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ABSTRACT Harri’s Hawk Optimization (HHO) algorithm manifests as a new meta-heuristic algorithm in
literature. When we look at studies that have used with this algorithm, we can see that its results in test
functions and in the solutions of some test functions in IEEE Congress on Evolutionary Computation (CEC)
are much better compared to other heuristic and meta heuristic algorithm results. In this study, an algorithm
has been developed which has been hybridized with the mutation operators of Differential Evolution (DE) to
further improve the HHO algorithm. This algorithm is named as Hybrid Harris Hawk Optimization based on
Differential Evolution (HHODE). Performance of the proposed HHODE algorithm has been first compared
with HHO and then compared with the results of other algorithms which have been most commonly used in
the literature. In this comparison process, the most commonly used test functions in the literature and some
of the other test functions in CEC2005 and CEC2017 as a new application field, have been solved. When
the results of the comparison of HHODE with other algorithms are analyzed, it is observed that the balance
between the exploratory tendency and exploitative tendency of the algorithm is well consistent. Formula
1 ranking method is used in the order of HHODE according to HHO and other algorithms. When a general
evaluation of HHODE was performed, it was found to be an even more powerful algorithm as a result of
the combination of strong features of both HHO and DE. The optimal power flow (OPF) problem is one of
the most important problems of the modern power system. The HHODE algorithm is proposed to solve the
OPF problem, which is considered without valve-point effect and prohibited zones (1) and with prohibited
zones (2) in this paper. The effectiveness of the HHODE hybrid algorithm is tested on modified IEEE 30-
bus test system. The result of HHODE algorithms are compared with other optimization algorithms in the
literature.

INDEX TERMS Harri’s hawk optimization, differential evolution, optimization, hybrid algorithms, swarm
intelligence, optimal power flow, power system.

I. INTRODUCTION
Optimization is the process of finding the best solution for
a problem under certain conditions. Another definition of
optimization refers to the process of systematically analyz-
ing or solving a problem by selecting values in a defined range
and using them inside a function to minimize or maximize it.
With optimization techniques, the decision-making process
in the solution of a problem is accelerated and the quality
of the decision is increased. In this way, effective, accurate
and real-time solutions of problems encountered in real life
are achieved. Many algorithms proposed for the solution

The associate editor coordinating the review of this manuscript and
approving it for publication was Huaqing Li.

of optimization problems require mathematical models to
construct both the system model and the objective function.
Therefore, mathematical models are created according to the
structure of the problem. During the creation of these models,
limitations related to a cost function and problem which
are to be minimized or maximized depending on the deci-
sion variables or design parameters are defined. Mathemati-
cal (classical) algorithms are algorithms which are designed
specifically for the problem or which try to solve the prob-
lem by scanning the whole solution space of the problem.
However, in real life systems, when situations and problems
are analyzed, it is realized that the problems are actually
more complicated. Therefore, it is difficult to establish a
mathematical equation for solving such complex systems and
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the cost of using it is high. Besides, it is seen that especially
in engineering applications, many optimization problems are
continuous, discrete, restricted or unrestricted and systems
are not linear [1], [2]. Mathematical programming methods
such as differential equations and numerical analysis meth-
ods used in classical mathematical equation solutions are
not successful in solving such problems [3]. Optimization
algorithms are used in many areas where there are non-
linear problems or mathematical solution equation cannot be
created.

The artificial intelligence algorithms which are grouped
under the concept of artificial intelligence are used in
many optimization problems and engineering applica-
tions. When studies conducted with artificial intelligence
algorithms are analyzed, it is seen that these algorithms
give successful results. As a result of humans’ observa-
tion of nature, many types of artificial intelligence algo-
rithm have been exposed, with their approaches inspired
by animals and nature. When looking at some of the
Heuristic and Meta-heuristic algorithms and evolutionary
algorithms, it can be seen that many algorithms such
as Evolutionary Computation (EC) [4], Tabu Search (TS)
[5], [6], Genetic Algorithm (GA) [7]–[9], Simulated Anneal-
ing (SA) [10], [11], Particle Swarm Optimization (PSO)
[12], [13], Differential Evolution (DE) [14]–[16], Cultural
Algorithm (CA) [17], [18], Biogeography Based Optimizer
(BBO) [19]–[21], Big-Bang Big-Crunch (BBBC) [22], [23],
Central Force Optimization (CFO) [24], [25], Gravitational
Search Algorithm (GSA) [26], [27], Socio Evolution and
Learning Optimization (SELO) [28], Teaching Learning
Based Optimization (TLBO) [29]–[31], Ant Colony Opti-
mization (ACO) [32], [33], Cuckoo Search (CS) [34]–[36]
Artificial Bee Colony (ABC) [37], [38], Harris’ Hawk Opti-
mization Algorithm (HHO) [39], [40] and Whale Optimiza-
tion Algorithm (WOA) [41], [42] are put forward and applied
to several problems.

However, one of the problems that all heuristic, meta-
heuristic, and evolutionary algorithms face is the potential of
early convergence or getting stuck in a local minimum point.
To overcome this problem, many researchers have developed
new hybrid algorithms by combining them with other algo-
rithms that improve the performance and local search method
of existing algorithms. Even if only a few of the studies in
literature are considered, it is realized that better results are
obtained by using hybrid algorithms [43]–[46].

Because Harris’ Hawk Optimization (HHO) [39], [40],
is used as a new meta-heuristic algorithm and the use of it
in a hybrid structure has not been encountered yet. Besides,
in this study, HHO and DE are utilized as hybrid (HHODE)
and are applied to the benchmark functions which exists in
the literature and are mostly compared.

