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ABSTRACT Technical reports indicate that wireless and mobile devices will account for 71% of all IP
traffic by 2022, an increase of 19% over four years. This increase is related to advances in wireless data
communication technologies. Wireless networks have become one of the most important ways to connect
devices to the Internet, therein improving productivity and encouraging information sharing. IEEE 802.11,
known asWi-Fi, has become the main standard for wireless local area networks. The most important metrics
for measuring the quality of Wi-Fi are delay, jitter, and packet loss. Packet loss occurs when one or more
packets fail to reach their destination and can occur for a variety of reasons. Packet loss influences the user’s
perceived quality of applications over Wi-Fi networks, mainly multimedia and real-time applications. The
availability of accurate models for packet loss in Wi-Fi networks enables the development of more efficient
methods for performance analysis and network design, as well as better computational simulations.Modeling
packet loss in such networks presents a major challenge because packets may be lost for many different
reasons, including signal attenuation, noise, multipathing, signal refraction, thermal noise, competition for
media access and buffer issues. In this paper, we provide an overview of the causes of packet loss and a
comprehensive survey of the available models for packet loss in Wi-Fi networks. The potential benefits
of the survey are: (i) the systematic presentation of available packet loss models for Wi-Fi networks, their
parameters, and respective packet loss rate evaluation, (ii) comparison of models considering validation
scenarios and input parameters, and (iii) description of open issues and future research directions. We hope
that our analysis will help researchers understand themost important characteristics of the packet loss process
in Wi-Fi networks and the strengths and weaknesses of the main packet loss models.

INDEX TERMS Gilbert-Elliot model, packet loss model, packet loss rate, Wi-Fi communication.

I. INTRODUCTION
IEEE 802.11 is a set of specifications for Wireless Local
Area Networks (WLANs). Since 1997, when the IEEE
802.11 standard was released, it has been continuously
upgraded to improve throughput, security, reliability and
quality of service, among other functionalities [1]. Wi-Fi
(wireless fidelity) includes IEEE 802.11a/b/g/n standards for
WLAN that allow users to surf the Internet at broadband
speeds [2] but also includes newest versions such as IEEE
802.11af/ac (2013) and IEEE 802.11ax (2019) [3]. Advances
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in wireless communication systems have resulted in substan-
tial growth in the number of Wi-Fi-enabled devices, which in
turn has facilitated the development of new, cheaper devices
and applications with reduced power consumption [4].

The rapid innovations in the wireless data communication
area have increased services and application available to
mobile device users worldwide.Wi-Fi networks have become
very popular and are common in homes, offices, public parks,
shops, airports, and hotels. The main applications supported
by Wi-Fi are audio/video streaming, web browsing, file shar-
ing, chatting and e-mail [1]. For video streaming, a consid-
erable increase in data traffic is expected due to emergent
video coding technologies, e.g., 8K resolution and scalable
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video coding [5]. According to Cisco [6], by 2022 Wi-Fi and
mobile networks will account for 71 percent of IP traffic.
In 2017 Wi-Fi networks accounted for 43% of all global IP
traffic.

A model is an abstraction or a simplified representation of
a real or conceptual system and is designed to exhibit signif-
icant characteristics of the system that one wishes to study,
predict, modify or control [7]. Thus, a model includes some
aspects, but not all, of the system being modeled. According
to Fournier [8], a model is an ideal representation intended
to precisely capture all the relevant properties of the original
system and usually involves stochastic components. A packet
loss model is valuable when providing useful insights, predic-
tions, and answers to the system under study [7].

Packet loss models for digital communications have been
proposed since the 1960s and seek to represent packet loss
behavior in real networks. Techniques for modeling and sim-
ulating play an important role in understanding the behavior
of wireless systems, and analytical models that can describe
the packet loss process have proved to be useful in analyzing
the performance of wireless networks [9]. The first models
for packet loss only considered errors in the physical layer. At
the physical layer, themain causes of packet loss inWi-Fi net-
works are low signal power, noise, interference, andmultipath
fading [10], [11]. However, packet loss in Wi-Fi networks
can have many causes, including physical and link layer
problems. At the link layer, the main causes of packet loss
in Wi-Fi networks are buffer overflow, bufferbloat, queuing
delay, collisions, and malicious attacks. In the last case, it is
difficult to determine whether packet losses are actually the
result of malicious attacks or other causes [12].Mitigating the
impact of packet loss could result in important performance
improvements, especially for real-time applications such as
live video streaming [13]–[15] and voice conferencing [16].

