
Received November 12, 2019, accepted November 23, 2019, date of publication December 6, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2958202

Optimizing Skyline Query Processing
in Incomplete Data
YONIS GULZAR 1, ALI A. ALWAN 2, AND SHERZOD TURAEV 3
1Department of Management Information Systems, College of Business Administration, King Faisal University, Al-Ahsa 31982, Saudi Arabia
2Department Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Selangor 35100, Malaysia
3Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain 15551, United Arab
Emirates

Corresponding authors: Yonis Gulzar (ygulzar@kfu.edu.sa) and Ali A. Alwan (aliamer@iium.edu.my)

This work was supported in part by the Deanship of Scientific Research in King Faisal University, Saudi Arabia, under Program 186304.

ABSTRACT Given the significance of skyline queries, they are incorporated in various modern applications
including personalized recommendation systems as well as decision-making and decision-support systems.
Skyline queries are used to identify superior data items in the database. Most of the previously proposed
skyline algorithms work on a complete database where the data are always present (non-missing). However,
in many contemporary real-world databases, particularly those databases with large cardinality and high
dimensionality, such assumption is not necessarily valid. Hence, missing data pose new challenges if the
processing skyline queries cannot easily apply those methods that are designed for complete data. This is
due to the fact that imperfect data cause the loss of the transitivity property of the skyline method and cyclic
dominance. This paper presents a framework called Optimized Incomplete Skyline (OIS) which utilizes a
technique that simplifies the skyline process on a database with missing data and helps prune the data items
before performing the skyline process. The proposed strategy assures that the number of the domination
tests is significantly reduced. A set of experiments has been accomplished using both real and synthetic
datasets aimed at validating the performance of the framework. The experiment results confirm that the OIS
framework is indeed superior and steadily outperforms the current approaches in terms of the number of
domination tests required to retrieve the skylines.

INDEX TERMS Algorithms, incomplete data, database, preference queries, query processing, skylines,
skyline queries.

I. INTRODUCTION
Skyline queries are a standout amongst the most driving,
unequalled and much of the time utilized preferences queries
in database systems. Skyline query is a very beneficial
tool that is being utilized in various applications including
multi-criteria decision-making systems [3], crowd-sourcing
databases [4]–[7], cloud databases [8], [9], and decision
support system [10]. In most of these applications, the user
may need to combine various contradictory criteria to rec-
ommend a strategic decision. Skyline queries seek to pre-
fer one data item (p) over another data item (q) if p is as
good as q in at least one dimension and better than q in
all dimensions. For instance, assume there are two different
data items p1 and p2 with the same dimensions. We say
p1 is one of the superior skyline set (S) if p1 is as good
as p2 in at least one dimension and superior to p2 in all

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

other dimensions [8], [11]–[21]. Based on the concept of
dominance in skyline queries, the data items present in the
skyline set are always the best in respect to any monotone
ranking function. Since the predominant notion is natural and
straightforward, users can easily formulate the skylines. The
following example of a hotel finder database demonstrates
how the skyline process works. In the given scenario, a hotel
database consists of 10 hotels (a to j), and each hotel has the
two dimensions of price and distance. We assume a person is
looking for a hotel that is the nearest to the workshop venue
and the lowest in price.

Figure 1 denotes the visual representation of a hotel finder
database example with a two dimensional space (price and
distance). The x-axis denotes the distance from the workshop
venue to the hotel, while the y-axis indicates the price per
night for each hotel.

FromFigure 1 it can be seen that hotels a and d have similar
distance value; however, the price of hotel d is lower than
that of hotel a, so hotel d dominates a. Similarly, hotels d

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 178121

https://orcid.org/0000-0002-6515-1569
https://orcid.org/0000-0003-3279-9366
https://orcid.org/0000-0001-6661-8469
https://orcid.org/0000-0002-5169-9232

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 1. Skylines of the hotel-finder database.

and e dominate b and c since they are superior to hotels b and
c in either one or both dimensions. Hotels gand i dominate
hotels j, f , h, and c. Considering the completed comparison
process, we conclude that hotels d , e, g, and i are the superior
hotels since they are not dominated by any other hotel in the
database. Hence, they can be retrieved as skylines of the hotel
finder database sample.

A great number of algorithms have been proposed with
the intention of evaluating skyline queries in complete
databases [21]–[32]. Among the most notable skyline algo-
rithms are Divide-and-Conquer (D&C), Block Nested-Loop
(BNL) [24], Bitmap and Index [25], Nearest Neighbor
(NN) [26], Sort Filter Skyline (SFS) [27], Branch and
Bound Skyline (BBS) [28], Linear Elimination Sort Skyline
(LESS) [22], Sort and Limit Skyline algorithm (SaLSa) [29],
ZSearch [30], and OSPS [31]. Most of these skyline algo-
rithms are tailored to identify the skylines while minimizing
the searching space and avoid scanning the entire database.
These algorithms are designed based on the assumption that
the database is always complete if the values of all attributes
are present during the skyline evaluation process. However,
the assumption of data completeness cannot always be true,
particularly for a database that received data from uncertain
resources such as crowd and sensors. It is impractical to
directly apply skyline algorithms coined for a database with
complete data on an incomplete database since incomplete
data influence the processing of skyline queries, cause the
loss of the transitivity property of skyline and give rise to
the issue of cyclic dominance. Consequently, this results in
the infinite dominance test; in the most extreme case no data
item can be retrieved as skyline.

The following scenario is used to illustrate the abovemen-
tioned problems. Assumed are three data items a, b and c
with missing values with the three dimensions of d1, d2,
and d3. The detailed values of these data items are as follows:
a(2,∗ , 5), b(3, 2,∗), c(∗, 4, 3). The symbol (∗) indicates that
the value of that particular dimension is missing. To evaluate
skyline queries on this kind of data items with the purpose

to identify skylines means that the data items have to be
compared with each other. Based on the given example, only
the dimensions with known values on the common subspace
are considered in the pairwise comparison. Comparing a
with b (smaller is better) shows that a dominates b in one
dimension (d1). Similarly, comparing b with c indicates that
b is better than c in the second dimension (d2). Thus, c is
dominated by b, however, a does not dominate c. According
to the transitivity property of the skyline technique, if a
dominates b and b dominates c, then a should also dominate c.
However, this is not the case in our running database example
with incomplete data. We can conclude that a is not better
than c, while a dominates b and b dominates c. Hence, the
transitivity property of the skyline technique does not hold in
incomplete databases [11], [12], [14], [16], [17], [44].
Cyclic Dominance: When processing skyline queries on

a database with incomplete data, there is a high possibil-
ity to encounter the issue of cyclic dominance. This hap-
pens due to the loss of the transitivity property of the
skyline technique caused by the incompleteness of the data.
Therefore, some data items may be incomparable with
each other and thus, no data item is considered as sky-
line [11], [12], [14], [16], [17], [44]. In our running database
example, the data item a dominates b and b dominates c
while c dominates a. In this case, it seems that all data items
are dominated by one another and hence, no skylines are
introduced. Thus, an efficient solution is needed to resolve the
above issues when running skyline queries in such incomplete
databases. Any attempted solution should also consider the
issue of lessening the number of domination tests between
data items for identifying the skylines.

The following points summarize the contributions of this
paper:
• We discuss the problem of identifying skylines in a
database with incomplete data and explain the need for
a more efficient solution.

• We conduct a comprehensive review of the leading stud-
ies conducted on skyline queries in database systems.
This covers previous approaches designed for complete
and incomplete databases. The review examines and
highlights the strengths and the weaknesses of each
approach.

• We propose a new skyline framework called Optimized
Incomplete Skylines (OIS) that efficiently answers sky-
line queries in an incomplete database.

• We develop a new filtering scheme that helps optimize
the skyline process of eliminating unwanted data items
before applying the skyline technique.

• We provide a comprehensive time complexity anal-
ysis for all algorithms incorporated in the proposed
approach.

• We evaluate the efficiency and the effectiveness of
the proposed solution through several experiments
using both real and synthetic datasets. The experiments
demonstrate the effectiveness of the filtering scheme and
the performance of the proposed solution.

178122 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

The remainder of the paper is organized as follows:
In Section II the previous works related to this research are
discussed. The basic definitions and notations, which are
subsequently used are set out in Section III. The proposed
frameworkOIS is detailed in Section IV, while the experimen-
tal result is explained in SectionV, followed by the conclusion
as presented in Section VI.

II. RELATED WORK
Numerous skyline algorithms have been proposed in the
research literature, each centred around enhancing the effec-
tiveness and the execution time of the skyline process. The
quantity of domination tests constitutes the most important
factor influencing the execution time of the skyline process.
In this regard, most proposed approaches focus on reduc-
ing the number of domination tests to the lowest possible
minimum.