There are many researches in which DE is compared with
other algorithms as hybrid algorithms. In addition, these algo-
rithms hybridized with DE have been successfully applied
to many real engineering problems [15], [46]–[51]. DE is
a meta-heuristic algorithm that uses mutation and crossover

schemes for real-valued optimization problems [14]. This
algorithm applies both a simple structure and highly effective
mutation process. DE uses a mutation process based on the
differences of objective vector pairs in a randomly selected
goal. The simple mutation process used in the DE algorithm
improves the performance of the algorithm and makes it
stronger.

In the hybridization of algorithms in literature, most of
them lack the equilibrium between the exploration and
exploitation phases during the optimization process. During
exploration, it is necessary to use the randomly selected oper-
ators as much as possible in order for algorithm to do research
in the whole area and in various places of the problem’s
solution space. Thus, after a well-designed discovery process,
possession of a rich solution space is ensured in the detection
and examination of the best possible solutions in the exploita-
tion phase [52]. In such a structure, of course the exploitation
phase is carried out after the exploration phase. Thus, the
effectiveness of the exploration phase directly affects the
exploitation phase. The optimizer in the application phase
focuses on better / high quality possible solutions in the
solution space. A well-organized optimizer should be able to
strike a reasonable balance between exploration and exploita-
tion tendencies. Otherwise, the possibility of being com-
pressed within the disadvantage of local optimum (LO) and
early convergence increases. In this research, Harris’ Hawk
Optimization (HHO) algorithm is combined with the widely
known Differential Evolution (DE) and used in the literature
and what we call the algorithm HHODE is formed. In the
HHODE algorithm which is a Hybrid algorithm, the balance
between exploration and exploitation was attempted to be
guaranteed.

Optimal Power Flow (OPF) problem is one of the most
important optimization problems of modern power systems.
The determination of the control variables is aimed to
inequality and equality constraints for optimal operation and
planning of the power systems. Many heuristic optimization
algorithms have been used to solve complex optimization
problems such as economic dispatch, economic and emis-
sion dispatch, dynamic economic dispatch and optimal power
flow optimization problems. Recently, these heuristic meth-
ods have been tested to find the best solution of the OPF
problem in the power systems such as GA, GSA, PSO, HS,
BBO, DE etc [53], [54], [54]–[56]. In [57], Duman solved
OPF problem with and without valve point effect and pro-
hibited zones; forming four different scenarios. The study
used symbiotic organisms search (SOS) on power system
with IEEE-30 bus. Results of the proposed SOS outperformed
various other population-based and evolutionary algorithms
from literature. In previous literature there can be seen that
implementation of HHO in OPF problems is yet to be found.
Kashif Hussain et al. is considered as the first attempt to apply
HHO on OPF problem [58].

In this study the HHODE algorithm is provided to find
a better solution than other optimizing populated-search
algorithms, such as GA, DE, BA, PSO, etc. So HHODE is
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proposed to solve the OPF problemwithout valve-point effect
and prohibited zones (1) and with prohibited zones (2) in this
paper. In the OPF problem it is used to optimize the objective
functions related to power generation cost, emission, and
power loss on IEEE-30 bus system. The proposed HHODE
algorithm applied to test on the IEEE 30-bus standard test
system for OPF problem. The results of the proposed method
are compared to the other optimization algorithms in the
literature.

This paper is organized as follows. In the second part of this
study, OPF problem definition, HHO and DE algorithms are
presented. In the third chapter, the HHODE algorithm, which
is formed as a hybridization of HHO and DE, is presented.
In the fourth chapter, HHODE is applied to benchmark prob-
lems (CEC2005 and CEC2017), compared with other algo-
rithms and its performance is reviewed and the simulation
results of the proposed algorithm in the OPF problem are
presented. In the fifth chapter, results and recommendations
are evaluated.

II. SCIENTIFIC BACKGROUND
A. OPTIMAL POWER FLOW (OPF) PROBLEM’S DEFINITION
The OPF problem is considered to be an optimization
problem that aims to minimize the total fuel cost function
under some constraints such as total load, various equality
and inequality. An OPF is a minimization problem that is
formulated in equation 1.

Minimize f (x, u)

Subject to g (x, u) = 0

h (x, u) ≤ 0 (1)

where f (x, u) is the objective function. x and u are defined as
state and control variables, respectively. The given objective
function should be achieved by satisfying certain equality and
inequality constraints. g (x, u) = 0 and h (x, u) ≤ 0 are
equality and inequality constraints that are representing.

The state variable x can be defined as in equation 2 where
PGslack ,VL ,QG,NPQ,NG,NTL, S presents as active power
of the generator at slack bus, voltagemagnitude of load buses,
reactive power of the generators, number of PQ buses, num-
ber of generators and number of transmission lines, power of
transmission lines, respectively and the control variable u can
be defined as in equation 3 where PG,VG,T ,NT presents as
active power output of the generators except at the slack bus,
terminal voltage magnitude of the generators, transformer tap
ratio and number of tap regulating transformers, respectively.

x =
[
PGslack ,VL1..VLNPQ,QG1..QGNG, Sl1..SNL

]
(2)

u = [PG2..PGNG,VG1..VGNG,T1..TNT ,QC1..QCNC ] (3)

Objective Function of the OPF problem is defined as
the minimization of the total fuel cost and it can be calcu-
lated as in equation 4 where PGiis defined as active power
and ai, bi, ci are defined that fuel cost coefficients of the
generators.

f (x, u) =
(∑NG

i=1
aiP2Gi + biPGi + ci

)
+ Penalty(

$
h
) (4)

Prohibited operating zones (POZs) are occurred in a thermal
and hydro-generating unit [57]. The best economy is obtained
by avoiding operating in areas and the POZs is formulated as
in equation 5 where PLGik = PminGi and PUGik = PmaxGi and K
is described as the number of prohibited zones of generator’s
unit.