A. CONTRIBUTIONS AND ORGANIZATION
The contributions of this work can be summarized as follows:

• Summary of the main causes of packet loss in Wi-Fi
networks.

• Systematic analysis of available models for packet loss
in Wi-Fi networks considering the joint effects of phys-
ical and MAC layers.

• Description of open issues and future research directions
for packet loss models of Wi-Fi networks.

Including this introductory section, the remainder of this
paper is organized as follows: Section II presents an overview
of the IEEE 802.11 standard. Section III introduces the main
causes of packet loss. The packet loss models are presented in
Section IV and then compared in Section V. Open issues and
future research directions are presented in SectionVI. Finally,
Section VII presents the conclusions.

II. AN OVERVIEW OF IEEE 802.11
Wi-Fi connectivity for smartphones, tablets, and computers
is now well established, and IEEE 802.11 specifications

have become the main standard for local area networks.
Over the years, several versions of IEEE 802.11 have been
released such as 802.11b, 802.11g, and 802.11n [17]. The
802.11 series of standards are designed to be backward com-
patible and compatible at the MAC link layer. Backward
compatibility is an important requirement to ensure interop-
erability between devices due to the wide diversity of device
types and different available networks. Additionally, the Wi-
Fi specification provides some optional requirements that
manufacturers may or may not implement in their products.

IEEE 802.11 uses 802 logical link control (LLC) to provide
an optimized physical layer (PHY) and specifies the medium
access control (MAC) and physical sub-layers for wireless
communication [18], as shown in Figure 1.

FIGURE 1. Standard for MAC and physical layer for WLANs.

The architecture of IEEE 802.11 is built through a basic
service set (BSS), as shown in Figure 2. A BSS is defined as a
group of stations under direct control of a single coordination
function, as defined later in subsection II-B. The operation
area of a BSS is known as the basic service area (BSA), where
all stations can communicate with each other.

FIGURE 2. Extended service set architecture.

IEEE 802.11 defines two modes of operation:
• infrastructure mode: stations communicate through an
access point (AP) [19],

• ad-hoc mode: stations communicate with each other
directly [20].

The ad-hoc mode is also known as independent
BSS (IBSS) because the communication between the stations
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TABLE 1. IEEE 802.11 standard family specifications [18], [27]–[29].

within the BSS is performed without the need for man-
agement by a central node or controller. A wireless ad-hoc
network (WANET) is a set of services that has gained
extensive interest from developers and industrial companies,
especially in scenarios with high levels of station mobility
such as Vehicular (VANET) and Mobile (MANET) networks
[21], [22], Internet-based mobile communication, military
applications, and tactical ad-hoc networks.

On the other hand, the infrastructure mode’s AP generally
remains stationary and concentrates all traffic between sta-
tions. The AP announces the BSS through beacon messages
containing its link layer address (BSSID) and the network
identifier name (SSID). Station devices associated with the
AP leave all coordination of network functionality to the
AP [23].

The use of mixed mode, therein combining infrastructure
and ad-hoc modes, was investigated as an opportunity to
improve network performance [24]. The AP can provide
necessary integration for networks between multiple BSSs,
resulting in an extended service set (ESS). The ESS can be
described as one large BSS to the LLC sublayer of each
station and extends the coverage area to a single BSS. The
ESS consists of multiple BSSs integrated together using a
common distribution system (DS). The DS can be understood
as a backbone responsible for transporting MAC service data
units (MSDUs) and is specified in IEEE 802.11 as imple-
mentation independent. An ESS can provide a gateway for
wireless users to wired networks such as the Internet. This
is accomplished via a device known as a portal. The portal
is a logical entity that specifies the integration point on the
DS where the Wi-Fi network integrates with a non-IEEE
802.11 network [19].

A. PHY LAYER
IEEE 802.11 uses unlicensed frequencies of 2.4 GHz
and 5 GHz. The first standard specified two methods

of radio frequency transmission: direct sequence spread
spectrum (DSSS) and frequency hopping spread spectrum
(FHSS).

• In DSSS, each bit of the original signal is represented by
multiple bits in the transmitted signal using a spreading
code. The spreading code spreads the signal across a
wider frequency band in direct proportion to the number
of bits used.