The first study that addressed the issue of computing sky-
lines in relational databases was that of Borzsonyi et al. [24].
His research team proposed the two algorithms BNL and
D&C for complete databases. Many algorithms have been
proposed subsequent to BNL and D&C that sort or partition
the initial dataset. Several algorithms have been proposed to
improve upon BNL such as SFS [27], LESS [22], SaLSa [29],
and ZSearch [30]. These algorithms are used to sort and
rearrange the data items before eliminating those data items
that are unlikely to be part of the skyline process. SFS
sorts the entire database in non-ascending order to eliminate
non-skyline data items early, whereas LESS combines the
advantages of SFS and BNL by rearranging the data items.
SalSa uses another function that keeps dominant data items
on top of the list, prunes other data items and decreases
domination tests. Besides, several other algorithms such as
NN [26], BBS [28], INDEX [25], OSPS [31], BSkyTree [32]
have been proposed that apply the D&C concept by dividing
the dataset into small partitions before retrieving the local
skylines from all partitions and combining all local skylines
into the final skyline as last outputs.

Furthermore, several skyline algorithms have been pro-
posed for incomplete databases. The first skyline algorithm
designed for an incomplete database has been proposed by
Khalefa et al. [11] whose team have proposed two algo-
rithms, namely Bucket and Iskyline. The Bucket algorithm
divides the dataset into different buckets before retrieving
the skylines of each bucket. The skylines of the buckets
are then further combined to identify the final skylines of
the database. This algorithm has been optimized with the
help of two optimization techniques to form the Iskyline
algorithm. These optimization techniques result in reducing
the number of pairwise comparisons needed to retrieve the
skylines. RSSSQ [33] uses the same concept as used by
Khalefa et al. [11] by replacing the missing values with num-
bers that are larger than the domain value to avoid losing
the transitivity property of skyline and the issue of cyclic
dominance.Miao et al. [34] proposed three algorithms known
as Baseline, Virtual Point (VP) and k-iSkyband (kISB).

On the downside, the Baseline algorithm requires a large
number of pairwise comparisons to retrieve the skylines and
ignores the correction of data items in the buckets. The
VP algorithm overcomes the issue of data item correction.
Lastly, kISB further optimizes VP by reducing the domina-
tion test process and eliminating redundant data storage.

Thework in [12] have also highlighted the issue of process-
ing skyline queries in incomplete datasets and proposed the
SIDS approach by sorting to create the skylines. The idea of
SIDS is as follows: Firstly, the data items are sorted in lists in
descending order based on each dimension before comparing
the data items of each sorted list with each other. This process
is carried out in a round-robin fashion for each list. The
dominated data items of each list are eliminated immediately
while non-dominated data items are retained. The process
count of every non-dominated data item is accumulated; if
the process count is equal to the non-missing dimensions of
that particular data item, it is considered as a skyline. Several
real and synthetic datasets have been used to evaluate the
performance of SIDS. However, the SIDS approach requires
access to the lists in a sequential order. Therefore, it has to
wait for the results of all the lists before being able to move
to the next phase. Thus, increasing the number of lists may
result into a lower performance of the skyline process and
delays generating the skylines and making them available to
the end user.

The research published in [35] has discussed the issue
of processing skyline queries in incomplete data by propos-
ing the Incomplete Data Frequent Skyline approach (IDFS).
IDFS adopts the top-k frequent skyline technique as proposed
by [1] that aims at controlling the size of the skyline results.
IDFS relies on utilizing the concept of top-k to derive superior
skylines based on the fractional skyline frequency of each
data item. It is used to identify superior skylines for a database
with missing values. Some experimental results have been
reported that demonstrate the efficiency of IDFS using real
and synthetic datasets. However, IDFS may not perform well
and the performance is highly degraded if the examined space
for determining the frequent skylines data items is very large.

Another recent approach has employed the SIDS approach
as introduced in [15], which focuses on improving the
SIDS approach by using a unique way of filtering the data
items before applying the skyline technique. In addition,
Zhang et al. [36] have proposed a framework called Com-
pared One by One (COBO) that implements the ISSA tech-
nique to compute skylines in the database. ISSA executes the
process in two phases: Firstly, it utilizes the idea of the bucket
as proposed by Khalefa et al. [11] to eliminate dominated
data before applying skyline process. Secondly, it uses an
aggregate function to add all non-missing dimensions of the
remaining data items in each bucket. Then the data items are
sorted in ascending order according to the aggregate func-
tion in order to compute the final skylines. Miao et al. [37]
have proposed the Improved Bitmap Index Guided algo-
rithm (IBIG) to process top-k dominating queries for incom-
plete data. Top-k dominating queries combine the features of

VOLUME 7, 2019 178123

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

skyline queries and top-k queries. It first divides the initial
dataset based on their corresponding bitmap representation
and uses the binning strategy technique to optimize the data
item size in the process of identifying the k-dominating
skylines. The reported experimental results demonstrate that
IBIG constitutes an effective technique for pruning a large
number of unwanted data items that improve the skyline
process in a database with incomplete data.

Furthermore, the work introduced by Alwan et al. [14] has
also highlighted the issue of processing skyline queries in
incomplete databases. They proposed the Incoskyline algo-
rithm which works as follows: Firstly, the initial dataset is
divided into subsets where each subset contains data items
of the same namespace. Then two groups are constructed for
each subset that contain only best data items. Next, the local
skylines of each group are determined by comparing the
data items contained in the groups with each other. To find
the final skylines, virtual data items are generated from the
local skylines of each subset and used to compare with local
skylines of each subset instead of comparing all local skylines
with each other. Lee et al. [16] proposed the Bucket and
Sorting-based Bucket Skyline algorithm (SOBA) that uses
the same technique of dividing the dataset into subsets based
on the namespace of data items as in Iskyline [11]. For opti-
mization, SOBA uses the same technique as used in ISSA[36]
to compute the local skylines of each subset. Unlike ISSA,
SOBA rearranges the data items in non-ascending order of
subsets to find the final skylines. Similar to other approaches
SOBA also identifies the local skylines of each subset, yet
compares the data items with one another without pruning
the dataset by eliminating the dominated data items before
applying the skyline technique. Thus, this approach leads
to many unwanted pairwise comparisons among data items
during the skyline process.

Miao et al. [38] have proposed three algorithms (Baseline,
DAG, and BIB) for processing k-dominant skyline queries
on incomplete data (IKDS). Here, k-dominant skylines form
the subset of superior data items among the skylines data
items. In other words, k-dominant skylines return the limited
number of data items that are not dominated by other data
items in the database. Unlike other skylines queries that return
all non-dominated data items of the database, DAG aims
to minimize the searching space, whereas BIB employs the
bitmap index for incomplete data and fast bitwise operations
to check the k-dominance relationship under several heuristic
techniques.

Zhang et al. [39] have proposed the PISkyline algorithm
for processing probabilistic skylines in incomplete data,
which returns those data items that have high probability to
be part of the skylines set. Filtration techniques are used to
prune dominated data items at the early stage and use two
optimization techniques to accelerate the probabilistic skyline
computation process.

To the best of our knowledge, the most recent work that has
tackled the issue of processing skyline queries on incomplete
databases has been contributed by Wang et al. [40] who have

introduced the Skyline Preference Query approach (SPQ) that
uses the same strategy of sorting data items in descending
order for each dimension similar to SIDS [14]. However,
SPQ divides the initial dataset into two distinct subsets based
on the priority of dimensions chosen by the user meaning
that the first subset has higher priority than the second subset.
The local skylines of the first subset are computed using the
SIDS technique [12], while the local skylines of the second
subset are computed by dividing the second subset further
into smaller subsets based on the bitmap representation of the
data items. Lastly, the local skylines of the first subset present
in SSRS are compared with the local skylines of the sec-
ond subset present in RSRS to retrieve the final skylines.
Although SQP has improved upon the SIDS algorithm, SPQ
creates multiple pre-processed lists similar to SIDS.

Furthermore, SQP as well as SIDS algorithms are designed
based on the data structure used in [2], [41], with the restric-
tion of efficiently handling incomplete data. Table 1 sum-
marises the skyline techniques presented in the section and
includes the skyline techniques for complete and incomplete
data. The table shows the approach, the year, the computation
space, the database characteristic, the technique, the access
method, the missing rate, the number of dimensions, and the
dataset type. The definition of computation space denotes
whether the skyline process needs to carry out a full scan
with exhaustive search on the entire database or a partial scan
for the database to determine the skylines. Here, the database
characteristics indicate whether the database is complete
(no missing values exist in the database) or the database has
missing values in one or more dimensions.

III. DEFINITIONS
In this section, several definitions and annotations are pro-
vided related to the skylines queries in incomplete databases.
These definitions and notations are important to be clarified
as part of our proposed approach. Table 2 summarizes the
symbols used throughout the paper, the relevant terms being
explained below. Our approach has been developed in the
context of an incomplete relational database, D. A relation
of the database D is denoted by R (d1, d2 . . . , dm) where R is
the name of the relation withm-arity and d = (d1, d2 . . . , dm)
is the set of dimensions.
Definition 1, Skyline: This technique retrieves the skyline

data items S in such a way that any skyline data item is not
dominated by any other data item in the database.
Definition 2, Dominance on Complete Database: Given

two data items pi and pj ∈ D database with complete data
d dimensions, pi dominates pj (denoted by pi � pj) if (and
only if) the following two conditions hold:

1. ∀dk ∈ d, pi.dk ≥ pj.dk and
2. ∃dl,∈ d, pi.dl > pj.dl

Definition 3, Skyline Queries on Complete Database:
Select a data item pi from the set of D complete database if
(and only if) pi is as good as pj (where i 6= j) in all dimen-
sions (attributes) and superior to pj in at least one dimension.