PLGik ≤ PGi ≤ P
U
Gik∀i ∈ k = 1, 2, . . . ,K (5)

Equality constraints, the load equations are described as
equality constraints and the formulations of this are shown
in equation 6 and 7 where N is the total number of bus,
ViandVjare the voltage magnitude of ith and jth bus, PGi is
active power of ith generators, PDi is demand active power
of ith bus, QDi is demand reactive power of ith bus QGi is
reactive power of ith generator and θij is the voltage angle
difference between ith and jth bus.

PGi − PDi − Vi
∑N

j=1
Vj
[
Gijcosθij + Bijsinθij

]
= 0 (6)

QGi + QCi − QDi − Vi
∑N

j=1
Vj
[
Gijsinθij − Bijcosθij

]
= 0

(7)

Inequality constraints, active and reactive power outputs
of the generator unit and voltage magnitude are restricted
by their lower and upper limits are shown in equations
8,9,10,11 where PminGi and PmaxGi are lower and upper active
power values of the ith generating unit and QminGi and QmaxGi
are lower and upper active power values of the ith generating
unit.

PminGi ≤ PGi ≤ PmaxGi i = 1, . . . ..NG (8)

QminGi ≤ QGi ≤ QmaxGi i = 1, . . . ..NG (9)

Vmin
Gi ≤ VGi ≤ Vmax

Gi i = 1, . . . ..NG (10)

Vmin
Li ≤ VVi ≤ Vmax

Vi i = 1, . . . ..NGQ (11)

Transformer tap settings are shown in equation 12 and
13 where Tmini and Tmaxi are represented as minimum and
maximum tap settings, Sli and Smaxli are represented s apparent
power flow of branch and maximum apparent power flow
limit of each branch.

Tmini ≤ Ti ≤ Tmaxi i = 1, . . .NT (12)

Sli ≤ Smaxli i = 1, . . .NTL (13)

Also the objective function, which is included the penalty
terms, is shown in equation 14 where λV , λQ, λPandλS are
penalty factor terms.

J = f (x, u)+ λV

NPQ∑
i=1

(VLi − V Lim
Li )2

+ λP(PGslack − PlimGslack )
2
+ λQ

NG∑
i=1

(QGi − QLimGi )
2

+ λS

NTL∑
i=1

(Sli − S limli )2 (14)
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B. HARRIS’ HAWK OPTIMIZATION (HHO)
Strategy of Harris ’Hawk: Harris’ Hawk’s most important
feature in catching its prey is to hunt in groups, collaborating
with the Hawks, as opposed to other predators. In this clever
strategy, a few Hawks attack from different ways their prey
chosen in collaboration for simultaneous delusion. The aim
here is to approach the prey in a controlled manner. The
attack is desired to be completed in a few seconds. However,
sometimes, according to the prey’s ability to escape (prey’s
escape energy and hunting environment), the success of this
collaborative attack can be achieved after a few minutes and
by a large number of attacks. There is a leader in the collabo-
rative attack. In the event of a fatigued leader when getting
away from the prey or during the hunting process of the
attack, another Harris’ Hawk takes over the leadership. Thus,
the process of attack continues until the hunting is success-
ful or the prey completely escapes. This is sometimes used as
a tactic. Thus, making the attack from different places con-
fuses and exhausts the prey. The hunting process is completed
as the prey which has low energy and has lost its defensive
abilities is hunted easily by Harris’ Hawk, the leader. HHO is
a population-based optimization technique. It can therefore
be applied to any optimization problem with appropriate
limitations and constraints. The following sections describe
the operation logic and process of HHO.

Exploration: In the process of exploration, Harris’ Hawk
scans and finds his prey (rabbit, etc.) in a hunting environment
thanks to his sharp vision. But this is usually not that easy. For
this reason, Harris’ Hawk waits, observes, tracks and follows
the hunting environment for minutes or even hours. In this
collaborative strategy, each Harris’ Hawk demonstrates the
possible solution. The intended solution is the prey itself [40].

X (t + 1)

=

{
Xrand (t)− r1 |Xrand (t)− 2r2X (t)| q≥0.5
(X rabbit (t)−Xm (t))−r3(LB+r4(UB−LB)) q<0.5

(15)

According to the structure formulated in equation 15 [40] in
HHO, each Hawk is placed in a random position and waits
to detect the hunt according to two situations. Assuming that
these two perching states are (q); in case of q<0.5 the Hawk
perches randomly according to the prey’s (rabbit) position,
and in the case of q≥0.5 it does so according to other Hawks’
positions in the hunting area. X(t+1) refers to the position
vector of the Hawk in the next iteration, X_rabbit (t) to the
position vector of prey (rabbit), and r1, r2, r3, r4 and q are
random numbers from 0 to 1 refreshed for each iteration. LB
refers to lower limit values, UB to upper limit values, X_rand
(t) to the randomly selected Hawk’s position in the current
population and X_m (t) to the average positions of the Hawks
in the current population. Determining random locations was
suggested between limits of LB and UB values [40].

Xm (t) =
1
N

∑N

i=1
Xi(t) (16)

As stated in Equation 16, Xi (t) refers to each Hawk’s
position in each iteration and N represents the total number
of Hawks.

Exploration to exploitation: At this stage, according to
the energy level of the prey, the HHO algorithm goes from
the exploration phase to the exploitation phase. According to
the formula given in Equation 17, the energy reduction of the
prey is observed [40].

E = 2E0(1−
t
T
) (17)

In the Equation 17, E refers to the escape energy of the
prey, T to the maximum iteration and E0 to the energy at
the starting point. It was accepted as a model here that E0
changes between -1 and 1 in each iteration. The change
from 0 to -1 indicates that the energy of the prey (rabbit)
decreases and slows down; the change from 0 to 1 indicates
that the prey (rabbit) rests and its energy increases. Of course,
normally, as the iterations progress the energy of the prey
while escaping will decrease. In case of |E| ≥ 1 the Hawks
will observe to determine the position of the prey (rabbit).
This represents HHO’s exploration status. In case of |E| < 1
this time HHO switch to exploitation, meaning the Hawk is
in the attacking phase.