• In FHSS, the signal is broadcasted over a pseudo-random
series of radio frequencies. The receiver, hopping
between frequencies in synchronization with the trans-
mitter, picks up the message. Attempts to jam the signal
in one frequency succeed only at knocking out a few bits
of it [25].

Newer versions of IEEE 802.11 use orthogonal frequency-
division multiplexing (OFDM) [18]. OFDM is a modula-
tion technique for data transmission, where the bandwidth
is equally divided into multiple orthogonal subcarriers. The
main advantages of OFDM over classical techniques are
that OFDM can obtain a similar transmission rate, decrease
the effects of fading, and offer better equalization. OFDM
can also adjust the modulation technique in the subcarriers,
e.g., one subcarrier with a poor channel condition can use
binary phase shift keying (BPSK), and other subcarriers with
good channel conditions may use a more efficient modulation
technique such as 64-QAM (quadrature amplitude modula-
tion) [26].

Table 1 presents the main physical layer characteristics
of each version of IEEE 802.11. IEEE 802.11a can oper-
ate over 3.7 GHz or 5 GHz using OFDM and single-
input, single-output (SISO). SISO allows communication
between one transmitter and one receptor. However, the use
of multiple-input multiple-output (MIMO) has become
increasingly popular, therein using several transmitters and
receptors. The use of the ISM (industrial, scientific and med-
ical) unlicensed bands as 2.4 GHz enabled the development
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of newer versions of Wi-Fi such as IEEE 802.11b, IEEE
802.11g and IEEE 802.11n. In 2005, the IEEE 802.11 Work-
ing Group for WLAN Standards established an activity to
enhance the current 802.11 MAC protocol to support appli-
cations with QoS requirements [30] such as video streaming
or real-time applications. The results of this group’s work
established the IEEE 802.11e standard with QoS capac-
ity [31]. IEEE 802.11n increases reliability using MIMO
systems and achieves longer communication distances and
higher transmission rates [32]. For the 40 MHz bandwidth,
the optional data rate defined by 802.11n is 600 Mbps [33],
which is achieved by using four antennas and a 400 ns
guard interval [34]. 802.11ac uses a bandwidth of 20, 40,
80 or 160 MHz [35]. Bandwidths of 80 and 160 MHz are
formed by a combination of two adjacent non-overlapping
40 and 80 MHz channels, respectively [36]. IEEE 802.11ad
addresses personal area networking and introduces new capa-
bilities such as wireless docking with multi-gigabit per sec-
ond links using a large spectrum in the 60 GHz band. IEEE
802.11ad uses directional antennas to enhance the link quality
andmodifies channel access to address directionality and spa-
tial reuse [37]. Additional information about Wi-Fi standards
can be found in [33].

B. MAC LAYER
The MAC sublayer is responsible for channel allocation
procedures, protocol data unit addressing, frame formatting,
error checking, fragmentation, and reassembly. The 802.11
MAC sublayer supports two basic media access functions:
the distributed coordination function (DCF) and an optional
point coordination function (PCF). When the PCF is enabled,
the wireless channel is divided into several superframes. Each
superframe consists of a contention-free period for a PCF and
a contention period for the DCF [18]. At the beginning of
the PCF, the coordinating point, usually represented by the
AP, conducts different disputes over the wireless channel.
Once the AP acquires the channel, it periodically performs
a high-priority scan of the stations to allow privileges for
transmission. PCF is a centralized service and operates in
infrastructure mode [18].

DCF is based on carrier sense multiple access with col-
lision avoidance (CSMA/CA). The CSMA/CA protocol is
designed to reduce the collision probability at the points
where collisions would most likely occur. By default, in IEEE
802.11, carrier sensing is performed in the PHY layer.
RTS/CTS (request to send/clear to send) is the optional
mechanism used by CSMA/CA to reduce the collision prob-
ability, therein implementing virtual carrier sensing in the
MAC layer. Typically, the RTS/CTS strategy is used if the
packet exceeds a threshold of 2347 octets [18]. Before a
station sends out a data frame, it senses the channel. If the
channel is idle after a period of time called the distributed
inter-frame spacing (DIFS), the RTS frame is transmitted.
Otherwise, a backoff time slot is chosen randomly in the
interval from 0 to a contention window (CW). The CW is
incremented exponentially as a function of the number of

attempts to retransmit the frame [18]. The receptor receives
the RTS, and after waiting a period of time called the short
inter-frame space (SIFS), it replies with a CTS message to
the source station. Stations that receive the CTS update their
own self net allocation vector (NAV), which indicates the
time interval that the station must wait before any attempts
to use the channel. When the transmitter receives the CTS,
it starts to send the data to the receiver that replies with an
acknowledgment (ACK) message to confirm the reception of
the data [38].