178124 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

TABLE 1. Summary of the previous approaches for skyline queries in database systems.

TABLE 2. Symbols and description.

We use Sskyline to denote the set of skyline data items,
Sskyline = (pi∀pi, pj ∈ D, pi � pj).
Definition 4, Incomplete Database: Given a database

D (R1,R2, . . . ,Rn), where Ri is a relation denoted by
Ri (d1, d2, . . . , dm),D is said to be incomplete if (and only if)
it contains at least a data item pj with missing values in one
or more dimensions dk (attributes); otherwise, it is complete.
Definition 5, Dominance on Incomplete Database: Given

two data items pi and pj ∈ D incomplete database with
d dimensions, pi dominates pj (denoted by pi � pj) if
(and only if) the following three conditions hold:

1. The values of dk and dl ∈ d for pi and pj must be
non-missing and

2. ∀dk ∈ d, pi.dk ≥ pj.dk and
3. ∃dl,∈ d, pi.dl > pj.dl
Definition 6, Skyline Queries on Incomplete Database:

Select a data item pi from the set of D incomplete database if
(and only if) pi is as good as pj (where i 6= j) in all common
non-missing dimensions and strictly better than pj in at least
one common non-missing dimension. We use IncoDskyline
to denote the set of skyline data items on an incomplete
database, IncoDskyline = (pi∀pi, pj ∈ D, pi � pj).
Definition 5, Comparable: Let the data items ai and aj ∈ R,

ai and aj are comparable (denoted by aiεaj) if (and only if)
they have no missing values in at least one identical dimen-
sion; otherwise ai is incomparable to aj (denoted by aiε/aj).

IV. THE PROPOSED FRAMEWORK
In this section, the components of the proposed framework
(Optimized Incomplete Skyline) or OIS for processing skyline
queries in a database with incomplete data are explained. The
proposed framework consists of four components, namely: i)
clustering, ii) sorting and filtering, iii) local skylines iden-
tifier, and iv) skylines identifier. The main purpose of the
framework is to simplify the skyline process in a database
with incomplete data. The simplification of the skyline pro-
cess aims at reducing the number of domination tests between
the data items when generating the skylines. Figure 2 illus-
trates the components and the process flow of the OIS
framework.

VOLUME 7, 2019 178125

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 2. The proposed framework.

FIGURE 3. Algorithm of clustering.

To ensure a better understanding of how the proposed
framework works, a running example of incomplete database
is used as demonstrated in Figure 4. The database example
comprises of 40 data items with four dimensions. The symbol
(∗) is used to denote that the value of the corresponding
dimension is not available (missing).

A. CLUSTERING
This component is used to aggregate all data items in a
cluster taking into consideration the common comparable
dimensions (shared namespace). Clustering is considered as
an important step as it facilitates the process of pairwise
comparisons and assures that the transitivity property of the
skyline is sustained. Most importantly, clustering assists in
preventing the issue of cyclic dominance.
The initial database with incomplete data is scanned and

divided into smaller subsets (clusters) based on the bitmap
representation of the data items. The bitmap representation
pattern represents data items as a set of binary bits (0 or 1).
If the value of the dimension exists, it is represented by 1;
otherwise, it is represented as 0.

Figure 3 illustrates the steps of the clustering algorithm
as adopted from [14]. Each data item is read in sequence
(step 1); if the bitmap representation of a data item matches
the bitmap representation of any of the existing clusters
(step 2), then the data item is inserted into the corresponding

cluster (step 3). However, if it does not match, a new cluster
is created (step 5) followed by inserting the data item into
the created cluster (step 6). This process is repeated over the
entire datasetD, and the number of clusters generated is based
on the corresponding bitmap representation patterns of the
data items.

TIME COMPLEXITY ANALYSIS OF ALGORITHM 1
Let |D| denote the size of data base D, i.e., the number of
data items in D, and let |ai| denote the dimensionality of
a data item ai. Since D = {a1, a2, . . . , an} and each ai is
d-dimensional, |D| = n and |ai| = d . Similarly, we denote
the size of C (the number of the clusters in C) and size of Ci
(the number of data items in Ci) by |C| and |Ci|, respectively.
Since the clusters are created according to missing dimen-
sions, the number of clusters

1 ≤ |C| ≤ 2d

Though the dimensionality d is much less than the number
of data items n, d � n, in practice, for a suitably larger d , the
number 2d may be a large number. Therefore, when analyzing
this algorithm and the following algorithms, we need to take
into consideration the effect of 2d to the time complexity of
the algorithms. As the bitmap representations of a data item ai
and a cluster Cj are order of d , each bitmap comparison takes
a constant time. The total number of bitmap comparisons,
BC , depends on the number data items and the number of
clusters. Thus,

t × n ≤ BC (n, d) ≤ t × n× 2d

where t > 0 is a constant number.
The construction of each cluster Cj takes a constant time,

since it is initially an empty list, and the total number of the
constructions, CC , is

1 ≤ CC (d) ≤ 2d

The insertion of a data item ai into a cluster Cj takes O (d)

time (a constant time). The total number of insertions, INS,

is an order of n that is

INS (n) = O (n) .

Let T1 (n, d) denote the running time ofAlgorithm 1. Then,

T1 (n, d) = BC (n, d)+ CC (d)+ INS (n)

In the best case:

T1,best (n, d) = O (n)+ O (1)+ O (n) = O (n)

In the worst case:

T1,worst (n, d) = O
(
n× 2d

)
+ O

(
2d
)
+ O (n)

= O
(
n× 2d

)
Thus,

O (n) ≤ T1 (n, d) ≤ O
(
n× 2d

)
178126 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 4. Clusters.

According to our running database example, the initial
database relation D is partitioned into four distinct clusters
according to the constructed patterns of the bitmap represen-
tation. Notice that the bitmap representation pattern of the
cluster C1 is 0111 whereby all data items of the cluster have
no values in the first dimension, d1. Similarly, the bitmap
representations of clusters C2, C3, and C4 are 1011, 1101,
and 1110 respectively as demonstrated in Figure 4.

B. SORTING AND FILTERING
This component is an essential component that contributes
toward simplifying the skyline process in an incomplete
database. The process relies on removing the dominated data
items in each cluster before the skyline process. This com-
ponent is very beneficial and helps reduce the domination
tests and avoid many unnecessary pairwise comparisons,
which in turn decreases the processing time of the skyline
process. We incorporate a threshold value used to determine
the desired skyline data items. For example, a user might be
looking for the best action movies (skyline data items) having
a rating of 3 and above on the MovieLens website. In such
a case, we have to filter out the dataset before applying the
skyline technique.

The skyline process performs comparisons at the dimen-
sion level. Thus, by exploiting the concept of the skyline
technique, our approach uses the threshold on each dimen-
sion. In this way, there is a zero per cent chance of having
dominated data items in a skyline set. It should be noted
that the idea of using a threshold assists in identifying the
superior skyline data items out of the total candidate skyline
data items in the database. Applying the concept of threshold
value will not result into a false negative or false positive.
Thus, we can always guarantee that at the end of the process
the return skyline data items are complete and correct. In our
approach, prior to the filtration technique, the data items
of all clusters are kept in a non-ascending order of each
dimension with no missing values. Also, a set of arrays (AL)
is constructed to store theIds of data items instead of their
dimension value. It is important to note here that sorting

technique helps rearrange the data items in such a way that all
the superior data items are placed on top of the constructed
list, which makes the filtration process easier and quicker.
For each dimension of an array list(s) (ALi), we select only
those data items that have the highest value. Notice that all
clusters are independent of each other, which means that
the selection process can be carried out simultaneously. This
helps in accelerating the process. By selecting only those
data items that have the best value in any of the non-missing
dimensions, u1, u2, . . . un results into considering only those
data items that have a high potential to be the skyline data
items. This is due to the fact that the data items with the best
value assist in dominating a large number of data items in that
particular dimension. Eventually, the best data items of all
clusters for each dimension are selected for the next process.
At this point, the remaining data items are discarded and
can be safely removed from further processes. The selected
data items are stored in a new list called candidate list (CLi)
of each array list. It is important to note that the storage
of the data items in a candidate list is carried out column-
wise, and repeating the data items is not allowed. In that way,
the candidate list(s) of each array list (clusters) contains only
the filtered data item(s).