Exploitation:At this stage, Harris’ Hawkmakes a surprise
pounce, a sudden attack on its prey that it has been observing.
Of course, in response to this attack, the prey will start to
escape to many different directions according to its energy
levels. This kind of escape to different directions will con-
tinue until the prey completely escapes or the prey is caught.
In the proposed HHO [40], at the time of the attack there are
four different situations. The prey continuously tries to escape
from the threatening situation. The r expression used in the
HHO algorithm represents the chance of escape. r < 0.5
shows the prey’s high probability to escape, r ≥ 0.5 indicates
that the prey is unlikely to escape the last attack. In return to
these two possibilities of the prey’s situation, Harris’ Hawk
has two conditions as well: hard besiege or soft besiege.
Of course, in the real world, Harris’ Hawk tries to reduce his
distance to the prey before making the last surprise attacks.
The attack will fail if the last attack is carried out when
there is no proper distance between the prey and the hunter.
In this case, it is very likely that the prey will escape until
the hunter(s) get(s) its/their new position. When the hunting
process is taken as model, in case of |E| ≥ 0.5, soft besiege
will occur and in case of |E| < 0.5, hard besiege will occur.
Soft Besiege: In case of r ≥ 0.5 and |E| ≥ 0.5,

prey (rabbit) has sufficient escape energy and tries to escape
with random maneuvers. But ultimately, it fails to escape.
With these soft besieges, Harris’ Hawk calmly draws circles,
making its prey (rabbit) more tired. So it tries to prepare for
the last surprise attack.

X (t + 1) = 1X (t)− E |JXrabbit (t)− X (t)| (18)

1X (t) = Xrabbit (t)− X (t) (19)
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In Equation 18 [40] 1X (t) represents the difference
between the position vector of the prey (rabbit) and its instan-
taneous position in the tth iteration. J = 2(1 − r5) shows
the prey’s (rabbit) power of jumping randomly at the time of
escape. Here r5 changes randomly between 0 - 1.

HardBesiege: In case of r ≥ 0.5 and |E| < 0.5, the prey is
now too tired and has very little remaining energy. In this case,
Harris’ Hawk’s turns on the prey is sharper and closer. The
next step will result in Hawk attacking the prey. The current
position information is now as specified in equation 20 [40].

X (t + 1) = Xrabbit (t)− E |1X (t)| (20)

Soft besiege with progressive diving: In the case of |E| ≥
0.5 but r < 0.5, prey (rabbit) has enough energy for a
successful escape and the Hawk is in soft besiege situation.
In the HHO algorithm, in the mathematical modeling of prey
and hunter’s movements, levy flight (LF) design was used
[40], [58], [59]. In general Harris’ Hawk sets its situation in
the best position when there is a competitive hunting process,
and it organizes the most intense and swift attack on the
prey. This logic is also found in the working principle of
the HHO algorithm. According to the equation formed in
Equation 21, in the case of a soft besiege, the Hawk evaluates
the next change in its position. Before making an attack dive,
it also evaluates his experiences in other dives and decides
whether to make an attack dive or not. In the case where they
observe that the prey’s energy is high and there is random-
ness in their escape, they organize irregular, deceptive and
strenuous attacks against the prey. Ali Asghar et.al, in their
study, assume that according to the mathematical expression
given in equation 22 Hawk attacks are LF-based. According
to Equation 23, Hawks’ new position status in soft besiege
changes [40], [59], [60].

Y = Xrabbit (t)− E |JXrabbit (t)− X (t)| (21)

Z = Y + SxLF(D) (22)

X (t + 1) =

{
YifF (Y ) < F (X (t))
ZifF (Z ) < F (X (t))

(23)

Hard besiege with progressive quick dives: In case of
|E| < 0.5 but r < 0.5, prey (rabbit) doesn’t have enough
energy to escape, and the final besiege process is entered
before the final attack which is carried out with the purpose to
kill. In terms of prey, this situation is similar to a soft besiege,
but this time the Hawks try to quickly reduce the distance
of their average positions to the escaping prey. Therefore,
in equation 21, the new state of Y is re-formulated as in
equation 10. Xm(t) in this new equation is calculated as in
equation 16.

Y = Xrabbit (t)− E |JXrabbit (t)− Xm(t)| (24)

This attack process, situations of the prey and hunter, what
exactly X, Y and Z indicate are shown representatively in
Figure 1 [40].

The psudeo code of the classic HHO is given in the
algorithm I [40].

FIGURE 1. Representation of the Harris’ Hawk hunting process.

C. DIFFERENTIAL EVOLUTION (DE)
The DE algorithm appears in literature as a simple but
powerful population based algorithm. It is used to globally
optimize functions which include real valued design parame-
ters. DE uses a mutation process based on the differences of
randomly selected objective vector pairs. The simple muta-
tion process used in the DE algorithm improves the perfor-
mance of the algorithm andmakes it stronger. Besides, the DE
algorithm can be used quickly, simply, easily and can be eas-
ily adapted for the creation of hybrid algorithms. It can be eas-
ily adapted to integer, discrete andmixed parameter optimiza-
tion, can be used for functions related to time/iteration, can
produce alternative solutions in a single run and is effective
especially in nonlinear constrained optimization problems.