The random backoff mechanism of the RTS/CTS scheme
is an important feature for reducing collisions in Wi-Fi net-
works, thereby greatly reducing packet loss. The random
backoff time is evaluated using

Backoff_Time = R.Ts, (1)

where R is a pseudorandom generator of an integer in the
interval [0, CW], CWmin ≤ CW ≤ CWmax, and Ts is
the slot time length. Depending on the type of the PHY
layer characteristics, the CWmin, CWmax and Ts can assume
different values, as indicated in [39] and [29].

Every node uses a backoff counter when data packets are
attempting to send for the first time. The contention window
is initially set to the minimum CWmin before sending, and
transmission is carried out with equal probability at a choice
time in the interval (0, CWmin). If the channel is sensed free
for the DIFS time, the backoff counter would decrease by
1 every Ts. If the channel is sensed busy, the station freezes its
backoff counter until the channel is sensed free for the DIFS
time [40]. When the backoff counter reaches zero, the station
starts transmitting. If the sender does not receive the ACK
within a certain amount of time, it assumes that the data
packet was lost and repeats the above procedure, doubling the
CW. Doubling of the CW stops after the maximum window
size (CWmax) is reached [39].

III. CAUSES OF PACKET LOSS
Bolot [41] understands a loss as the failure of a packet sent on
a network to be received correctly by the receiver. Packet loss
occurs for various reasons, including problems in the physical
or media access control layer. Understanding the causes of
packet loss so that appropriate procedures can be followed or
action can be taken is crucial. In some cases, collisions and
signal-related problems lead to performance issues and need
to be considered separately [42]. Iyer et al. [43] suggested that
the successful decoding of received data is a random event
whose probability depends upon the signal strength, level of
thermal noise interference, and strength of interfering signals.

The causes of packet loss can be classified into three
categories:

• Physical factors, such as signal strength, noise and mul-
tipath effect;

• Contention for medium access; and
• Buffer overflow due to network congestion or
bufferbloat due to an excessive queue memory.
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FIGURE 3. General overview classification of packet loss causes.

Because of the characteristics of losses in wireless links,
one challenge is to determine if a packet loss is due to
wireless-induced effects, such as channel pairing and inter-
ference, or malicious discarding during transmission [44].
However, it is difficult to determine whether packet loss is a
result of problems in the physical layer (e.g., low signal power
at the receiver) or competition for access at the MAC layer
(e.g., hidden terminals) [45]. Figure 3 presents a classification
of packet loss causes based on the PHY and MAC layers.

A. PHYSICAL LAYER PROBLEMS
1) COEXISTENCE AND INTERFERENCE OF Wi-Fi AND
OTHER TECHNOLOGIES
This section presents a description of coexistence and inter-
ference phenomena for Wi-Fi with other technologies. In
wireless communication, interference is any signal or noise
that modifies or disrupts the original wireless signal between
the transmitter and receiver. On the other hand, coexistence
refers to different wireless devices sharing bandwidth.

In communication networks, two types of interference
should be considered: interference caused by another station
and interference due to noise. Station interference occurs in
channel access schemes and is considered MAC interference
(i.e., collisions - explained in greater detail in Section III-B),
while noise interference is due to the physical medium and is
considered PHY interference [46].

IEEE 802.11 operates in an unlicensed frequency of 2.4 or
5GHz. Technologies such as Bluetooth (IEEE 802.15.1) [47],
ZigBee (IEEE 802.15.4) [48], wireless phones, and different
specifications of IEEE 802.11 can be sources of interference
because they commonly use the same unlicensed frequencies.
Figure 4 presents a diagram of frequency overlapping pos-
sibilities between Wi-Fi and competing technologies. Wi-Fi
channels commonly use the range of frequencies between
2401 MHz and 2483 MHz. IEEE 802.11b divides the band

into 13 channels with a bandwidth of 22 MHz each. As a
result, there are only three non-overlapping channels (i.e., 1,
6, and 11 [49]). Given the high density of Wi-Fi hotspots,
it is common to share the bandwidth with neighboring Wi-Fi
networks. IEEE 802.11n can operate with 20 or 40 MHz,
increasing the probability of interference between channels.
The problem of coexistence between Wi-Fi networks has
become even more pressing, as IEEE 802.11ac expects to
increase the channel bandwidth to 80 and 160 MHz [50].
Thus, Wi-Fi networks must be carefully designed in such a
way that channels do not overlap adjacent networks.

