrain
the range for i, j, and k to ±500. In addition, the range of the
ionosphere amplification factor ν is [-1, 3], the range of the
lane-number m is [-100, 300]. The resulting combinations in
the m–ν plane are shown in Fig. 4, where the point varies in
inverse proportion to the noise amplification factor µ. The
low noise axes S0 (i + j + k =0), S1 (i + j + k = 1), and S2
(i + j + k = 2) are visible.

There are three combinations chosen for TCAR or CIR,
the three combinations must be independent. It is equivalent
that the determinant of the 3× 3 combination matrix Z is ±1
as well as one of dual-frequency combination examined by
Teunissen [43]. Teunissen explained that a square matrix
containing only integer entries has an integer inverse only if
its determinant is ±1.

FIGURE 5. Processing time for SMTSA and TSA in case of strong
constraints.

TABLE 2. Processing capability for TSA and SMTSA.

In triple-frequency ambiguity resolution, the ambiguities
of the original observations can only be recovered if all three
ambiguities of three independent linear combinations are
resolved. Although many combinations in the S0 group have
good characteristics, only two independent combinations can
be chosen from the i+j+k=0 plane. The third combination
belongs to i+j+k =1 plane [22]. The three combinations are
from S0 and S1.

B. AVAILABILITY VERIFICATION FOR SMTSA
The feasible solutions in the four colored rectangles corre-
spond to regions of interest are respectively calculated by
SMTSA and TSA to analyze the performance of the two
algorithms in the case of strong constraints, where the ampli-
tude of the ionosphere amplification factor and the lane-
number m are respectively 0.8 and 80 so that the number
of feasible solutions is less than 100. The processing time
is shown in Fig. 5, where IF is all feasible ionosphere-free
combinations with the range for i, j, and k to ±500. C0 is the
subset of S0 in the blue region, C1-C3 are subsets of S1 in the
green, brown, and orange regions, respectively. The results
shows that SMTSA has faster processing time than TSA in
the all cases of strong constraints.

The processing time for TSA and SMTSA is shown
in Table 2, where the processing time for SMTSA is related to
the number of feasible solutions. The results show that maxi-
mum processing time for each solution is 0.142s. According
to rough calculation, SMTSA has a faster processing time
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FIGURE 6. The combinations near the origin of the m–ν plane in the
S0 group. (Combinations with w < 5 are red, others are black.)

TABLE 3. The combinations with an ionosphere-free, a long wavelength
and a low noise characteristics in the S0 group.

than TSA, if the number of feasible solutions is less than 297.
It is far larger than the number of feasible solutions in case of
strong constraints. SMTSA can search optimal combinations
in case of strong constraints rapidly and effectively.

C. THE EXTRA-WIDE-LANE AND WIDE-LANE
COMBINATIONS
The blue region C0 is magnified and illustrated in Fig. 6.
It is near the origin of the m–ν plane, and crosses the line
ν = 0 and the line m=0 at the same time. C0 is the wide-lane
region characterized by a low ionosphere amplification factor,
a long wavelength and a low noise. Table 3 summarizes these
combinations and their relevant parameters. When we search
the region C0, k = −i − j, the range of i, j can limited in
i ∈ [−31, 31] and j ∈ [−62, 62], the proof can be seen in the
appendix.

For extra-wide-lane combinations, long wavelength com-
binations are (-1, -4, 5), (0, 1, -1), and (1, 3, -4). But com-
bination (-1, -4, 5) has large observation noise. Meanwhile,
combination (1, 3, -4) has a larger coefficient k than combi-
nation (0, 1, -1). So the combination (0, 1, -1) is the optimal

FIGURE 7. The combinations crossing the line m=0 in C1. (Combinations
with w < 5 are red, others are black.)

extra-wide-lane combination. The combination (1, 3, -4) can
be used as an alternative.

There are four combinations (combinations 4–7 in Table 3)
for wide-lane combination, where combination (1, 2, -3) has a
very small ionosphere amplification factor, and combination
(1, -1, 0) does not have IFB and is usually used in GPS.
Although the combination (1, 3, -4) is an alternative extra-
wide-lane combination, it can be regarded as a wide-lane
combination.

D. THE NARROW-LANE COMBINATION
Considering a low ionosphere amplification factor, a long
wavelength, a low observation noise, and a low IFB ampli-
fication factor, the three special regions are chosen to select
feasible narrow-lane combinations.

1) THE REGION CROSSING THE LANE-NUMBER AXIS
When the requirement of long wavelength is considered,
the green region C1 is magnified and shown in Fig. 7, which
is across the line m=0. In this region, the range of ν is about
1.9–2.7, and the range of the wavelengths is about
0.7–29.3 m.