Hybridization of HHO algorithm’s exploration stage with
the DE algorithm appears to help HHO to produce more
efficient and better results. A more detailed explanation of
HHODE as a hybrid algorithm is given in section 3. Under
this title, explanation of classic DE is given. In the operation
process of DE as described in the literature with its classic
form, x is the solution that is perturbed such as ‘‘random’’ or
‘‘best’’; y is the number of difference vectors used to perturb
x. Each difference vector reflects the difference between
two (randomly) selected but distinct population members. z
represents the recombination operator used such as binomial
(bin) or exponential (exp) [60]. The five mutation types com-
monly used in the DE algorithm were given in the following
equations of 25, 26, 27, 28 and 29 [61]–[63].

DE/rand/1;V g
i = Xgr1 + F .X (X

g
r2 − X

g
r3) (25)

DE/best/1;V g
i = Xgbest + F(X

g
r1 − X

g
r2) (26)

DE/current − to− best/2;V g
i = Xgi

+F(Xgbest − X
g
i + X

g
r1 − X

g
r2) (27)

DE/best/2;V g
i = Xgbest + F(X

g
r1 − X

g
r2 + X

g
r3 − X

g
r4)

(28)

DE/rand/2;V g
i = Xgr1 + F(X

g
r2 − X

g
r3 + X

g
r4 − X

g
r5)

(29)

Mutation generated for each Xi within the Vi =

(V 1
i ,V

2
i . . . . . .V

N
i ) population which appears inside these

formulas is a vector. r1, r2, r3, r4, r5 values are random
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Algorithm 1 Pseudo Code of HHO
Define the population number (N) and nmber of iteration (T) (Input values)
Locations of rabbit and its fitness value (Output values)
Start within random point in population Xi (i=0,1,2. . . .)
while (continue until the conformity value is reached to the desired point)
{

Calculate Hawk’s fitness value

Define the position of Xrabbit

for (each Hawk (Xi)) (do)

{

//Update the starting enegy (E0 =2rand()-1) and jumping force (J=2(1-rand())

E = 2E0(1− t
T ) update the E

if ( |E| ≥ 1 ) // Exploration Phase

{

//Update the position according to equation below

X (t + 1) =

{
Xrand (t)− r1 |Xrand (t)− 2r2X (t)| q ≥ 0.5
(X rabbit (t)− Xm (t))− r3(LB+ r4(UB− LB)) q < 0.5

}

if ( |E| < 1 ) // Exploitation Phase

{

if ( r ≥ 0.5 ve |E| ≥ 0.5 ) //Soft besiege

{

// Update the position according to equation below

X (t + 1) = 1X (t)− E |JXrabbit (t)− X (t)|

}

else if ( r ≥ 0.5 ve |E| < 0.5 )//Hard besiege

{

// Update the position according to equation below

X (t + 1) = Xrabbit (t)− E |1X (t)|
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Algorithm 1 continue: Pseudo Code of HHO
}

else if ( r < 0.5 ve |E| ≥ 0.5 )//Soft besiege with dives

{

// Update the position according to equation below

Y = Xrabbit (t)− E |JXrabbit (t)− X (t)|

Z = Y + SxLF(D)

X (t + 1) =

{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}

else if ( r < 0.5 ve |E| < 0.5 )//Hard besiege with dives

{

// Update the position according to equation below

Y = Xrabbit (t)− E |JXrabbit (t)− Xm (t)|

Z = Y + SxLF(D)

X (t + 1) =

{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}
}

Return Xrabbit
}

numbers generated between population size (NP) and 1. F,
scale vector and Xbest are the value X, which indicates the
probable solution that has the best conformity value. The
DE binomial crossover operator that is used in this study
and generally used in the literature is given in equation 30.
In this equation, ui is the produced offspring and CR is the
crossing rate, and g is the scalling factor generated indepen-
dent from Xi. Cauchy distribution is made according to Fi =
Cauchy(lop,0.1). The value of Fi is regenerated if FI < 0
or FI > 1. The crossover rate is generated under anormal
distribution CRi = normal(CR,0.1) [61].

ui =

{
vi, if (with probabilty of CR)
Xi, otherwise

(30)

III. PROPOSED ALGORITHM THAT IS HARRIS HAWK
OPTIMIZATION BASED ON DIFFERENTIAL
EVOLUTION (HHODE) ALGORITHM
The pseudo code of the HHODE algorithm is presented in
the following Algorithm 2. In the solution point of this study,
the exploration phase is the process of Harris’ Hawk scan-
ning and finding its prey (rabbit etc.) in a hunting environ-
ment thanks to its sharp vision. But this is usually not that
easy. For this reason, Harris’ Hawk waits, observes, tracks
and follows the hunting environment for minutes or even
hours. Due to this situation, the DE mutation operators are
applied in the Exploration Phase section corresponding to
this process. At this stage in HHO, each Hawk is placed in
a random position and waits to detect the prey according to
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Algorithm 2 Pseudo Code of HHODE
Define the population number (N) and nmber of iteration (T) (Input values)
Locations of rabbit and its fitness value (Output values)
Start within random point in population Xi (i=0,1,2. . . .)
while (continue until the conformity value is reached to the desired point)

{

Calculate Hawk’s fitness value

Define the position of Xrabbit

for (each Hawk (Xi)) (do)

{

Update the starting enegy (E0 =2rand()-1) and jumping force (J=2(1-rand())

E = 2E0(1− t
T ) update the E

if ( |E| ≥ 1 ) // Exploration Phase with DE mutation operators

{

X (t + 1) =




Xgr1 + F .X

(
Xgr2 − X

g
r3

)
Xgbest + F

(
Xgr1 − X

g
r2

)
Xgi + F

(
Xgbest − X

g
i + X

g
r1 − X

g
r2

)
Xgbest + F

(
Xgr1 − X

g
r2 + X

g
r3 − X

g
r4

)
Xgr1 + F

(
Xgr2 − X

g
r3 + X

g
r4 − X

g
r5

)

 q ≥ 0.5

(X rabbit (t)− Xm (t))− r3(LB+ r4(UB− LB))q < 0.5

}

if ( |E| < 1 ) // Exploitation Phase

{

if ( r ≥ 0.5 ve |E| ≥ 0.5 ) //Soft besiege

{

X (t + 1) = 1X (t)− E |JXrabbit (t)− X (t)|

}

else if ( r ≥ 0.5 ve |E| < 0.5 ) //Hard besiege

{
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Algorithm 2 continue: Pseudo Code of HHODE

