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ABSTRACT Non-invasive positive pressure ventilation (NIPPV) is a life-saving approach which was
developed to reduce the complications of endotracheal intubation and invasive ventilation in patients with
chronic obstructive pulmonary disease (COPD). However, it has a certain probability of invalid. Failure of
NIPPV will lead to an increase in mortality, which highlights the importance of rational diagnosis about the
need for NIPPV therapy. In order to avoid delaying endotracheal intubation, we proposed a hybrid model
which combine tree-based feature transformation with Bayesian non-parametric classification, to predict
whether the patient should adopt NIPPV based on the their own physical condition.We delved into the feature
importance and justified the rationality of using tree-based feature transformation. The proposed gaussian
process classification (GPC) with gradient boosting decision tree (GBDT) feature transformation model has
shown state-of-the-art results on both the NIPPV dataset and two simulated datasets with larger sample size.
For critically ill COPD patients, the proposed method provides diagnostic assistance for physicians’ decision
making and avoids delaying endotracheal intubation or mechanical ventilation.

INDEX TERMS COPD, NIPPV, therapeutic efficacy prediction, GBDT, Gaussian process classification.

I. INTRODUCTION
Chronic obstructive pulmonary disease (COPD) [1] is a
chronic inflammatory lung disease that leads to obstructed
airflow from the lungs. This disease is caused by prolonged
exposure to particulate matter or irritating gases, usually from
cigarette smoke [2]. It is a leading cause of chronic morbidity
and mortality worldwide. Many people are afflicted with
COPD for years and die prematurely of it or its complica-
tions [3]. People with COPD have symptoms of breathing
difficulty, sputum production, cough and wheezing. Also,
their risk of developing lung cancer, heart disease and a
variety of other infectious complications is increasing.

COPD is controllable and preventable. With proper man-
agement, most people with COPD can achieve good symptom
control and quality of life, as well as reduced risk of other
associated conditions. The treatment of stable COPD always
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includes oxygen therapy and smoking cessation. Although
these measures can manage COPD, acute exacerbation still
occurs due to respiratory failure. Endotracheal intubation and
mechanical ventilation can be a life-saving procedure for
patients with acute exacerbation of this disease [4]. However,
the use of artificial airways may lead to infectious complica-
tions and injury to the trachea. Non-invasive positive pressure
ventilation (NIPPV) [5] is an alternative approach that was
developed to avoid these complications in patients with acute
respiratory failure. And the hypercapnic ventilatory failure
that occurs in patients with this disorder seems to respond
well to non-invasive ventilation [6]. Previous studies sug-
gested that NIPPV can reduce the need for endotracheal intu-
bation and the length of the hospital stay [7]. A reduction in
mortality with this approach in patients with COPDwere also
reported, in which patients who cannot tolerate this treatment
were excluded from the comparison [8].

With the gradual maturity of NIPPV, its therapeutic
efficacy have generated increasing concern. In general,
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conscious patients receive NIPPV, while unconscious ones
are directly treated with endotracheal intubation. Effective
efficacy of NIPPV refers to good symptom control. Although
NIPPV has the advantage of reducing the complications of
endotracheal intubation and invasive ventilation, it is not
always effective. If its therapeutic efficacy is judged to be
ineffective, it means that endotracheal intubation must be
performed. Failure of NIPPV will lead to an increase in
mortality, which highlights the importance of rational diag-
nosis about the need for NIPPV therapy. Physicians need
to comprehensively consider the clinical characteristics of
patients, as there is always a coupling relationship between
one another. Although they have already known which fea-
tures are more important, they cannot judge with only a single
characteristic. In order to avoid delaying endotracheal intu-
bation and bringing about serious consequences attribute to
ineffective NIPPV treatment [9], we hope to analyze whether
the patient should adopt NIPPV based on the their own phys-
ical condition. It is important to note that an NIPPV efficacy
predictive model is highly desirable to provide diagnostic
decision making assistance for physicians treating patients
with COPD. So far, however, few research has been carried
out on NIPPV therapeutic efficacy prediction in patients with
COPD.