Yoon et al. [51] and Shin et al. [52] analyzed the inter-
ference of WPANs on Wi-Fi networks using the IEEE
802.15.4 and IEEE 802.11b standards, respectively. The
packet error rate (PER) of a Wi-Fi network was calculated
using the bit error rate (BER) and collision time. Their
results showed that for distances greater than four meters,
the interference of the WPAN did not significantly impair the
Wi-Fi signal. However, for distances of less than threemeters,
the authors suggested reducing the payload size to miti-
gate the effects of interference and improve the throughput
of the Wi-Fi network [53]. WPANs can also adversely affect
the performance of IEEE 802.11 g/n networks, as shown by
Petrova et al. [54].

Another type of interference is known as pulsed inter-
ference and has been studied by Zarikoff and Leith [55],
who proposed a technique to detect packet loss. The authors
suggested classifying lost transmission as noise-related,
collision-induced, and hidden node (HN) losses. Soomro and
Cavalcanti [56] discussed the challenges in identifying the
coexistence of WPAN and WLAN technologies in strategic
areas such as medical environments due to coexistence with
other technologies in the ISM bands, e.g., locations such
as health care apartments with devices, bedside monitoring,
patient wireless sensors, remote alarms in monitoring equip-
ment, and home/residential care environments.

On the other hand, Bluetooth also operates at 2.4 GHz over
short distances and uses 79 channels with 1 MHz bandwidths
from 2.402 to 2.480 GHz. Bluetooth uses FHSS, divides
transmitted data into packets and transmits each packet using
one of the designated channels. Bluetooth low energy (LE) is
a promising technology aimed at implementing short-range,
low-cost, low-power networks with broad compatibility and
low-power characteristics using 40 channels of 1 MHz [57].
In 2003, a task group published the IEEE 802.15.2-2003 stan-
dard that defines several coexistence mechanisms that can
be deployed to make the coexistence of WLAN and WPAN
networks possible [58].

The coexistence of IEEE 802.16 (worldwide interoper-
ability for microwave access, also known as WiMAX) and
Wi-Fi posesmajor difficulties because the frame-basedmedia
access of IEEE 802.16 requires rigorous protection against
interference from wireless local area networks for proper
operation [59], [60].

Long term evolution (LTE) has become the de facto stan-
dard for 4G networks. The deployment of LTE in unli-
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FIGURE 4. Overlapping map of wireless technology.

censed bands is being considered in the 3rd Generation
Partnership Project (3GPP) release 13 of LTE. This feature
is called licensed-assisted access (LAA) to LTE. Currently,
there is no embedded scheme in Wi-Fi devices to mitigate
or avoid the negative effects of the coexistence of LTE and
Wi-Fi networks. The coexistence of LTE and Wi-Fi sys-
tems has thus become a primary challenge [61]. Chen et al.
showed that competing LTE systems can impairWi-Fi perfor-
mance, causing severe packet dropping (especially in scenar-
ios with several APs and eNodeB, i.e., 3 APs and 3 eNodeB),
whereas the LTE performance is only slightly affected [61].
Cavalcante et al. [62] indicated that Wi-Fi performance is
further degraded when it operates concurrently with LTE due
to the fundamental limitation of the Wi-Fi protocol, which
blocks the Wi-Fi channel and forces the Wi-Fi nodes to
remain in listen mode for a considerable amount of time.
Simulation results presented by Rupasinghe and Güvenç [63]

showed that 802.11n performance is more vulnerable to
LTE interference, while LTE performance is degraded only
slightly in the unlicensed spectrum.

Noise interference is caused by external sources and can
lead to packet loss. Other systems may emit electromag-
netic waves (e.g., microwave ovens [64]) that could affect
the communication within the WPAN [65] and Wi-Fi net-
works [66]. Devices that can interfere with Wi-Fi networks
include plasma lighting systems (PLS), wireless phones, and
video transmission devices (e.g., robots used for detecting
explosives in airports) [67]–[69]. Table 2 presents a list
of related works on interference between wireless network
technologies.

2) FADING
Fading is defined as the attenuation of signal strength.
For wireless communications, path loss (PL) is a measure
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TABLE 2. Literature on the coexistence of Wi-Fi networks and other
technologies.