X (t + 1) = Xrabbit (t)− E |1X (t)|

}

else if ( r < 0.5 ve |E| ≥ 0.5 ) //Soft besiege with dives

{

Y = Xrabbit (t)− E |JXrabbit (t)− X (t)|

Z = Y + SxLF(D)

X (t + 1) =

{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}

else if ( r < 0.5 ve |E| < 0.5 ) //Hard besiege with dives

{

Y = Xrabbit (t)− E |JXrabbit (t)− Xm (t)|

Z = Y + SxLF(D)

X (t + 1) =

{
Y if F (Y ) < F (X (t))
Z if F (Z ) < F (X (t))

}

}

Return Xrabbit

}

two situations. Assuming that these two perching states are
(q); in the case of q < 0.5, the Hawk perchs according to
the prey (rabbit) the position, and in the case of q ≥ 0.5,
according to other Hawks’ position located in the hunting
area. In case of q ≥ 0.5, in calculation of X (t + 1) HHODE
structure is attained by using five mutation operators of
DE.

The proposed algorithm, HHODE, manages an overall
population space which is shared by HHO and DE. The
differential evolution (DE) optimization has the advantage
that, in the course of local search, the diversity in the
population.

As specified in Algorithm II in the exploration phase in
case of |E| ≥ 1 and q ≥ 0.5, in calculation of X (t + 1), there
are five different mutation operators of DE. Five mutation
operators are tested separately in the benchmark problems
used in this study. After this stage, in case of |E| ≥ 1 and q ≥
0.5, in calculation of X (t + 1), only arbitrarily applying one
of these mutation operators of DE will be sufficient to apply.
In the 4th section, most commonly used 23 benchmark prob-
lems and some of the IEEE CEC2005 and CEC2017 com-
petition functions, the results of the HHODE algorithm are
compared to the results of the HHO algorithm. As a result of
this comparison, the DE mutation operator in finding the best
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TABLE 1. F1-F13 benchmark function results for 30 and 100 dimensions of HHODE.

result was determined. This mutation operator that appeared
in literature by being used in HHODE was compared with
GA, BBO, DE, PSO, CS, TLBO, BA / BAT, FPA, FA, GWA
and MFO algorithms and shown in tables.

The most important factor affecting the performance of
each algorithm is the level of computational complexity.
By looking at the level of computational complexity of an
algorithm, information on its performance before running
can be obtained. Of course, it is desirable for a designed
algorithm to be simple and have a low level of computational
complexity. The computational complexity level of the clas-
sical HHO is indicated in the study of Heidari et al. [40] as
O (Nx (T + TD +1)). Here, O(N) is the the computational
complexity of the initialization process of N Hawks. T is
the maximum number of iteration and D is the dimension of
problem. The computational complexity of the HHODE is the
same as in the structure specified in the classical HHO [40].
In this case, the computational complexity of HHODE is O
(Nx (T + TD +1)).

IV. EXPERIMENTAL RESULTS
A. BENCHMARKS’ FUNCTIONS AND COMPARED
ALGORITHMS
In this section, the performance of the proposed HHODE
algorithm is first compared with HHO and then com-
pared with the results of other algorithms most commonly
used in literature. Benchmark functions are used in this

study and most commonly studied in literature [65], [66].
These benchmark functions are divided into three main
groups as unimodal (UM), multimodal (MM), and composi-
tion (fixed dimension multimodal) (CM). The UM functions
(F1-F7) with unique global can best reveal the exploita-
tive (intensification) capacities. The MM functions (F8-F23)
can disclose the exploration (diversification) and LO (local
optima) avoidance potentials of algorithms. The results of the
HHODE proposed in this study is compared with the standard
deviation (STD) and average (AVG) results of the HHO, GA,
BBO, DE, PSO, CS, TLBO, BA / BAT, FPA, FA, GWA
and MFO algorithms [40]. In addition, the problems selected
from IEEE CEC 2005 competition [66] (F24-F29). Operating
features of GA, PSO, DE and BBO of these algorithms are
same as settings stated in Dan Simon’s [19] study and features
stated in studies of BA [67], FA [68], TLBO [29], GWO [69],
FPA [70], CS [34] and MFO [71]. The performance of the
proposed HHODE and HHO algorithm is evaluated using
a set of problems presented in the CEC2017 competition
on real-parameter single objective optimization [72]. In this
study, Matlab 17R version Windows 10 operating system,
64-bit processor and 8 GB RAM hardware are used.

The same features are used for the operation of HHODE
in order to compare the algorithms state in the previous
section. Dimensions of 30, 100, 500 and 1000 is used in
F1-F13 test functions. HHODE is operated 30 times and
500 iterations are made for each dimension to get AVG

VOLUME 7, 2019 184477



S. Birogul: HHODE Algorithm for OPF Problem

TABLE 2. F1-F13 benchmark function results for 500 and 1000 dimensions of HHODE.

error and STD results. In the application of each of the five
mutation operators of DE of HHODE, F1-F13 benchmark
function results are given for 30 and 100 dimensions in table
1 and for 500 and 1000 dimensions in table 2. HHODE and
HHO [40] comparative results of the F1-F13 functions are
given in table 3 for 30 and 100 dimensions and in table 4 for
500 and 1000 dimensions.