As the therapeutic effect is annotated with binary labels,
effective and ineffective, supervised machine learning algo-
rithms are suitable for solving this problem of efficacy pre-
diction. Machine learning and data-driven approaches are
becoming significant in many areas. Usage of effective sta-
tistical models that capture the complex data dependencies
is one of the crucial factors driving successful applications.
Inductive learning [10] laid the theoretical foundation for
machine learning. There are many successful application sce-
narios based on inductive learning, such as speech recogni-
tion [11], computer vision [12] and machine translation [13].
Predictive model is constructed by training inputs and out-
puts in existing sample. In our study, we define patient’s
clinical characteristics as inputs and therapeutic efficacy as
outputs.When new patients encounter, we input their relevant
characteristics in predictive model to obtain the prediction of
NIPPV efficacy. Due to the complex pathogenesis of COPD,
simple classifiers may not make good predictions. Given the
high cost of data collection, we collected the NIPPV dataset
with 144 cases from Sichuan Provincial People’s Hospital in
the past two years. One of the important things is to gather
out the valuable features, which capture key information that
dominate other types of features. According to this demand,
we utilize tree-based method to achieve feature transforma-
tion. Because of the small size and the nonlinearity of our
NIPPV dataset, we choose non-parametric methods, with
which we do not have to worry about whether it is possible for
themodel to fit the data, to make our predictions. In summary,
we propose a hybrid model for NIPPV therapeutic efficacy
prediction that concatenate tree-based feature transformation
method and Bayesian non-parametric classifier. Specific con-
tents about models are detailed as follows.

Tree-based learning algorithms are considered to be one
of the best and widely used supervised learning methods.
Quinlan introduced decision tree [14] as a decision support
tool, whose set of splitting rules used to segment the pre-
dictor space can be summarized in a tree. They empower
predictive models with high accuracy, stability and ease of
interpretation. Unlike linear models, they map non-linear
relationships quite well. Other tree-based methods are also
being popularly used in all kinds of data science problems.
Among the machine learning methods used in practice, gradi-
ent boosting decision tree (GBDT) [15] is one technique that
shines in many applications. Tree boosting has been shown
to give state-of-the-art results on many standard classification
benchmarks [16]. The impact of eXtreme Gradient Boosting
(XGBoost) [17], a scalable system for tree boosting, has
been widely recognized in a number of machine learning
and data mining challenges. LambdaMART [18], a variant of
tree boosting for ranking, achieves state-of-the-art result for
ranking problems.

Features and data determine the ceiling of machine learn-
ing, while models and algorithms just try to approximate this
upper limit. Practically, the features that can be directly used
in machine learning models are often not enough. So the
validity of models depends on the valuable features mined
from raw data. Once we get the valuable features which
captured key information and the right model, other factors
play small roles. Besides acting as a stand-alone predictor,
tree-based methods are also incorporated into generating
tree features which are included as inputs of classifier [19].
Ad Click-through-rate (CTR) prediction in Facebook [20]
used GBDT for non-linear feature transformation and fed
them to Logistic regression (LR) [21] for the final prediction,
proving that boosted decision trees are very powerful input
feature transformations. It is also the defacto choice of ensem-
ble method and is applied in challenges such as the Netflix
prize [22]. Boosting neural networks with gradient boosting
decision trees turns out to be the best among eight ensemble
CTR estimation models [23].

Bayesian methods represent an important component
of statistics, which achieved significant developments in
machine learning [24]. In order to make sophisticated infer-
ence of hidden factors and predictions, prior knowledge is
placed on uncertain evidence with incomplete information
and randomness in Bayesian methods. Because of its flexi-
bility, adaptivity and scalability, Bayesian plays a crucial role
in protecting high-capacity models against overfitting, and
allowingmodels adaptively updating their capacity. However,
the application of Bayesian methods often stuck in com-
putation and needs to be solved by approximate inference
methods.