Figure 5 details the steps of the sorting and filtering algo-
rithm. The input of the algorithm is a set of clusters that
have been generated in the previous step, while the output
of the algorithm is a set of candidate lists containing only the
superior data items in each cluster. It should be noted that the
data items present in different clusters (Ci−Cn) are sorted in
non-ascending order based on each non-missing dimension
(di) and their ids and are stored in array lists (ALi−ALn) (step
1-5). Then, a user given threshold value (th) is identified to
denote the limit of the superior data items a user is looking
for (step 6). The value of the first data item represented by
its Idpresent in the first column (uj) of ALi is being checked
to determine whether it is missing or not (step 8). If the
value is missing, then the loop continues to the next column
(uj+1) of array list (ALi) (step 9). The value of threshold, this
assigned to a counter variable, SuperiorDataItems (step 11).

VOLUME 7, 2019 178127

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 5. Algorithm of sorting and filtering.

The variable SuperiorDataItemsis checked; if it is equal to
zero, then the inner loop (step 13) stops and the control moves
to the outer loop (step 14). Otherwise, the data item of the
corresponding idk will be checked to determine whether it is
present in the candidate list (CLi) or not (step 16). If the data
item does not exist in CLi, then the data item will be added
to the corresponding candidate list CLi (step 17). If the value
of the non-missing dimension uj of the data item of idk is not
equal to the value of non-missing dimension uj of the next
data item idk++ (step 19), the value of SuperiorDataItemsis
decreased by 1 (step 20). This process continues to find
all the superior data items in the non-missing dimension uj
(steps 12 -23) in each array list ALi. Steps 7 to 24 are repeated
to find the superior data items in all non-missing dimensions
in each array list ALi. The process ends by returning the
candidate list(s) which contain the superior data items of each
cluster (step 25).

TIME COMPLEXITY ANALYSIS OF ALGORITHM 2
Here, we calculate the running time of the sorting algo-
rithm, SORT , for all clusters Ci in C in total. Since we
can use any efficient comparison-based sorting algorithm,
for each dimension dj in each cluster Ci, the sorting takes
O (|Ci| × log |Ci|) time, i.e.,

SORT
(
|Ci| , dj

)
= O (|Ci| × log |Ci|)

Then for all dimensions 1 ≤ dj ≤ d in each cluster Ci, the
sorting takes O (d × |Ci| × log |Ci|) time, i.e.,

SORT (d, |Ci|) = O (d × |Ci| × log |Ci|)

For all clusters Ci in C,

SORT (n, d) =

|C|∑
i=1

O (d × |Ci| × log |Ci|)

Here, we have two extreme cases: when we have only one
cluster, i.e., |C| = 1 and when we have all possible clusters,
i.e. |C| = 2d . Then

SORTbest (n, d) = O (d × n× log n) ,

And

SORTworst (n, d) = O
(
2d × n× log n

)
The creation of an array list ALi takes O (1) time, thus,

the total amount of time, CONSTAL, spent to construct all
ALis is the order of the number of the clusters in C , which
means

O (1) ≤ CONSTAL (d)≤ O
(
2d
)

The total number of insertions, INS, of ids of the data items
in each cluster Cj for each dimension di into ALj is the order
of the size of the cluster, that is,

INS
(∣∣Cj∣∣ , d) = O

(∣∣Cj∣∣× d)
Regardless the number of the clusters, we insert all data

items in D into the Array Lists ALis, thus,

INSAL (n, d) = O (n× d)

Depending on the value of the threshold th and the nature of
the data items inD, we may insert fromO (1) to O (n) number
of data items into each candidate list CLi. The insertion of
each data item ai into the corresponding candidate list CLj
takes O (d) time. Then, the total number of the insertions

INSCL (n, d) = O (n× d) .

Finally, the total amount of the running time of
Algorithm 2 is

T2 (n, d) = SORT (n, d)+ CONSTAL (n, d)

+ INSAL (n, d)+ INSCL (n, d)

In the best case:

T2,best (n, d) = T2 (n) = O (n× log n)+ O (1)

+O (n)+ O (n) = O (n× log n)

In the worst case:

T2,worst (n, d) = O
(
2d × n× log n

)
+ O

(
2d
)

+O (n)+ O (n) = O
(
2d × n× log n

)
According to our running database example, the data items

in clusters C1, C2, C3 and C4 are sorted in non-ascending
order for each dimension. A set of 2D array list is constructed
(AL1,AL2,AL3,AL4) and only Id’s of data items of cluster
C1, C2, C3 and C4 are stored in array lists respectively.

178128 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 6. List of sorted arrays.

Figure 6 shows the list of constructed arrays of the running
database example.

The filtration process starts by choosing only those data
items that have highest value(s) in each dimension(ui) of
array lists (ALi). In order to start the filtration process,
a threshold (th) is needed to set according to users’ pref-
erences. In this example, we set th = 2 which means we
choose the two top-valued data items from each dimension.
Hence, from AL1 in dimension d2(u2)w4,w9,w1, andw8 have
been selected as the data items among top two values in d2.
Similarly, w4, w5, w8 have been chosen from u3, and w4, w5,
w6, w8 have been nominated from u4. However, none of the
data items have been selected from u1 since all data items
have a missing value in d1. After selecting the superior data
items, they are placed in a candidate list (CL1) for further
processing. It is important to note that the selected data items
cannot be repeated. In other words, once a data item has been
added to the candidate list it will not be added again later.

The process of filtration is carried out in parallel and simul-
taneously for all array lists. Hence, fromAL2 the superior data
items w11, w17, w13, w14, and w18 are selected and stored in
CL2. Similarly, the candidate listCL3 contains data itemsw22,
w26, w27, w29, w25, and w23. Lastly, the candidate list, CL4
contains five data items, w34, w38, w33, w32 and w31 as shown
in Figure 7.

FIGURE 7. Candidate lists of each cluster.

As shown in the running database example, four data items
have been removed from cluster 1 (0111), which is 40% of
data items reduced before applying the skyline technique.
Similarly, from cluster 2 (1011) five data items have been
removed which amounts to 50% reduction in the number of
data items. The reduction in the amount of data will sig-
nificantly decrease the number of domination tests required
during the skyline process. Likewise, in cluster 3 (1101) and
cluster 4 (1110), we have successfully managed to reduce up
to 40% and 50% of data items respectively before applying
the skyline technique. Therefore, we conclude that our sort-
ing and filtering processes have successfully simplified the
skyline process and eliminated up to 18 data items, which
represents around 45% of the total size of the initial database.

C. LOCAL SKYLINE IDENTIFIER
This component is used to determine the local skyline data
items of each candidate list. Since the candidate lists are inde-
pendent from each other, the process of identifying the local
skyline data items can be performed simultaneously. The data
items present in one candidate list, CLi are compared against
each other to compute the local skyline data items of the
candidate list,CLi. This process is conducted concurrently on
data items present in other candidate lists (CLi+1, . . . ,CLn).
The main purpose here is to speed up the skyline process by
running multiple processes in parallel. Pairwise comparisons
between data items result in the elimination of the dominated
data items in each candidate list, and only the non-dominated
data items will be considered for the next stage. It must be
noted here that the issue of cyclic dominance and loss of the
transitivity property of the skyline technique will no longer
occur even with missing values since the data items of each
candidate list have similar bitmap representation, while those
dimensions with missing value have no impact on skyline
process. Performing pairwise comparison between the data

VOLUME 7, 2019 178129

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 8. Algorithm for identifying local skyline data items.

items of each candidate list before aggregating them in one
single list helps avoid redundant pairwise comparisons and
reduces the number of data items to be considered in the
next step. If a data item of one candidate list is dominated
and removed by another data item in the same candidate
list, the dominated data item will not be included in the
skyline result. Thus, its timely removal allows us to reduce
the processing time of the skyline query.

Figure 8 details the steps of the algorithm for processing
local skyline data items for each candidate list (CL). The
algorithm starts with selecting the first data item aj of CLi
for processing (step 1). Then, the data item aj is assigned to a
pointer variable, P (step 2). In step 5 the second data item of
theCLi is assigned to another pointer variable,Cw. In step 6 a
compare method is called to compare P with Cw, and P, Cw
are passed as parameters. If the method returns 1, that indi-
cates P has dominated Cw (step 7) and Cw is removed from
cluster CLi (step 8). However, if the method returns 2, then it
is clear that Cw dominates P (step 9), and the Boolean vari-
able IsDominated is set to TRUE. It is very important to note
that P is not eliminated immediately if it has been dominated
by Cw since P has a high potential to dominate other data
items in the candidate list. Thus, without losing the generality
of the skylines, P is compared with the rest of remaining data
items in CLi, and steps from 4 to 13 are repeated. At the
end of the first iteration IsDominated is checked to determine
whether P has been dominated by any data item or not; if so
(step 13), then P is removed from CLi (Step 14). This process
continues until all remaining data items of CLi have been
compared with each other (steps 1 to 16). At the end of the
process each candidate list (CL1 − CLn) contains the local
skyline data items that are not dominated by any data item
in that particular candidate list. It is important to note that
the local skyline identifier algorithm processes all candidate
lists (CL1 − CLn) simultaneously as all candidate lists are
independent from each other. Hence, this step speeds up the
process of computing skyline and generates the local skyline
data items of all clusters at the same time.

FIGURE 9. The skyline algorithm.