When the results in Table 1 and 2 are analyzed, it is seen
that in the exploration phase of HHODE algorithm.

DE/best/1;V g
i = Xgbest + F(X

g
r1 − X

g
r2)

DE/current − to− best/2;V g
i

= Xgi + F(X
g
best − X

g
i + X

g
r1 − X

g
r2)

mutation operators of DE produce much better results. When
literature studies using DE as a hybrid are analyzed, it is
seen that the two operators given above gave better results.
In this respect, which mutation operator of HHODE is to be
chosen corresponds to that stated in the literature. The results
of the comparison for same conditions and functions of the
results of the HHO algorithm proposed by Heidari et al. [40]
and HHODE which is the hybrid algorithm that presented in
this study, are given in Table 3 and 8 in detail. As shown
in these tables, our proposed HHODE algorithm give bet-
ter results than the HHO [40] algorithm. As a result of

the comparison, it is also realized that it is possible to design
HHO as a hybrid algorithm.

In the study where the HHO [40] algorithm is compared
with other algorithms most commonly used, HHO yielded
much better results. It can be immediately understood that
HHODE will provide better results when compared with the
results of the same algorithms. However, in order to make
the evaluations better by presenting the results of the com-
parison, in this study, we have presented the tables where
the results of HHODE are compared with the results of
other algorithms. Comparison of F1-F13 benchmark function
results with HHO, GA, BBO, DE / BAT, FPA, FA, GWA and
MFO algorithms were given in Table 5 for 30 dimensions,
in Table 6 for 100 dimensions, in Table 7 500 dimensions and
in Table 8 for 1000 dimensions of HHODE.

In the literature, it is seen that new algorithms or hybrid
algorithms are applied in the different functions of IEEE
CEC20XX competitions series besides the benchmark func-
tions. In this study, by following the same structure,
F14-F23 benchmark functions and F24-F29 (C16, C18,
C19, C20, C21, C25 and C25) benchmark functions of
CEC2005 [67] are used. These comparison results are given
in Table 9.

In Table 5, it can be seen that F1-F5, F7, F10-F13 functions
for 30 dimensions of HHODE gives better results than
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TABLE 3. HHODE and HHO [40] comparative results of F1-F13 functions for 30 and 100 dimensions.

TABLE 4. HHODE and HHO [40] comparative results of F1-F13 functions for 500 and 1000 dimensions.

other algorithms. The TLBO algorithm for F6 and the CS
algorithm for F8 give better results than HHODE. In the
remaining F9, HHODE and BBO find same results. When a

general evaluation of table 5 results is made, it can be seen
that HHODE performs better than other algorithms in all
functions except for 2.
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TABLE 5. Comparison of F1-F13 benchmark function results for 30 dimensions of HHODE with other algorithms.

TABLE 6. Comparison of F1-F13 benchmark function results for 100 dimensions of HHODE with other algorithms.

In Table 6, it can be seen that F1-F7, F9, F10, F12 and
F13 functions for 100 dimensions of HHODE gives better
results than other algorithms. CS algorithm for F8 gives
better results than HHODE. For the remaining F11, HHODE
and TLBO find same results. When a general evaluation of
table 6 results is made, it can be seen that HHODE per-
forms better than other algorithms in all functions except
for 1.

In Table 7, it can be seen that n F1-F7, F10, F12 and
F13 functions for 500 dimensions of HHODE gives better
results than other algorithms. CS algorithm for F8 gives better
results than HHODE. For the remaining F9 and F11, HHODE
and TLBO find same results. When a general evaluation of
Table 7 results is made, it can be seen that HHODE per-
forms better than other algorithms in all functions except
for 1.
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TABLE 7. Comparison of F1-F13 benchmark function results for 500 dimensions of HHODE with other algorithms.

TABLE 8. Comparison of F1-F13 benchmark function results for 1000 dimensions of HHODE with other algorithms.

In Table 8, it can be seen that n F1-F7, F10-F13
functions for 1000 dimensions of HHODE gives better
results than other algorithms. CS algorithm for F8 gives
better results than HHODE. For the remaining F9, HHODE
and TLBO find same results. When a general evaluation
of Table 8 results is made, it can be seen that HHODE

performs better than other algorithms in all functions except
for 1.

In Table 9, it can be seen that HHODE gives the same good
results for all functions between F14 and F20 with the algo-
rithms that give the best results. HHODE find better results
for all functions between the remaining F21 and F29 than
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TABLE 9. Comparison of F14-F23 and CEC2005 F24-F29 benchmark function results of HHODE with other algorithms.

other algorithms. In this case, HHODE that we are proposed
in this study show better results than many algorithms as seen
in the tables above.

In Figure 2, the comparison results of HHODE with
other algorithms are given as graphs for 30-100-500-1000
dimensions. As it can be understood from the compar-
ison results of HHODE with other algorithms analyzed,
it is observed that the balance between the exploratory
tendency and exploitative tendency of the algorithm is well
consistent.

Besides, in this study, Formula 1 [73] ranking opera-
tion which began to be applied in CEC 2010 (competi-
tion) was made according to the results of F1-F13 functions
of each algorithm. Thus, a global evaluation and ranking
operation are carried out between HHODE and HHO, and
other algorithms. In brief, it ranks each method for each
function result (mean error, variance, etc.), creates a score
for each rank (the better rank, the higher score) in each
condition, and sums them all. The coefficient evaluations
used in the Formula 1 evaluation are as follows; ranking
was done from the algorithms which found the best results.
1− > 25 points, 2− > 18 points, 3− > 15 points,
4− > 12 points, 5− > 10 points, 6− > 8 points,
7− > 6 points, 8− > 4 points, 9− > 2 points, 10− >

1 point and there after 1 point is given. The results of

the ranking operation according to the results we find in
this study are given in Table 11 according to this scoring
system.