Parametric Bayesian comprises classic methodology for
prior and posterior distributions in models with a finite, fixed
number of parameters regardless of how the data changes.
This restriction may limit the model capacity, especially for
applications where it may be difficult or even counterproduc-
tive to predetermine the number of parameters. TakeGaussian
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mixture model [25] as an example, it may not fit the variable
dataset comes under a slightly changed distribution well if we
choose the fixed number of clusters. In addition, the estima-
tion and testing of parameters is based on the precondition
of large samples and the assumption of normal distribution,
which leads to the difference between the asymptotic distribu-
tion of statistics and the true distribution of raw data. Consid-
ering these limitations, it would be ideal to find a clustering
model with automatic mechanism to figure out the unknown
number of clusters. Feature representation learning [26] also
has similar requirements on automatically figuring out the
dimension of latent features and topological structure among
features at different abstraction levels.

Bayesian non-parametric methods provide a solution to
such needs on automatic model selection and adaptation
using non-parametric models, as opposed to parametric mod-
els. Non-parametric models are completely driven by data,
and distribution-free. By defining stochastic processes on
rich measure spaces, Bayesian non-parametric approach fit
a single model that can adapt its complexity to the data.
Further, it allows the complexity to grow as more data comes,
which means the dimension of the parameter space in a
non-parametric approach should change with sample size.
However, non-parametric models also have some drawbacks.
It cannot extrapolate data that was not observed in the past and
may lead to curse of dimensionality. Fortunately, the dataset
we collected from hospital has a wide coverage of age and
other clinical characteristics. Also, the number of features is
small, which avoid such problems.

Gaussian Process (GP) [27], as a Bayesian non-parametric
methodology, have become a promising scheme for the prob-
lem of classification/regression in recent years. GP meth-
ods are genuine probabilistic models that naturally give
predictive probabilities for classification problems and pro-
vide information on how certain we are about the answer.
As no weights are required to be estimated in non-parametric
method, the non-linear functions are defined by GP priors
with associated covariance functions for GP-based methods.
The hyper-parameters of the covariance functions, which
models classification as a GP, can be learned automatically
from data instead of manually setting. Challis et al. [28]
applied Bayesian Gaussian Process Logistic Regression for
disease classification. Dhall and Goecke [29] proposed an
expression intensity estimation method based on Gaussian
process regression (GPR). Yuan et al. [30] combined local
binary pattern (LBP) like features, kernel principal compo-
nent analysis (KPCA), and GPR to propose a novel data
processing pipeline for smoke detection. However, exact
inference evaluation are intractable for GP based mod-
els. So several successful methods have been proposed for
approximately integrating over the latent function values,
such as the Laplace approximation [31], expectation propa-
gation (EP) [32], Markov Chain Monte Carlo (MCMC) [33],
and variational approximations [34].

In this paper, we concatenate tree-based feature transfor-
mation method and Bayesian non-parametric classifier to

propose a hybrid approach for NIPPV therapeutic efficacy
prediction. In particular, we transform features into a higher
dimensional, sparse space by GBDT and include them as
inputs of GPC. We calculate feature importance to justify
the rationality of using tree-based feature transformation.
Further, our hybrid model is flexible and extensible, so we
can replace the first step of it with other similar tree-based
methods, such as random forest and XGBoost, for further
improvement. We show on a NIPPV dataset our hybrid model
outperforms all baseline approaches working under the same
conditions. Considering that the sample size of the NIPPV
dataset is insufficient, we construct two simulated datasets
with larger sample size and conduct additional experiments.
Results have demonstrated that Bayesian non-parametric
model based on tree-based feature transformation are supe-
rior to baseline in terms of capturing the leading features
which include critical information about the patient or their
symptom and enhancing the quality of classification. Several
fundamental parameters impact the final prediction perfor-
mance of our hybrid model. We then explore the fundamental
parameters tuning in order to improve the quality of our
training.

It is also important to note that we propose an NIPPV
efficacy predictive model based on machine learning algo-
rithms to provide diagnostic assistance for physicians treating
patients with COPD. With our hybrid model, physicians can
determine whether patients should receive NIPPV treatment
to avoid delaying endotracheal intubation or mechanical ven-
tilation according to their clinical characteristics. Especially
for critically ill patients with urgent treatment time, physi-
cians need a tool to aid decision making, which highlights
the importance of our predictive model.