FIGURE 5. Vertical and horizontal handoffs.

of the average radio frequency attenuation suffered by a
transmitted signal when it arrives at the receiver [108].
Sarkar et al. described that fading can be classified into two
types: large-scale fading due to motion over a large area (e.g.,
mean signal attenuation vs distance) and small-scale fading
due to small changes in position (e.g., time spreading of the
signal and time variance of the channel) [108]. In typical
wireless networks, the base station is at a fixed position,
while the devices are constantly moving. User mobility can
impair the performance of networks and result in a slight
increase in the packet loss ratio [109].

The process of transferring a call or session to/from base
stations is known as handoff [110]. Handoff can be classi-
fied into two types: horizontal handoff (HHO), which means
that devices move within the same wireless access network
technology, and vertical handoff (VHO), which means that
devices move among heterogeneous wireless access network
technologies, e.g., fromWi-Fi toWiMax, as illustrated in Fig-
ure 5. For vertical handoff, the VHO infrastructure must
provide a minimum overhead, authentication capability, and
low delay to minimize the packet loss. To avoid packet
losses during horizontal handoff, several methods have been
proposed [111].

FIGURE 6. Signal propagation in wireless environments: reflection,
refraction and diffraction.

An original signal from a transmitter can arrive at the
receiver with multiple copies due to reflection (caused by,
e.g., reflective surfaces), refraction (caused by, e.g., media
with different propagation velocities), and diffraction (caused
by, e.g., edges) [112], as illustrated in Figure 6.

Multipath propagation occurs when multiple copies of a
signal arrive at the receiver with different amplitudes, phases,
and delays and can lead to severe dispersion of the transmitted
signal [108]. Interference betweenmultiple copies of received
signal causes fading [113], which is a particularly severe
channel impairment. To mitigate the impact of multipath
propagation, solutions such as diversity and cooperative tech-
niques [114] can be applied.

B. COLLISIONS
In wireless communication, especially in Wi-Fi networks,
collisions are a major issue. Usually, a communication chan-
nel has three states: busy due to a transmission, busy because
of a collision, and idle [115]. In the first state, the channel
remains busy while successful transmission is occurring, and
only the sender has permission to access the medium. In
the second state, the channel remains unavailable because of
a collision, and in the last state, the channel is available to
new transmissions [115].

The phenomenon known as hidden nodes (HN) is common
in Wi-Fi networks. A HN occurs when nodes outside other
nodes’ carrier-sensing ranges are nevertheless close enough
to interfere with each other [116]. Figure 7 presents an HN
scenario with a collision event. Device A can hear device B,
and device B can hear both devices; however, A and C cannot
hear each other. When A transmits B, C cannot detect this
transmission. Therefore, if C transmits to B, a collision will
occur at device B. This problem is known as the hidden termi-
nal problem. Thus, the collision probability can be correlated
with the number of terminals competing for the channel.

HNs not only result in packet loss but also impair the
throughput of Wi-Fi networks. In some cases, HNs can
reduce network throughput by more than 33% in medium-
to high-traffic conditions compared with scenarios in which
there are no HNs. However, the HN phenomenon barely
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FIGURE 7. Collision scenario of Wi-Fi networks.

affects systems with low traffic [117]. HNs produce interfer-
ence due to hidden traffic (HT). Portoles-Comeras et al. [118]
correlated HTs with packet loss in wireless transmissions.
They used renewal theory to show that packet losses con-
stitute biased samples of HTs, with a significant correlation
between the packet transmission time and its loss proba-
bility. Simulations showed that the packet loss probability
increases proportionally to the airtime occupation and num-
ber of HNs [118]. Borgo et al. showed that the CSMA/CA
scheme can be more effective in avoiding hidden terminal
problems for low transmission rates and in scenarios with
severe interference [119].

The IEEE 802.11 DCF does not rely on a privileged station
to control the number of terminals competing for a channel.
However, in infrastructure mode, the information about ter-
minals consists only of the number of associations between
the AP and the devices, and it is difficult to estimate the inter-
ference caused by unassociated devices. Thus, the number of
competing devices could be very different from the number
of real associations [120].

C. BUFFER LOSSES
Network congestion is a further cause of packet loss [121] due
to the limitation of buffers to store packets. Detecting con-
gestion in wireless networks presents a significant challenge
[122]. One solution to avoid network congestion is to use
devices with faster processors or increase the size of buffers
used to store received packets.