When the results in Table 11 are examined, HHODE
and HHO rankings are higher than other algorithms.
According to all these ranking operations, in the HHODE
algorithm, the use of the DE/current − to − best/2;V g

i =

Xgi + F(Xgbest − X
g
i + Xgr1 − Xgr2) mutation operator of DE

is ranked as first in the global evaluation. When a general
evaluation of HHODE is performed, the algorithm design
presented in this study is found to be an even more powerful
algorithm as a result of the combination of strong features of
both HHO and DE.
After comparison of HHODE with HHO and other algo-

rithms, the success of the HHODE and HHO is compared in
CEC2017 [72] test benchmark functions. HHODE and HHO
are operated 30 times, 1000 iterations are made for 10 dimen-
sion to get AVG error and STD results are given in Table 10.
When the results in Table 12 are examined, according to all
these ranking operation, in the HHODE algorithm, the use
of the DE/best/2;V g

i = Xgbest + F
(
Xgr1 − X

g
r2 + X

g
r3 − X

g
r4

)
mutation operator of DE is ranked as first in the global
evaluation.
In the OPF problem, HHODE/current-to-best/2 and

HHODE/best/2 mutation operators are applied instead of all
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FIGURE 2. Scalability results of the HHODE against to other algorithm in dealing with the F1-F13 functions with 30, 100, 500 and
1000 dimensions.

mutation operators in the HHODE algorithm, the results of
which can be seen in table 11 and table 12. Also, classic HHO

algorithm is applied to OPF problem to show that HHODE
algorithm is better than HHO algorithm. Settings parameters
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TABLE 10. HHODE and HHO comparative results of CEC2017 test benchmark functions sets (10 dimension, 30 independent runs, 1000 iteration).

TABLE 11. Formula 1 scores of HHODE, HHO and others algorithms.

of the HHO and HHODE algorithms for the OPF problem
are;

Number of dimension = 50 and Iteration number = 100

B. OPF RESULTS
The HHODE and HHO algorithms are applied on modified
IEEE 30-bus test system for solving the OPF problem and

TABLE 12. Formula 1 scores of HHODE and HHO.

IEEE 30-bus test system data are taken fromRefs. [76,77] and
the generators data of test system are taken from Ref. [57]

In order to show the effectiveness of the HHO and HHODE
algorithms they are tested on different cases.

Case 1: The OPF problem is solved without valve-point
effect and prohibited zones.

Case 2: The OPF problem is solved with prohibited zones.
Case 1: Classic OPF problemwithout valve-point effect

and prohibited zones
The obtained optimum control variables from the HHODE

and HHO algorithm for Case 1 are given in Table 13. The
result of the HHODE and HHO algorithms and the results of
the other methods in the literature are given in Table 14. It is
obvious that the result of the proposed HHODE algorithms
that use of the HHODE/current-to-best/2 mutation operator
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TABLE 13. Optimum control variables for different cases.

TABLE 14. Comparison results for Case 1.

TABLE 15. Comparison results for Case 2.

is better than the HHO and other heuristic algorithms in the
literature.

Case 2: Classic OPF problem with prohibited zones
The obtained optimum control variables from the HHODE

and HHO algorithm for Case 2 are given in Table 13. The
result of the HHODE and HHO algorithms and the results of
the other methods in the literature are given in Table 15. It is
obvious that the result of the proposed HHODE algorithms
that use of the HHODE/current-to-best/2 mutation operator

is better than the HHO and other heuristic algorithms in the
literature.

V. CONCLUSION AND DISCUSSION
In the hybridization of algorithms in the literature, it is
understood that most of the structures lack the equilibrium
between the exploration and exploitation stages during the
optimization process. The aim of this study is to develop
the HHODE algorithm in order to eliminate the lack of
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equilibrium. In the developed HHODE algorithm, mutation
operators of the DE have been used in the exploration phase
for the equilibrium phase. By this means, during exploration,
a better designed process has been developed for research in
the whole area and in various places of the solution space of
HHODE. Thus, after a well-designed exploration phase, it is
ensured that HHODE has a rich solution space in detecting
and examining the best possible solutions in the exploitation
phase. In addition, due to the fact that HHODE has a well-
organized optimizer structure, it is observed that a reasonable
balance could be established between the exploration and
exploitation tendencies. If the situation is the opposite, the
HHODE algorithm would not be able to find good results by
falling into local optimum (LO) or early convergence.

In this study, HHODE has been compared with GA, PSO,
DE, BBO, BA, FA, TLBO, GWO, FPA, CS and MFO algo-
rithms which are most commonly used in the literature to
observe that HHODE yields successful results. When the
results of all tables are examined, it can be seen that HHODE,
which is proposed as a new hybrid algorithm, gives better
results than other algorithms. Therefore, we believe that it
will be useful to use HHODE as an effective hybrid algorithm
for optimization problems with researchers.

In this study HHODE algorithm is applied most com-
monly used 23 benchmark problems and some of the IEEE
CEC2005 and CEC2017 competition functions.

The proposed HHODE algorithm (hybrid HHO algorithm
with DE) is tested, one of the real engineering problems,
on OPF problem within IEEE 30-bus system which is under
without valve-point effect and prohibited zones, with prohib-
ited zones test cases. The results of the comparison were that
in order to solve the OPF problem, the HHODE algorithm
is more effective to find the optimal solution than HHO and
other algorithm in the reported that before literature.

In the next studies, success rate can be observed by apply-
ing HHODE algorithm in other function tests. In addition,
the HHO algorithm can be hybridized with different algo-
rithms and the new hybrid HHO algorithm can be compared
with both the classical HHO and the HHODE algorithm that
is proposed in this study.

In future works, the observation of the effectiveness of
HHODE in other various engineering optimization problems
will create new perspectives.
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