The rest of the paper is structured as follows. In Section II
we describe exploratory analysis. We present our method
in Section III. The experiments and results are detailed in
Section IV. In Section V we conclude.

II. DATA SET AND EXPLORATORY ANALYSIS
We derived our dataset from the NIPPV efficacy data of peo-
ple with COPD from theDepartment of RespiratoryMedicine
of Sichuan Provincial People’s Hospital in 2016-2018.
We collect 144 caseswith 8 features: gender, age, illness dura-
tion and physiological indicators which include respiratory
rate, potential of hydrogen (pH ), partial pressure of oxygen
(pO2), partial pressure of carbon dioxide (pCO2) and plasma
albumin content. Except for GBDT, our work includes other
methods which cannot tolerate missing values. So we omitted
3 cases, one of which is an outlier and the other two lost their
features or outcomes. Preprocessing of the dataset consists of
missing variables deletion and data standardization. After this
phase, 141 cases remain for the NIPPV dataset construction.

Extensive research about NIPPV investigate the patient’s
physical condition by analyzing the patient’s pulmonary
function indicators such as forced vital capacity (FVC)
and forced expiratory volume in one second (FEV1) [35].
However, different from them, the condition of patients with
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FIGURE 1. Matrix of plots with the NIPPV dataset.

COPD in China is generally more serious than that of for-
eign countries. Pulmonary function test requires patients to
inhale deeply, then quickly blow with force and continue for
six seconds without interruption. This procedure need strong
compliance, which is not suitable for critically ill patients.
The results of blood gases before and after NIPPV treatment
showed that pO2 and pH were significantly increased while
pCO2 was the opposite [36], [37]. pO2 is a measurement of
oxygen pressure in arterial blood. pCO2 is one of several
tests used to measure arterial blood gasses in people with
lung disease and other illnesses, which evaluates how well
CO2 moves from the lungs into the blood. If the partial pres-
sure of oxygen and carbon dioxide is normal, the molecules
will move from the alveoli into the blood and back as they
should. Changes in that pressure can result in getting too
little oxygen in the blood or accumulating too much carbon
dioxide in the blood. Having too much carbon dioxide is
called hypercapnia, a condition common in people with late-
stage COPD [38], which will lead to low pH values. Previous
studies suggested that these indicators bear on the therapeutic
effect of NIPPV, since it has been recognized as a significant
advance in the management of acute hypercapnic respiratory
failure [39]. Apart from above, previous experiments also
include body mass index (BMI) as an index of clinical char-
acteristics [40], [41]. But most hospitals in China do not have
such hospital beds with the function of weight measurement,
and critical patients are too heavy to move, making it difficult

to obtain BMI. However, BMI mainly reflects the nutritional
status of patients, which is also closely related to plasma
albumin content. Therefore, we choose plasma albumin as a
surrogate, given that it is more accurate, more objective, and
more valuable.

In order to observe the relationship between variables and
explore the characteristics of each feature, we describe it
explicitly in the form of pictures. In Figure 1, we make a
matrix of plots with the NIPPV dataset. Effective and ineffec-
tive treatments are represented in blue and pink respectively.
In the upper part of the matrix, we compute the coefficient
of correlation between continuous variables on the overall
data and on different efficacy data respectively. Box plots
are displayed on continuous and categorical data. Similarly,
we show this two forms of data with scatter plot and his-
togram respectively in the lower part of the matrix. As for
diagonal, we apply density plot for continuous data and bar
chart for discrete. From box plots, we can see that the NIPPV
efficacy tends to be effective as the respiratory rate decrease,
while its density plot and scatter plot has the similar char-
acteristic. From the medical point of view, NIPPV generally
works in patients with acute respiratory failure. Although not
as obvious as respiratory rate, pO2 has the same trend. It is
also illustrated in Figure 1 that the higher the plasma albumin
content, the more effective of NIPPV. The contribution of
other features cannot be intuitively obtain from this figure,
which need further analysis later.