Many important applications (e.g., video streaming) gen-
erate bursty traffic and require larger buffers [123] to avoid
discards. Several congestion control techniques have been
developed to improve the network performance [124]. Trans-
mission control protocol (TCP) adjusts the congestion win-
dow size in such a way to avoid sending excessive packets to
the destination, thus preventing drops by buffer overflow. The
congestion window size is estimated using the time it takes
for a packet to be sent to the receiver and for an ACK to be
received. This time is known as the RTT (round trip time).

The availability of inexpensive memory and the need to
avoid packet loss have led to larger buffers being deployed
in network devices without sufficient thought or testing. It is
expected that the increase in buffer size will improve the per-
formance of the network by decreasing the packet loss rate.
However, this could lead to an increase in latency, which may
impair the quality of services, e.g., real-time video streaming.

Additionally, larger buffers could cause a problem called
bufferbloat (persistently full buffers) [125]. Nakayama and
Sezaki [126] stated that bufferbloat refers to the phenomenon
of excess buffering of frames causing high latency and low
throughput. Even when being studied mainly in the context
of wired networks, persistently full buffers can deteriorate the
fairness of rate allocation and increase the RTT in wireless
networks [127].

IV. PACKET LOSS MODELS
The problem of modeling packet loss in networks has been
studied since the 1960s. This section presents the main packet
loss models available, with emphasis on models applicable to
Wi-Fi networks.

The first packet loss models presented were developed for
wired networks (e.g., the Gilbert and Gilbert-Elliot models)
and later applied to wireless networks. Newer models were
designed considering the behavior of Wi-Fi networks, mainly
the burst loss phenomenon.Many of themodels described can
be used for other wireless networks such as ZigBee and LTE.

A. Bernoulli
In the Bernoulli model, a good run-length (or reception run-
length, RRL) and a loss run-length (LRL) are represented by
an independent and identically distributed random variable.
In RRL, all packets are successfully received, and in LRL, all
packets are lost. For a given packet i, the random variable Xi
can be 0 or 1, with Xi = 1 indicating a packet being lost and
Xi being independent of other values in the time series. The
model uses a single parameter r , estimated from r̂ = n1/n,
where r̂ is the average loss rate, n1 is the number of times
that the value of 1 has been observed in a time series {xi}ni=1
and n is the number of samples. The packet loss rate (PLR) is
estimated by r̂ .

The distributions of the RRL and LRL are given by f (j) and
g(j) as follows [128]:

f (j) = r̂(1− r̂)j−1 for j = 1, 2, . . . ,∞ (2)

g(j) = (1− r̂)r̂ j−1 for j = 1, 2, . . . ,∞ (3)

For wireless networks, the Bernoulli model has disad-
vantages because the model is not capable of capturing the
temporal dependence of packet losses [129]. According to
Nguyen et al. [130], this model is clearly not able to describe
many real-world scenarios. Recently, the Bernoulli model has
been used only for comparison to other models.

B. TWO-STATE Markov CHAIN
The Markov chain-based models attempt to represent the
correlation between losses and free losses in communication
networks according to several states with different loss prob-
abilities.

A two-state Markov chain model, also known as Simple
Gilbert, uses a success (S) state to represent a packet being
correctly received and a lost (L) state to represent a packet
being lost. Figure 8 illustrates the two-state Markov chain,
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FIGURE 8. Two-state Markov chain.

FIGURE 9. Gilbert model.

which shows that its behavior is governed by the transition
probabilities, where p is the transition probability from the S
to L state if a packet is lost. The transition probability from
the L to S state is given by q.
PLR can be evaluated using the limiting distribution for

Markov chains with steady-state distribution given by 5 =
{π1, π2} using 5P = 5 and

∑
5 = 1 [131] and is given by

PLR =
p

p+ q
(4)

where P is the transition matrix for this chain.
Unlike the Bernoulli model, this two-state model is able

to capture the dependence between consecutive losses in the
network due to an additional parameter p [128], in which
p = P[Xi = 1|Xi−1 = 0].

1) Gilbert MODEL
In 1960, Gilbert [132] proposed the use of a 1-st-order
Markov chain to model consecutive binary losses in
burst-noise channels. The burst term is widely used to
describe consecutive events, e.g., losses or noise, that impair
the quality of a link on which data are transmitted. Later,
the Gilbert model was used to represent packet loss processes
in simulations of communication networks. An advantage of
this model is the capacity to capture the temporal dependence
of the packet loss process [133].