Table 4 lists these combinations and the relevant param-
eters. The result shows that both combinations (−2, 8, −5)
and (−2, 6, −3) have long wavelengths. But their noises are
so large that they are unsuitable as narrow-lane combination.
The combinations (−2, 7,−4) and (−3, 4, 0) have long wave-
lengths and low noises. Considering the IFB, the combination
(−3, 4, 0) is the optimal narrow-lane combination in C1.

2) THE REGION NEAR THE ORIGIN
The brown region C2 is near the origin of the m–ν plane in
the S1 group, and the region has a long distance from the line
ν = 0 and the line m=0 at the same time. This region is
magnified and presented in Fig. 8. In this region, the range
of ν is about 0.8–1.6, and the range of the wavelengths is
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TABLE 4. Optimal combinations near the line m=0 in C1.

FIGURE 8. The combinations near the origin of the m–ν plane in C2.
(Combinations with w < 5 are red, others are black.)

TABLE 5. The combinations near the origin in C2.

about 18–37 cm. Both ionosphere amplification factor and
lane-number are close to those of the original observations.

The three original observations (1, 0, 0), (0, 1, 0), and
(0, 0, 1) have the lowest noise as shown in Table 5. The other
combinations in this region have similar ν and m values, but
they have more noise. So the only interesting combinations
are the original observations.

3) THE REGION CROSSING THE IONOSPHERE–FREE AXIS
When a small ionosphere amplification factor is kept,
we should search in the orange region C3 crossing the line
ν = 0 as shown in Fig. 9. In this region, the range of ν
is about -0.3–0.5, and the range of the wavelengths is about
10–14 cm.

FIGURE 9. The combinations crossing the line ν = 0 in C3. (Combinations
with w < 5 are red, others are black.)

TABLE 6. Optimal combinations near the line ν = 0 in C3.

TABLE 7. Feasible narrow-lane combinations in the S1 group.

Table 6 lists these combinations and the relevant parame-
ters. The useful combinations (3, -4, 2), (4, -1, -2), (4, -2, -1),
(4, -3, 0), and (4, -4, 1) have small ν values and low noises.

4) FEASIBLE NARROW-LANE COMBINATIONS
All feasible narrow-lane combinations are shown in Table 7.
The results show that the combination (-2, 7, -4) has the
largest IFB amplification factor w, but its wavelength is so
long that the influence of w can be ignored. Considering
combinations (-2, 7, -4) and (-3, 4, 0) have large ionosphere
amplification factor, they can be only used as narrow-
lane combinations. Furthermore, considering IFB amplifica-
tion factor w, combinations (-3, 4, 0), (0, 1, 0), (1, 0, 0)
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and (4, -3, 0) are better than others. Considering a weak
ionosphere, a long wavelength, a low noise, and a low IFB,
combinations (0, 1, 0), (-2, 7, -4) and (-3, 4, 0) are opti-
mal narrow-lane combinations. The others are second-choice
in Table 7.

VI. CONCLUSION
The carrier-phase integer combination is critical prerequisite
for TCAR and CIR to fix ambiguity. Considering IFB in
triple-frequency observations, we presented some optimal
carrier-phase integer combinations for BDS-3.

Integer ambiguities can be characterized by four parame-
ters: the lane-number m, the ionosphere amplification factor
ν, the noise amplification factor µ, and the IFB amplifi-
cation factor w. We presented the mathematical model of
the parameters. To simplify searching carrier-phase integer
combination, we proved that i–j–k plane can be converted to
m–ν plane under the assumption of a low noise in BDS-3.

And then all searching constraints are analyzed. Mean-
while, the IFB constraint was added to select opti-
mized carrier-phase integer combinations. Thereafter,
the SMT-based searching algorithmwas proposed to decrease
the processing time of searching task. Moreover, we analyzed
the carrier-phase integer combinations with ionosphere-free,
and they have high noise and narrow-lane. The IF constraint
is not suitable for PPP-AR.

Finally, combinatorial optimization experiments were real-
ized to find optimized carrier-phase integer combinations
according to the above theory and method.

APPENDIX
For the extra-wide-lane and wide-lane combinations, it has

0 < if1 + jf2 + kf3 < f2 (34)

The coefficient k can be determined by i and j, then the
bounds of the coefficient k are shown as follow.

−if1 − jf2
f3

< k <
(1− j)f2 − if1

f3
(35)

From the above equation, the absolute value of the differ-
ence between the maximum and the minimum of the coef-
ficient k is 0.927. In other words, the integer-value of k is
between its maximum and minimum real-value.

We assume that k is the one that round up to an integer of
kmin, it obtains the following formula [44].

0 < 30i+ 115j+ 124
⌈
−
15i
62
−

115j
124

⌉
< f2 (36)

The coefficients i and j have an obvious periodicity
(62 and 124), respectively. Namely, i ∈ [−31, 31],
j ∈ [−62, 62].
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