VOLUME 7, 2019 177777



Y. Weng et al.: Bayesian Non-Parametric Classification With Tree-Based Feature Transformation

FIGURE 2. Hybrid model structure. Fit an ensemble of trees on the
training set to transform input features into a higher dimensional, sparse
space. Then train a Gaussian process classifier model on these features.

III. BAYESIAN NON-PARAMETRIC BASED PREDICTION
MODEL
In this section we present a hybrid model structure: the con-
catenation of trees and a Bayesian non-parametric classifier,
illustrated in Figure 2. In Section III-A, we fit an ensemble
of trees on the training set. Each individual tree is treated
as a categorical feature which takes the index of the leaf
an instance ends up falling in as value. Therefore, input
features are transformed into a higher dimensional, sparse
space. Then train a Bayesian non-parametric classifier model
on these features. Symbol f represents the latent functionwith
a Gaussian process prior and then be ‘‘squashed’’ through
the logistic function, which plays a crucial role in making
predictions and detailed in Section III-B.

A. FEATURE TRANSFORMATION
The most important thing is to have the right features: those
capturing critical information about the patient or symptom
that dominate other types of features. Once we have the
appropriate model with the right features, other factors make
a small difference [20].

We use tree-based methods to generate tree features which
are included as inputs of classifier. The leaf indices of each
tree in the ensemble are then encoded in a one-hot fashion.
Each sample passes through the decisions of each tree of the
ensemble and ends up in one leaf per tree, and the sample is
encoded by setting feature values for these leaves to 1 and the
other feature values to 0.

For instance, consider the tree-baed model illustrated
in Figure 2 with two subtrees, where the first subtree has
two leaves and the second three leaves. It can be seen from
the figure that a sample ends up in leaf 2 in the first subtree
and leaf 3 in second subtree, represented as deepen opaque

dots. The overall input to the Gaussian process classifier will
be the binary-value vector [0, 1, 0, 0, 1], where the first two
entries correspond to the leaves of the first subtree and last
three represent those of the second subtree.

In each learning iteration, a new tree is created to model
the residual of previous trees. We can regard tree-based trans-
formation as a supervised feature encoding which converts a
real-valued vector into a compact binary-valued vector. The
traversing from root node to a leaf node reveals a rule on cer-
tain features. During the training phase, both root nodes and
leaf nodes are local optimal features. With this characteristic
of tree-based model, we input the transformed features into
classifier so as to improve the fitting ability of classification.

B. BAYESIAN NON-PARAMETRIC CLASSIFICATION
Given a training set D of n observations, D =

{(xi, yi) |i = 1, . . . , n}. Here, x denotes the input generated
from tree-based feature transformation and we use the labels
y = +1 and y = −1 to distinguish two classes. We can
write D = (X , y), as the column vector inputs for all n cases
are aggregated in the design matrix X , and the targets are
collected in the vector y.

As can be seen from Figure 2, a GP prior is placed over the
latent function f (x), whose valuewill then be compressed into
0 to 1 through logistic function to obtain a prior on κ(x) ,
p(y = +1|x) = σ (f (x)). Note that the purpose of f (x) is
simply to allow a easier formulation of the model, and the
computational goal pursuedwill be to integrate out f . Usually,
for notational simplicity we suppose the mean function of the
GP prior to be zero.

Inference process contains two steps. Firstly, computing
the distribution of the latent variable f∗ , f (x∗) correspond-
ing to a test case x∗

p (f∗|X , y, x∗) =
∫
p (f∗|X , x∗, f) p(f|X , y)df, (1)

where p(f|X, y) = p(y|f)p(f|X )/p(y|X) is the posterior of
the latent variables and f = (f (x1) , . . . , f (xn))> represents
Gaussian process latent function values. Secondly, using
this distribution over the latent f∗ to produce a probabilistic
prediction

κ∗ , p (y∗ = +1|X , y, x∗) =
∫
σ (f∗) p (f∗|X , y, x∗) df∗.