1) TIME COMPLEXITY ANALYSIS OF ALGORITHM 3
Without loss of generality, we consider the case in where
|CLi| = O (n). if |CLi| = O (1), then the all operations in
the algorithm also take O (1) time.
First, the total number of the assignments of the data items

to P is |CLi| which means

ASSIGNP (n) = O (n)

Second, the total number of the assignments of the data
items to Cw is

ASSIGNCW (n) =
|CLi|−1∑
j=1

|CLi|∑
k=j+1

1 =
|CLi|∑
j=1

(|CLi| − j)

= O
(
|CLi|2

)
= O

(
n2
)

Similarly, each comparison of P with Cw takes O (d) time,
and the total number of comparisons is

COMPPCW (n, d) = O
(
d × n2

)
.

The removal of dominated Ps and Cws may take at most
O (n) time. Thus, the total running time of Algorithm 3 is

T3 (n, d) = ASSIGNP (n)+ ASSIGNCW (n)

+COMPPCW (n, d) = O
(
d × n2

)
Or simply,

T3 (n) = O
(
n2
)

Figure 9 illustrates the detailed steps of the compare func-
tion algorithm that compares two data items and generates
the result of the comparison. In step 1 the data items, P and
Cw are compared with each other based on the compara-
ble dimensions with non-missing values. If the data item
P dominates Cw, then the return value is 1 (step 2). How-
ever, if Cw dominates P (step 3), then the return value is 2
(step 4) indicating that P is dominated by Cw. Otherwise,
return 0 which denotes that neither P dominates Cw nor Cw
dominates P (step 6).

2) TIME COMPLEXITY ANALYSIS OF ALGORITHM 4
The time complexity of Algorithm 4 is very obvious. The
comparison of two data items takes O (d) time.

Based on our running database example, the data items
present in the candidate list, CL1 are compared with

178130 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

FIGURE 10. Local skyline data items of candidate lists.

each other. The process works as follows: The first data
item, w4 in CL1 is read and compared with the next data
item, w9. If w4 dominates w9, then w9 will be removed
immediately from the candidate list, CL1. However, if w9
dominates w4 then w4 will only be removed from list at
the end of the iteration as we believe that w4 has a high
potential to eliminatemore data items inCL1. Similarly, in the
following iterationsw4 is compared with rest of the data items
in CL1(w1, w8, w5, w6).
The data items dominated by w4 will no longer remain

in CL1 and will be excluded from further processing. Then,
the next remaining data item in CL1 is selected, and in this
case is w9 and it will be compared with the remaining data
items of CL1. This process continues until all the remaining
data items are compared with each other. At the end of the
process the remaining data items in CL1 will be reported as
the local skyline data items of CL1. This process is conducted
in parallel for the other candidate lists, CL2, CL3, and CL4.
Figure 10 depicts the local skyline data items of the candidate
lists of the database example. Notice that only one data item
has been retrieved as local skyline from candidate list, CL1.
Similarly, from candidate list CL2 only two data items have
been selected as local skylines, from CL3 and CL4 only two
and one data items have been chosen as local skylines. Hence,
many dominated data items have been removed. This early
pruning of the dominated data items greatly improves the sky-
line process and reduces the number of pairwise comparisons
and reduces the cost of the skyline query.

D. SKYLINE IDENTIFIER
The purpose of this component is to return the final skyline
data items of the entire database. This is achieved by com-
paring the reported local skyline data items of all candidate
lists with each other to form the final skylines. The local
skyline data items of each candidate list, CLi are compared
against the local skyline data items of other candidate lists,
CLi+1, . . . ,CLn. This ensures that the local skyline data items
of each candidate list are compared with the local skyline data
items of other candidate lists to ascertain that the reported
skyline data items are the global skyline data items of the
entire database. This ensures that the output is always correct,
and no data item has been left out. Due to the lack of some
values resulting in different bitmap representation patterns,
not all local skyline data items of the candidate lists are

FIGURE 11. Algorithm for final skylines.

comparable with each other. Thus, certain issues such as
cyclic dominance and losing transitivity property have to be
considered. Therefore, we cannot simply remove dominated
data items from the candidate list if they are being dominated
by other comparable data items unless we have ensured that
these removed data items are strictly worse than the reported
skyline data items. Otherwise, the result might be invalid and
produces an incorrect set of skyline data items. This issue
must always be resolved when processing skyline queries
with incomplete data. For instance, if a data item, p, dom-
inates another data item, q, and q dominates r , it is not a
necessity that p will also dominate r as each data item has
dimensions with missing values. Therefore, the incomplete-
ness of the data results in some data items being incompara-
ble, and the transitivity property of the skyline technique is no
longer guaranteed. Thus, we have to carefully check that each
data item is a skyline over the entire database before reporting
the result to the end user.

Figure 11 depicts the steps of the algorithm for processing
local skyline data items for each candidate list (CL). In this
algorithm local skyline the data items of each candidate list
are taken as input to compute the final skyline data items
as output. This is achieved by performing domination tests
across the candidate lists. The process starts by assigning the
first data item in the candidate list, CL1 to a pointer variable,
P (steps 1-3). Then the first data item of the next candidate
list, CL2 is assigned to a pointer variable, Cw (steps 6 and 7).
These two data items are sent as parameters to a compare
method (step 8). If P dominates Cw then Cw is eliminated
immediately from the candidate list (CL2) (step 10). However,
if Cw dominates P then IsDominated is set as true (step 12)
and the process of comparing Pwith the remaining data items
of all candidate lists (CLi+1 − CLn) continues (steps 5 to 14
are repeated). If P has been dominated at the end of the first

VOLUME 7, 2019 178131

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

iteration by any other data item present in any candidate list
(step 16), then Pis removed from the candidate list (step 17).
To compare each remaining data item of each candidate list
(CLi−CLn) with one another, steps 1 to 20 are repeated. Thus,
at the end of the process, the remaining data items contained
in the candidate lists are considered as skyline data items
since they have not been dominated by other data items in
the database.

TIME COMPLEXITY ANALYSIS OF ALGORITHM 5
Since the analysis of Algorithm 5 is very similar to the
analysis of Algorithm 3, we use the similar arguments to
establish the running time of the algorithm.

For all CLis and for all data items ajs in each CLi, the total
number of assignments to P is

ASSIGNP (n) = n− |CLm| = O (n)

The total number of the assignments of the data items to
Cw is

ASSIGNCW (n, d)

=

m−1∑
i=1

m∑
j=i+1

|CLj|∑
k=1

1 =
m−1∑
i=1

m∑
j=i+1

∣∣CLj∣∣
=

m−1∑
i=1

(|CLi+1| + · · · + |CLm|)

= 1× |CL2| + 2× |CL3| + · · · + (m− 1)× |CLm|

Further, we need to consider the summation above with
respect to two parameters n and d .
If for all j = 2, 3, . . . ,m,

∣∣CLj∣∣ = O (n), then

ASSIGNCW (n, d) = O (n)× (1+ 2+ · · · + (m− 1))

= O (n)× O
(
m2
)

If for all j = 2, 3, . . . ,m,
∣∣CLj∣∣ = O (1), then

ASSIGNCW (n, d) = O (1)× (1+ 2+ · · · + (m− 1))

= O
(
m2
)

Since 1 ≤ m ≤ 2d , we have two possible extreme cases:
In the best case, when m is a small constant, and in the first
case, we have

ASSIGNCW (n) = O (n)

And, in the second case,

ASSIGNCW (n) = O (1)

In the worst case, when m is order of 2d , in the first case,

ASSIGNCW (n) = O
(
n× 22d

)
And, in the second case,

ASSIGNCW (n) = O
(
22d
)

Correspondingly, we execute the same number of
O (d) comparisons for all assignments of Cw. Summariz-
ing all cases, we obtain the following estimations for the
running time of Algorithm 5, T5(n, d):

O (1) ≤ O
(
22d
)
≤ T5 (n, d) ≤ O (n) ≤ O

(
n× 22d

)
From the database example run that has been used through-

out the study, the data item present in first candidate list
CL1 is selected first and is compared against all local skyline
data items of candidate lists, CL2, CL3, and CL4. Comparing
w4 with w11 and w13 indicates that both data item of CL2
are not worse than w4 and will not be removed. Similarly,
w4 is compared with the local skyline data items of CL3,
w22 and w29, and we notice that only w29 has been dominated
by w4 and is thus removed from the candidate list. At last w4
is further comparedwith data item ofCL4,w34.We notice that
w34 dominates w4. Therefore, at the end of the first iteration
w4 is removed from the candidate listCL1. OnceCL1 is empty
the data items of CL2 are compared with the remaining data
items of other candidate lists (CL3 and CL4). Hence, w11 is
selected from CL2 and compared with the remaining data
items of CL3 and CL4 by comparing w11 with w22 of CL3
and w34 of CL4. Since, none of them are dominating each
other,w13 is selected for processing in the next iteration and is
comparedwithw22 andw34. However,w22 dominatesw13 and
is thus removed fromCL2 at the end of the iteration. In the last
iteration the data item(s) of CL3, (w22) are compared with the
data item of CL4, and the result of the comparison indicates
that w34 dominates w22 which is thus removed from the list.

FIGURE 12. Final skyline data items.

At this point, the process of identifying the final skyline has
reached a stage where all available local skyline data items of
each candidate list are compared with other candidate lists.
Dominated data items are removed from the lists, and the
remaining data items are reported as the final skyline data
items of the entire database. Figure 12 illustrates that w11 and
w34 are reported as the final skyline data items of the entire
database.

We consider our proposed approach as significantly
improving the performance of the skyline process through
exploiting the filtration technique. Most importantly, the sky-
line process at the cluster level is performed in parallel, which
results in the reduction of the domination test as well as
safeguarding the transitivity property of skyline technique
and avoids the issue of cyclic dominance. Rather than com-
paring all remaining data items present in each candidate
list with each other, we compare only the local skyline data
items of the candidate lists. Based on the database example
considered throughout the study, we notice that the local

178132 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

TABLE 3. The parameter setting of real and synthetic datasets in the
experiments.

skyline identifier stage assists in eliminating up to 16 out
of 22 data items, which translates into a 72% reduction of the
initial database. Based on our detailed analysis, we conclude
that each component of our proposed OIS framework plays a
vital role in determining the skyline data items in a database
with incomplete data.

V. EXPERIMENT EVALUATION
To evaluate the efficiency and measure the effectiveness
of our proposed framework (OIS) of optimized skylines in
incomplete data, several experiments have been conducted
using various synthetic and real datasets. The proposed work
has been contrasted with the five latest related works in the
area of processing skyline queries in incomplete data, namely
SCSA [44], SPQ [40], Incoskyline [14] and SIDS [12], Isky-
line [11]. It has been contended that skyline computation
is a CPU-rigorous process [1], [9], [10], [12]–[14], [24].
Therefore, the performance metric used in the experiments
consists of the number of pairwise comparisons as it is con-
sidered as the most influenced parameter in skyline query
processing [9], [10], [12]–[14]. The conducted experiments
focused on measuring the number of pairwise comparison
and processing time with respect to the number of dimensions
and the size of the database (data cardinality). Two sets of
experiments have been performed. In the first set, the number
of dimensions has been varied and the database size fixed.
This set of experiment has aimed to investigate the impact
of the number of dimensions on the computation of skyline
data items. Similarly, the second set of experiment has been
designed by fixing the number of dimensions and varying the
database size. This set of experiment has been used to exam-
ine the effect of the database size on the computing skyline
data items with the presence of incomplete data. In all exper-
iments we have assumed that the skyline query is submitted
to retrieve the skyline data items with the maximum values of
all non-missing dimensions.Moreover, we have also assumed
that the user given threshold value controlling the number of
superior skyline data items varies between 10 and 100. Two
different datasets have been considered, namely synthetic and
real datasets. For the synthetic datasets, two data have been
randomly generated as a set of independent and correlated
data. Furthermore, from the real dataset, NBA and CoIL 2000
insurance company have been used. Table 3 summarizes the

FIGURE 13. The effect of dataset size on the pairwise comparisons.

parameter setting of the experiments. The table outlines the
range of the database size in KB, the total number of dimen-
sions including the dimensions with missing and non-missing
values. Lastly, the number of dimensions with missing values
has also been reported.

A. DATA CARDINALITY
For this set of experiments, the database size has been varied
and the number of dimensions fixed. Figure 13 illustrates the

VOLUME 7, 2019 178133

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

experimental results obtained for both datasets. Figure 13(a)
shows the number of pairwise comparisons produced in
our approach (OIS) and the other approaches includ-
ing SCSA [44], SPQ [40], Incoskyline [14] SIDS [12],
and Iskyline [11] for independent datasets. The number
of dimensions has been fixed to eight dimensions includ-
ing those dimensions with missing and non-missing val-
ues and the database size varying from 100KB to 600KB.
Figure 13(b) shows the experiment results of the correlated
synthetic dataset. In this experiment, the database size has
varied between 100KB to 600KB, and the number of dimen-
sions has been fixed to eight for bothmissing and non-missing
values dimensions. Figure 13(c) depicts the results for the
NBA real dataset. The database size has varied within the
range of 40 to 200KB and the number of dimensions has
been fixed to 17, including missing and non-missing values
dimensions. Figure 13(d) details the results of the experiment
on the CoIL 2000 insurance company dataset. In this experi-
ment we have considered 21 dimensions for both missing and
non-missing values, the dataset size varying between 50 to
300KB.

The obtained experiment results show that our approach
(OIS) steadily outperforms the most recent approaches
(SCSA, SPQ, SIDS, Incoskyline and Isykline) in all cases.
The results also suggest that Iskyline performs the worst by
producing the highest number of pairwise comparisons for
all cases. Moreover, the result also shows that the number
of pairwise comparisons generated by SCSA and IncoSky-
line is slightly higher than that of OIS when the dataset
size is less than 400KB. Lastly, the experiment results also
indicate that SPQ performs slightly better than SIDS in all
cases. We can also conclude that the database cardinality has
marginal influence on the performance of our proposed solu-
tion. This improvement is due to the data sorting and pruning
technique as proposed in our solution. Besides, the local
skylines identifier component has also successfully removed
many dominated data items prior to running the skyline oper-
ation, which in turn reduces the domination tests necessary to
retrieve the final skyline data items of the database.

Figure 14(a), 14(b), 14(c), and 14(d) illustrate the amount
of time required to process skyline queries for the indepen-
dent, correlated, NBA, and CoIL 2000 insurance company
datasets. It should be noted that the parameters setting of this
set of experiments are similar to the set of experiments that
are described above in Figure 13.

Figure 14(a) depicts the experimental results of the pro-
cessing time of skyline queries in the incomplete database
over the independent dataset.

The experimental results suggest that our proposed strat-
egy outperforms the previous strategies (SCSA, SPQ, SIDS,
Incoskyline and Isykline) in all cases and requires less pro-
cessing time. This significant reduction in the processing time
is due to the sorting and filtering technique that eliminates
many unwanted dominated data items before applying the
skyline process. It is obvious that eliminating these dom-
inated data items helps avoid many unnecessary pairwise

FIGURE 14. The effect of dataset size on the processing time.

comparisons, which in turn decreases the processing time
and keeps our approach scalable even if the dataset size
increased. Figure 14(b) illustrates the experimental results of
our proposed approach on the correlated synthetic dataset.
The results show that our technique is superior to the other
techniques (SCSA, SPQ, SIDS, Incoskyline and Isykline).
The results also reveal that ISkyline is the worst performing

178134 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

of the five techniques, and its processing time dramatically
increases with increased database size. Also, the results show
that SPQ performs marginally better than SIDS in all cases.
However, our approach has performed slightly better than
Incoskyline when the dataset size is less than 400KB. This
is due to the fact that Incoskyline also uses data filtration
before applying skyline process. Nevertheless, our technique
performs better when the database size is increased as it uses
advanced filtration that further eliminates many dominated
data items before running the skyline process.

The same behavior has also been observed in the other
datasets. The performance of our approach is better than
SCSA, SPQ, SIDS, Incoskyline and ISkylinewhen the dataset
size is greater than 400KB. This is due to the fact that our
approach successfully removes the dominated data items at
the earliest possible stage before conducting pairwise com-
parisons among the data items to identify the skyline data
items.

Figure 14(c) shows the results that have been obtained
in the experiment on the NBA dataset. Here the processing
time of skyline process is less than that of SCSA, SPQ,
SIDS, Incoskyline, and ISkyline for different dataset sizes
since many data items are excluded from pairwise compar-
ison, resulting in less processing time. ISkyline and SIDS
perform worse when the dataset size increases as it has to
examine the whole data more than once meaning that the
number of pairwise comparisons among the data items in the
dataset increases. Figure 14(d) presents the processing time
results for the skyline operation on the CoIL 2000 insurance
company dataset. Based on the results we can conclude that
our approach outperforms SCSA, SPQ, SIDS, Incoskyline,
and ISkyline in all cases.We can also notice that the size of the
dataset significantly influences the performance of the other
approaches such as ISkyline and SIDS and leads to higher
processing time when the dataset size is increased. However,
our approach is only slightly influenced by the increment in
the dataset size and maintains a reasonable processing time
when the dataset size is increased. This is due to the same
reasons already explained in the previous experiments.