(2)

In classification the non-Gaussian likelihood p(y|f) in
eq.(1) makes the integral analytically intractable. Similarly,
eq.(2) can hardly be intractable analytically. Therefore,
we use the Laplace approximation as represented byWilliams
and Rasmussen [42] to approximate the non-Gaussian joint
posterior with a Gaussian one.

Doing a second Taylor expansion of log p(f|X , y) around
the maximum of the posterior, we obtain a Gaussian approx-
imation

q(f|X , y) = N (f|f̂,A−1) ∝ exp(−
1
2
(f− f̂)>A(f− f̂)), (3)
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where f̂ = argmaxf p(f|X , y) and A = − ∇∇ log p(f|X , y)|f=f̂
is the Hessian of the negative log posterior at that point.

By Bayes’ rule the posterior over the latent variables is
given by p(f|X, y) = p(y|f)p(f|X )/p(y|X). We need only con-
sider the un-normalized posterior as p(y|X) is independent
of f. Taking a logarithm of p(f|X, y) we obtain

9(f), log p(y|f)+ log p(f|X )

= log p(y|f)−
1
2
f>K−1f−

1
2
log |K | −

n
2
log 2π, (4)

where K , K (X ,X ) represents the n × n covariance matrix
and log p(f|X ) = − 1

2 f
>K−1f − 1

2 log |K | −
n
2 log 2π holds

under the assumption of the GP prior f|X ∼ N (0,K ).
Differentiating eq.(4) gives

∇9(f) = ∇ log p(y|f)− K−1f, (5)

∇∇9(f) = ∇∇ log p(y|f)− K−1 = −W − K−1, (6)

where W , −∇∇ log p(y|f) is a diagonal since the likelihood
factorizes over cases.

We use Newton’s method to find the maximum of 9, and
at the maximum of 9(f) we have

∇9 = 0 H⇒ f̂ = K (∇ log p(y|f̂)). (7)

After finding the maximum posterior f̂, we specify the
Laplace approximation to the posterior as a Gaussian with
mean f̂ and covariance matrix given by the negative inverse
Hessian of 9 from eq.(6) as

q(f|X , y) = N
(
f̂,
(
K−1 +W

)−1)
. (8)

The posterior mean for f∗ can be expressed by combining
the GP predictive mean with eq.(7) into

Eq [f∗|X , y, x∗]=k (x∗)> K−1 f̂=k (x∗)> ∇ log p(y|f̂), (9)

note that we write k (x∗) = k∗ to denote the vector of
covariances between the test point and the n training points
K (X , x∗).

We also compute the variance of f∗|X , y under theGaussian
approximation

Vq [f∗|X , y, x∗]=k (x∗, x∗)−k>∗
(
K +W−1

)−1
k∗. (10)

Given the mean and variance of f∗, we make predictions by
computing

κ∗ ' Eq [π∗|X , y, x∗]=
∫
σ (f∗) q (f∗|X , y, x∗) df∗. (11)

where q (f∗|X , y, x∗) is Gaussian with mean and variance
given by equations (9) and (10) respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. FEATURE IMPORTANCE
We delve into the importance of our features in the NIPPV
dataset in order to justify the rationality of using tree-based
feature transformation. A benefit of using tree-basedmethods
like GBDT is that they can automatically estimate feature

FIGURE 3. Feature importance given by GBDT. Calculate the importance
of features in the NIPPV dataset, which measures the contribution of
each feature is in the construction of the boosted decision trees.

importance from a trained predictive model. Importance pro-
vides a score that indicates how useful each feature is in
the construction of the boosted decision trees within the
model. Theoretically, the more a feature is used to make key
decisions with trees, the higher its score. Importance of a
single decision tree is calculated by the amount of perfor-
mance improvement for each split point, which weighted by
the number of observations the node is responsible for. The
performance metric can be the purity used to select the split
point or another more specific error function. Then, take an
average of all decision trees within the model to obtain the
score of feature importance.