B. DATA DIMENSIONALITY
It has been argued that skyline queries are highly influenced
by the number of dimensions that are involved in the skyline
process. Thus, this set of experiments attempt to examine the
impact of the number of dimensions on the pairwise compar-
isons process. Two types of datasets have been used, namely
synthetic and real datasets, aiming at computing the total
number of pairwise comparisons that need to be performed
in order to identify the skyline data items. Moreover, the
processing time of the skyline process for each approach has
also been computed. In this set of experiments, the dataset
size has been fixed and the number of dimensions varied.
Figure 15(a), 15(b), 15(c), and 15(d) depict the experiment
results for the independent, correlated, NBA, and CoIL
2000 insurance company datasets. Figure 15(a) describes the
experimental results for the independent dataset by varying

FIGURE 15. The effect of number of dimensions on the pairwise
comparisons.

the number of dimensions between four and 12 and fixing
the dataset size to 300KB. From the results it can be con-
cluded that that our approach outperforms SCSA, SPQ, SIDS,
Incoskyline and Isykline in all cases. Figure 15(b) shows the
experiment results on the correlated dataset in which the

VOLUME 7, 2019 178135

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

dataset size has been fixed to 300KB and the number of
dimensions varied between four and 12. In respect to the
correlated dataset it seems that our approach is superior in
comparison to SCSA, SPQ, SIDS, Incoskyline and Isykline in
all cases. It is also clear that our approach performs slightly
better than SCSAwhen the number of dimensions is less than
eight. Nevertheless, the OIS approach marginally impacts
when the number of dimensions increase and steadily outper-
forms the other approaches (SCSA, SPQ, SIDS, Incoskyline
and Isykline) when the number of dimensions is more than
eight. Figure 15(c) illustrates the experiment results of the
NBA dataset where the database size has been fixed to 120KB
and the number of dimensions varied between five and 17.
The result shows that our approach steadily outperforms
SCSA, SPQ, SIDS, Incoskyline and Isykline and that data
dimensionality has no great effect on the performance of OIS
due to the use of filtration which optimizes the process of
identifying skyline data items in a database with incomplete
data. Figure 15(d) depicts the results of the experiment on the
real dataset, CoIL 2000, for an insurance company that shows
the number of pairwise comparisons between data items to
identify the skylines in an incomplete database. In this exper-
iment we have aimed to test the approaches by varying the
number of dimensions ranging from tree to 21 and fixing the
dataset size to 150K. It can be observed that our approach is
superior and outperforms the other approaches in all cases.

Given this set of experiments we can conclude that OIS
is more scalable, and the number of dimensions has no
significant impact on its performance. Furthermore, the per-
formance of the other approaches (SCSA, SPQ, SIDS,
Incoskyline and Isykline) diminishes when the number of
dimensions increases. The result has also revealed that SIDS
and ISkyline perform the worst in all cases as both are per-
formed on the initial dataset without sorting or filtration
to eliminate the dominated data items before applying the
skyline process.

Figure 16(a), 16(b), 16(c), and 16(d) present the processing
time of the skyline process produced in each approach to
derive the skylines on the independent, correlated, NBA, and
CoIL 2000 insurance company datasets. It should be noted
here that the parameter setting of this set of experiments is
same as that of the previous experiment.

The produced figures indicate that the OIS technique
requires less time to carry out the skyline process on a
database with incomplete data as most of the data items
are eliminated from the skyline process at the early stage
through data filtration. Also noticeable is that ISkyline per-
forms the worst when the number of dimensions increases.
In the NBA dataset (Figure 16(c)) our approach steadily out-
performs SCSA, SPQ, SIDS, Incoskyline and Isykline when
the number of dimensions increases. Nevertheless, OIS does
not significantly improve when the number of dimensions is
less than 11, and the improvement is slightly less compared
to the correlated dataset.

Moreover, in the CoIL 2000 insurance company dataset
(Figure 16(d)), the OIS performance improves when the

FIGURE 16. The effect of number of dimensions on the processing time.

number of dimensions is greater than nine. Although our
approach is more scalable and performs better when the
number of dimensions is greater than 11, it performs the best
when the range of values is high. This stands in stark contrast
to SIDS which performs the worst in all cases.

178136 VOLUME 7, 2019

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

Based on the experiment results we have reported, we can
conclude that our proposed technique steadily outperforms
the closest recent techniques (SCSA, SPQ, SIDS, Incoskyline
and Isykline) proposed for processing skyline queries in a
database with incomplete data. In addition, the results of the
experiments confirmed the effectiveness and the efficiency
of our proposed framework in processing skyline queries
in a database with incomplete data. The main cause of the
superiority of our approach is the sorting and filtering process
applied to the data items based on the non-missing values.
This process aids in eliminating many unwanted data items
before applying the skyline process in contrast to the other
approaches which run the skyline process without filtering
the initial data. The prior filtering of the initial data results
in the significantly reduced number of pairwise comparisons
of the data items. Moreover, applying the concept of parallel
execution of data filtration accelerates the entire computing
process and greatly reduces the overall processing time of the
skyline operation.

VI. CONCLUSION
This paper discusses the problem of processing skyline
queries in an incomplete database and proposes the Opti-
mized Incomplete Skylines (OIS) framework to return the
skyline data items from a database with incomplete data.
The individual steps of each component in the proposed
framework have been explained.OIS incorporates a particular
optimization technique that helps eliminate the dominated
data items before applying the skyline technique. This opti-
mization approach results into the reduced number of pair-
wise comparisons between data items when identifying the
skyline data items. Two sets of experiments have been carried
out to compare the performance of OIS with the other recent
related algorithms designed for processing skyline queries
on incomplete data, namely SCSA, SPQ, SIDS, Incoskyline
and Isykline. The results have confirmed that our approach
significantly outperforms the previous approaches in terms
of number pairwise comparisons and processing time.

REFERENCES
[1] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,

‘‘On high dimensional Skylines,’’ in Advances in Database Technology.
Berlin, Germany: Springer, Mar. 2006, pp. 478–495.

[2] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang,
‘‘Finding k-dominant Skylines in high dimensional space,’’ presented at
the ACM SIGMOD Int. Conf. Manage. Data, Chicago, IL, USA, 2006.

[3] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Continuous
top-k dominating queries in subspaces,’’ in Proc. Panhellenic Conf. Infor-
mat., Samos, Greece, Aug. 2008, pp. 31–35.

[4] K. El Maarry, C. Lofi, and W.-T. Balke, ‘‘Crowdsourcing for Query pro-
cessing on Web data: A case study on the Skyline operator,’’ J. Comput.
Inf. Technol., vol. 23, pp. 43–60, Mar. 2015.

[5] C. Lofi, K. E. Maarry, and W.-T. Balke, ‘‘Skyline queries in crowd-
enabled databases,’’ presented at the 16th Int. Conf. Extending Database
Technol., Genoa, Italy, 2013.

[6] J. Lee, D. Lee, and S.-W. Kim, ‘‘CrowdSky: Skyline computation with
crowdsourcing,’’ in Proc. EDBT, 2016, pp. 125–136.

[7] M. B. Swidan, A. A. Alwan, S. Turaev, and Y. Gulzar, ‘‘A model for
processing Skyline queries in crowd-sourced databases,’’ Indonesian
J. Electr. Eng. Comput. Sci., vol. 10, pp. 798–806, May 2018.

[8] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. A. Shaikhli, ‘‘Skyline
Query processing for incomplete data in cloud environment,’’ in Proc.
6th Int. Conf. Comput. Informat., Kuala Lumpur, Malaysia, Apr. 2017,
pp. 567–576.

[9] Y. Gulzar, A. A. A. Aljuboori, N. Salleh, and I. F. Al Shaikhli, ‘‘Identi-
fying Skylines in cloud databases with incomplete data,’’ J. ICT, vol. 18,
pp. 19–34, Jan. 2019.

[10] M. L. Yiu and N. Mamoulis, ‘‘Efficient processing of top-k dominating
queries on multi-dimensional data,’’ presented at the 33rd Int. Conf. Very
Large Data Bases, Vienna, Austria, 2007.

[11] M. E. Khalefa, M. F. Mokbel, and J. J. Levandoski, ‘‘Skyline Query
processing for incomplete data,’’ in Proc. IEEE 24th Int. Conf. Data Eng.,
Cancun, Mexico, Apr. 2008, pp. 556–565.

[12] R. Bharuka and P. S. Kumar, ‘‘Finding Skylines for incomplete data,’’
presented at the 24th Australas. Database Conf., vol. 137, Adelaide,
Australia, 2013.

[13] A. A. Alwan, H. Ibrahim, and N. I. Udzir, ‘‘A framework for identifying
Skylines over incomplete data,’’ in Proc. 3rd Int. Conf. Adv. Comput. Sci.
Appl. Technol. (ACSAT), Dec. 2014, pp. 79–84.

[14] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘An efficient approach
for processing Skyline queries in incompletemultidimensional database,’’
Arabian J. Sci. Eng., vol. 41, pp. 2927–2943, Aug. 2016.

[15] Y. Gulzar, A. A. Alwan, N. Salleh, I. F. A. Shaikhli, and S. I. M. Alvi,
‘‘A framework for evaluating Skyline queries over incomplete data,’’
Procedia Comput. Sci., vol. 94, pp. 191–198, Jan. 2016.

[16] J. Lee, H. Im, and G.-W. You, ‘‘Optimizing Skyline queries over incom-
plete data,’’ Inf. Sci., vol. 361, pp. 14–28, Sep. 2016.

[17] A. A. Alwan, H. Ibrahim, N. I. Udzir, and F. Sidi, ‘‘Processing Skyline
queries in incomplete distributed databases,’’ J. Intell. Inf. Syst., vol. 48,
pp. 399–420, Apr. 2017.