As can be seen from Figure 3, all features in the NIPPV
dataset are ranked by importance. Respiratory rate is the most
important, followed by pO2. Age, pH , and plasma protein
also have considerable importance, arranged behind them
in turn. We analyze from a medical perspective as follows.
Respiratory rate is intuitive and real-time. Although pH and
pO2 are also important considerations, due to the need of
blood tests, it takes at least half an hour to get the test
results. The impact of age also need to be taken into account.
As the senses of the elderly are relatively sluggish, he will
be more tolerant of NIPPV’s discomfort while the tolerance
of young people is worse since the sensitivity of his face
and throat. Therefore, the cooperation of young people is
worse. In theory, the greater the patient’s age, the better the
compliance, then the efficacy will be guaranteed. However,
it is also depend on their condition.

Physicians need to analyze the coupling relationships
between the clinical characteristics. This process is compli-
cated but extremely important for physicians to make accu-
rate judgments. In this case, our machine learning model
assists in medical diagnosis by identifying potential relation-
ships between variables and predicting the effectiveness of
NIPPV based on the physiological indicators of patients. This
result of feature importance given by GBDT is generally
consistent with the exploratory data analysis in Section II,
which indicates that tree-based method really can capture the
valuable features that dominate others.
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FIGURE 4. One of the tree trained by GBDT.

TABLE 1. Predictive performance comparison of several methods on three datasets.

According to the idea of boosting, each step of GBDT uses
a decision tree to fit the residual of current learning and then
obtain a new tree. Figure 4 shows one of the decision tree
trained by GBDT. The decision process of the tree is actually
a simulation of physicians’ diagnosis, whose splitting rules
take into account the importance of the features and Friedman
mean squared error [15] of each step. Each node represents
a feature, each branch represents a decision and each leaf
represents an outcome. As illustrated in this figure, each
sample goes through the decision tree and ends up in one
leaf. It turns out that the features displayed on the nodes are
important for determining whether a patient should receive
NIPPV treatment. As an ensembling technique, GBDT com-
bined several decision trees as shown in Figure 4 to yield a
powerful model, in an iterative fashion.

B. EXPERIMENT RESULTS
To demonstrate performance of our method, we compared
the proposed method with existing methods on the NIPPV
dataset. We implement LR, SVC, GBDT and GPC without
feature transformation to set up the baseline. As for the asso-
ciated evaluation metrics, accuracy [43] and precision [44]
are the metrics most often applied, together usually, with

recall [45] and F1 [46]. In order to evaluate the quality of the
classifiers, we applied 10-fold cross-validation (CV). In this
process, we obtain the average of each metrics mentioned
above. All data will be involved in training and predic-
tion, which can effectively avoid overfitting and eliminate
randomness.

Table 1 shows the results of our experiments on three
datasets. For convenience, the results of the baseline methods
are displayed in the top four rows. Bayesian non-parametric
model GPC obtained the best performance among the four
methods. The rows marked ‘‘GBDT-’’ apply GBDT in gen-
erating tree features before classification. GBDT-LR and
GBDT-SVC achieved improvements over pure classification.
Considering that GBDTwith parametric models have already
obtain significant improvements, and are therefore higher
baselines, the performance improvements of GBDT-GPC are
very encouraging.

Since the expensive cost of collect such NIPPV treatment
for COPD patients data, the sample size of real data is
small. In order to validate our proposed method on datasets
with larger sample size, we generate two random 2-class
classification simulated datasets, which contain 500 cases
with 8 features and 1000 cases with 20 features, from the
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FIGURE 5. Performance of hybrid model with other tree-based feature
transformations. Replace the first step with random forest and XGBoost.
Draw their ROC curves for performance comparison.

machine learning library scikit-learn. In the middle and right
half of Table 1, evaluation metrics of baseline models are
higher than the results on the NIPPV dataset. Similar to
the left half, the performance of models is significantly
improved after the joint of tree-based feature transformation,
in which GBDT-GPC works best. The results demonstrate
that our method has powerful generalization performance and
the ability of dealing with data of different size, which is
even one order of magnitude larger than the original sample
size.

In addition to studying the findings as discussed above, it is
interesting to see how different methods of tree-based feature
transformation affect the performance. In Figure 5 we show
an overview of the different experimental results. Receiver
Operating Characteristics (ROC) curve [47] is a graphical
plot that illustrates the diagnostic ability of a binary classifier
system. Higher the Area Under Curve (AUC), better the
model is at distinguishing between classes. As expected, GPC
with tree-based feature transformations are easier to perform
well, as reflected in the figure by the large AUC. The AUC
of GBDT-GPC, RF-GPC and XGB-GPC reached 0.9037,
0.8852 and 0.9370 respectively, while GPC was only 0.7519.
This indicates that our hybrid model is flexible and exten-
sible, as we can replace the first step with RF or XGBoost.
The performance of these two methods are shown in the last
two rows of Table 1. It can be seen that both of them achieved
substantial performance improvements, with XGB-GPC even
obtain higher accuracy than GBDT-GPC.

C. TRAINING OPTIMIZATIONS
The next task is to optimize the performance and accuracy in
training phase. In this part, we share several accuracy-critical
factors have proven effective for our method.

Theoretically, the more trees in the model the longer the
time required to make a prediction. We vary the number of
boosted trees from 1 to 130 and study the impact of the

FIGURE 6. Predictive performance comparison with different number of
boosting trees.

FIGURE 7. Predictive performance comparison with different size of
training set.

number of trees on estimation accuracy. The experimental
results are shown in Figure 6. The accuracy of the three meth-
ods fluctuated greatly before the number of trees reached 100.
With the number above 100, the performance is relatively
better and tends to be stable. However, the raise in the number
does not cause a significant increase in performance and add
training cost. Therefore, it is reasonable to control the number
of trees in the range of 100 to 120.

In the following, we do some study to explore the effect of
different proportions of training data. It is shown in Figure 7
that when the proportion is less than 10%, the performance
of the two models, GBDT-GPC and XGBoost-GPC, is poor.
As the training size improves from 10% to 85%, the accuracy
is unstable since it fluctuates drastically. The performance
of the tree models is greatly enhanced when the proportion
is higher than 85%, which may be due to the fact that our
medical data is difficult to obtain and the size of dataset is
small.

From the above results illustrated in Figure 3, top 5 features
are responsible for more than half of total feature importance,
while the last 3 contribute less than 13%. Based on this find-
ing, we further experiment with keeping 1 to 8 features, and
evaluate how the accuracy is effected. As shown in Figure 8,
the performance of XGBoost achieved huge improvement
since the number of features greater than 3. It may be
caused by the gradually joint of the most importance features.
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FIGURE 8. Predictive performance comparison with different number of
features.

The performance of three model peaks at 8, indicating that all
features are included for better results, although some of them
are less important.

V. CONCLUSION
NIPPV is an alternative approach of endotracheal intubation
and mechanical ventilation to avoid infectious complications
and injury to the trachea in patients with acute respiratory
failure. But it is not always effective. In order to avoid
delaying endotracheal intubation due to ineffective NIPPV
treatment, we introduce a hybrid model to predict whether the
patient should adopt NIPPV based on the their own physical
condition.

Efficacy prediction of NIPPV can be regarded as a specific
kind of binary classification. We improve the performance of
classifier by concatenating tree-based feature transformation
method and Bayesian non-parametric model. Specifically,
we generate tree features by GBDT and then model classi-
fication as a GP with no assumptions about data structures.
We delved into the feature importance and justified that tree-
based method really can capture the valuable features that
dominate others. The experiments carried out both on the
NIPPV dataset and two simulated datasets with lager sam-
ple size, which validated the powerful generalization per-
formance and robustness of our method. GBDT-GPC have
demonstrated state-of-the-art performance on NIPPV thera-
peutic efficacy prediction task. Further, we can replace the
first step of our hybrid model with tree-based method like
random forest and XGBoost for further improvement, since
it is flexible and extensible. We analyzed the effect of fun-
damental parameters tuning on the final prediction perfor-
mance. With our hybrid model, physicians can determine
whether patients should receive NIPPV treatment according
to their clinical characteristics. Especially for critically ill
patients, it provides diagnostic assistance and avoids delaying
endotracheal intubation or mechanical ventilation.
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