[18] G. Babanejad, H. Ibrahim, N. Z. Udzir, F. Sidi, and A. A. Alwan, ‘‘Deriv-
ing Skyline points over dynamic and incomplete databases,’’ in Proc.
6th Int. Conf. Comput. Informat., Kuala Lumpur, Malaysia, Apr. 2017,
pp. 77–83.

[19] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. A. Shaikhli, ‘‘Processing
skyline queries in incomplete database: Issues, challenges and future
trends,’’ J. Comput. Sci., vol. 13, no. 11 pp. 647–658, 2017.

[20] Y. Gulzar, A. A. Alwan, N. Salleh, and I. F. Al Shaikhli, ‘‘A model for
skyline Query processing in a partially complete database,’’ Adv. Sci.
Lett., vol. 24, no. 2 pp. 1339–1343, 2018.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘Progressive Skyline compu-
tation in database systems,’’ ACM Trans. Database Syst., vol. 30, no. 1,
pp. 41–82, Mar. 2005.

[22] P. Godfrey, R. Shipley, and J. Gryz, ‘‘Maximal vector computation in
large data sets,’’ presented at the 31st Int. Conf. Very Large Data Bases,
Trondheim, Norway, 2005.

[23] Z. Huang, J. Zhang, and C. Tian, ‘‘Efficient processing of the skyline-CL
Query,’’ Arabian J. Sci. Eng., vol. 41, pp. 2801–2811, Aug. 2016.

[24] S. Borzsony, D. Kossmann, and K. Stocker, ‘‘The Skyline opera-
tor,’’ in Proc. 17th Int. Conf. Data Eng., Cancun, Mexico, Apr. 2001,
pp. 421–430.

[25] K.-L. Tan, P.-K. Eng, and B. C. Ooi, ‘‘Efficient progressive skyline
computation,’’ in Proc. 27th Int. Conf. Very Large Data Bases (VLDB),
Roma, Italy, 2001, pp. 301–310.

[26] D. Kossmann, F. Ramsak, and S. Rost, ‘‘Shooting stars in the sky: An
Online algorithm for skyline queries,’’ presented at the 28th Int. Conf.
Very Large Data Bases, Hong Kong, 2002.

[27] J. Chomicki, P. Godfrey, J. Gryz, andD. Liang, ‘‘Skylinewith presorting,’’
in Proc. 19th Int. Conf. Data Eng. (ICDE), Bangalore, India, 2003,
pp. 717–719.

[28] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘An optimal and progressive
algorithm for skyline queries,’’ presented at the ACMSIGMOD Int. Conf.
Manage. Data, San Diego, CA, USA, 2003.

[29] I. Bartolini, P. Ciaccia, and M. Patella, ‘‘SaLSa: Computing the Skyline
without scanning the whole sky,’’ presented at the 15th ACM Int. Conf.
Inf. Knowl. Manage., Arlington, VA, USA, 2006.

[30] K. C. Lee, W.-C. Lee, B. Zheng, H. Li, and Y. Tian, ‘‘Z-SKY: An
efficient Skyline Query processing framework based on Z-order,’’ VLDB
J., vol. 19, pp. 333–362, Jun. 2010.

[31] S. Zhang, N. Mamoulis, and D. W. Cheung, ‘‘Scalable Skyline com-
putation using object-based space partitioning,’’ presented at the ACM
SIGMOD Int. Conf. Manage. Data, Providence, RI, USA, 2009.

[32] J. Lee and S.-W. Hwang, ‘‘Scalable skyline computation using a balanced
pivot selection technique,’’ Inf. Syst., vol. 39, pp. 1–21, Apr. 2014.

VOLUME 7, 2019 178137

Y. Gulzar et al.: Optimizing Skyline Query Processing in Incomplete Data

[33] M. S. Arefin and Y. Morimoto, ‘‘Skyline sets queries for incomplete
data,’’ Int. J. Comput. Sci. Inf. Technol., vol. 4, pp. 67–80, Oct. 2012.

[34] X. Miao, Y. Gao, L. Chen, G. Chen, Q. Li, and T. Jiang, ‘‘On efficient
K -skyband Query processing over incomplete data,’’ in Proc. 18th Int.
Conf. Database Syst. Adv. Appl., Wuhan, Chian, 2013, pp. 424–439.

[35] R. Bharuka and P. S. Kumar, ‘‘Finding superior Skyline points from
incomplete data,’’ presented at the 19th Int. Conf. Manage. Data,
Ahmedabad, India, 2013.

[36] K. Zhang, H. Gao, H. Wang, and J. Li, ‘‘ISSA: Efficient Skyline compu-
tation for incomplete data,’’ in Database Systems for Advanced Applica-
tions, Dallas, TX, USA, Apr. 2016, H. Gao, J. Kim, and Y. Sakurai, Eds.
Cham, Switzerland: Springer, 2016, pp. 321–328.

[37] X. Miao, Y. Gao, B. Zheng, G. Chen, and H. Cui, ‘‘Top-k dominating
queries on incomplete data,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 1, pp. 252–266, Jan. 2016.

[38] X. Miao, Y. Gao, G. Chen, and T. Zhang, ‘‘K -dominant Skyline
queries on incomplete data,’’ Inf. Sci., vols. 367–368, pp. 990–1011,
Nov. 2016.

[39] K. Zhang, H. Gao, X. Han, Z. Cai, and J. Li, ‘‘Probabilistic skyline on
incomplete data,’’ presented at the ACM Conf. Inf. Knowl. Manage.,
Singapore, 2017.

[40] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, ‘‘Skyline preference
Query based on massive and incomplete dataset,’’ IEEE Access, vol. 5,
pp. 3183–3192, 2017.

[41] W.-T. Balke, U. Güntzer, and J. X. Zheng, ‘‘Efficient distributed skylining
for Web information systems,’’ in Advances in Database Technology—
EDBT (Lecture Notes in Computer Science), vol. 2992, E. Bertino et al.,
Eds. Berlin, Germany: Springer, 2004.

[42] Y. Gao, X. Miao, H. Cui, G. Chen, and Q. Li, ‘‘Processing K -skyband,
constrained skyline, and group-by skyline queries on incomplete data,’’
Expert Syst. Appl., vol. 41, no. 10, pp. 4959–4974, 2014.

[43] Y. Gulzar, A. A. Alwan, H. Ibrahim, and Q. Xin, ‘‘D-SKY: A framework
for processing Skyline queries in a dynamic and incomplete database,’’
presented at the 20th Int. Conf. Inf. Integr. Web-Based Appl. Services,
Yogyakarta, Indonesia, 2018.

[44] Y. Gulzar, A. A. Alwan, R. M. Abdullah, Q. Xin, and M. B. Swidan,
‘‘SCSA: Evaluating Skyline queries in incomplete data,’’ Appl. Intell.,
vol. 49, pp. 1636–1657, May 2019.

YONIS GULZAR received the master’s degree
in computer science from Bangalore University,
India, in 2013, and the Ph.D. degree in com-
puter science from International Islamic Univer-
sityMalaysia, in 2018. He is currently an Assistant
Professor with King Faisal University (KFU),
Saudi Arabia. Before joining KFU, he was a
part-time Lecturer, a Teaching Assistant, and a
Research Assistant with the Department of Com-
puter Science, International Islamic University,

Malaysia. His research interests include preference queries, skyline queries,
probabilistic and uncertain databases, query processing and optimization
and management of incomplete data, data integration, location-based social
networks (LBSN), recommendation systems, and data management in cloud
computing.

ALI A. ALWAN received the master’s and Ph.D.
degrees in computer science from Universiti Putra
Malaysia (UPM), Malaysia, in 2009 and 2013,
respectively. He is currently an Assistant Pro-
fessor with the Kulliyyah (Faculty) of Infor-
mation and Communication Technology, Inter-
national Islamic University Malaysia (IIUM),
Malaysia. His research interests include preference
queries, skyline queries, probabilistic and uncer-
tain databases, query processing and optimization

and management of incomplete data, data integration, location-based social
networks (LBSN), recommendation systems, and data management in cloud
computing.

SHERZOD TURAEV received the Ph.D. degree in
computer science from University Rovira i Virgili,
Spain, in 2010, and the Ph.D. degree in mathemat-
ics from the National University of Uzbekistan,
in 2001. He was a Postgraduate Researcher with
University Putra Malaysia, from 2009 to 2012,
an Assistant Professor with the Faculty of Infor-
mation and Communication Technology, Interna-
tional Islamic University Malaysia, from 2012 to
2018, and an Associate Professor with the Faculty

of Natural Sciences and Engineering, International University of Sarajevo,
Bosnia and Herzegovina, from 2018 to 2019. He is currently an Associate
Professor with the College of Information Technology, UAE University.
His research interests include graph theory, formal languages and automata,
bio-computing, and information security. He is acting as an Editorial Board
Member, a Programming Committee Member, and a Reviewer in many
international journals, such asMath Reviews, Theoretical Computer Science,
Sains Malaysian, Applied Mathematics and Computational Intelligence, and
many international conferences.

178138 VOLUME 7, 2019