The model has two states, identified as ‘‘Good’’ (G) or
‘‘Bad’’ (B), in which Gilbert considered the special case of
an error-free good state (k = 1). Additionally, it is common
to use the terms ‘‘Reception’’ and ‘‘Loss’’ to describe the
states [133]. In state B, the probability of discarding is 1− h,
with 0 ≤ h ≤ 1, and the G state transmission is error free.
The variables p and q represent the transition probabilities
between states G and B and between B and G, respectively.
A representation of the Gilbert model is shown in Figure 9.

For the Gilbert model with k = 1, the PLR is given by

PLR =
(

p
p+ q

)
(1− h). (5)

2) Gilbert-Elliot MODEL
The Gilbert model was extended by Elliot [134] in 1963,
therein including the possibility of losses in both states, as the

FIGURE 10. Gilbert-Elliot model.

TABLE 3. Comparison of Bernoulli, Gilbert and Gilbert-Elliot
parameters [135].

Gilbert-Elliot model. The Gilbert-Elliot model is illustrated
in Figure 10. The parameter p is the transition probability
from state G to state B, and q is the opposite transition
probability. A loss can occur in each state as independent
events with a probability of 1− k and 1− h, with 0 ≤ h ≤ 1
and 0 ≤ k ≤ 1, respectively, for states G and B [135]. The
values of k and h can be chosen arbitrarily [136]. Usually
p + q < 1, and if p + q = 1, the model is reduced to the
Bernoulli model.

The matrix P of transition probabilities is given by

P =
( G B

G 1−p p
B q 1− q

)
(6)

The stationary probabilities for the states G and B are given
by πG = q/(p + q) and πB = p/(p + q), respectively. The
PLR is obtained using steady-state probabilities [137], [138]
and is given by

PLR = (1− k)πG + (1− h)πB (7)

The parameters of the two-state Markov models are pre-
sented in Table 3, including a simple Gilbert model. For a
simple Gilbert model, the G state is always error free because
k = 1. McDougall and Miller [139] attempted to reproduce
the packet error rate and the average burst error length of
a Wi-Fi channel using the simple Gilbert model but failed
to reproduce the variance in the error burst lengths. For the
Gilbert-Elliot model, a loss can occur with probabilities 1−h
and 1 − k , respectively, in the states B and G. However,
the estimation process of k and h for the complete model
presents high computational complexity. The parameters k
and h can be estimated using samples collected from real
networks based on packet loss observations, e.g., as indicated
by [135] and [140].

Hasslinger and Hohlfeld [135] evaluated the performance
of the simple Gilbert, Gilbert, Gilbert-Elliot models and
included additional tests with a model based on a Poisson
process. The results indicated that the Gilbert model is not
appropriate for small sample traces, and the Gilbert-Elliot
model achieves better fitting to real packet loss sample traces
[135]. The accuracy of the models was validated using IP
wired networks. The authors introduced a new method to fit
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the parameters of a two-state Markovian model to match the
second-order statistics over several timescales. The results
indicated that fitting procedures based on second-order statis-
tics yield a closer match in several time scales than classical
fitting methods, which, on the other hand, are better at model-
ing error bursts [135]. The model based on a Poisson process
provides a linear lower bound without any autocorrelation.

Russ and Haghani [141] presented a distribution of con-
secutive packet losses as a combination of the classical
Gilbert-Elliot model and heavy-tailed distribution, resulting
in an alternative hybrid model. A distribution is heavy tailed
if P[X > x] ∼ x−α , as x −→ ∞, 0 < α < 2. The
simplest heavy-tailed distribution is the Pareto distribution
[142]. Russ and Haghani suggested that burst size can be
expressed by two different distributions modeling the number
of consecutively dropped packets N . If N ≤ 3, packet loss is
represented by the Gilbert-Elliot model; ifN > 3, packet loss
can be modeled by a heavy-tailed distribution. Due to this
phenomenon, the Gilbert-Elliot model fails to characterize
the packet loss observed in IEEE 802.11b networks [143].

C. THREE-STATE Markov MODEL (3SMM)
The 3SMM is a three-state Markov model, therein intro-
ducing a new Intermediary (I) state to the Good (G) and
Bad (B) states of the Gilbert-Elliot model. It is suggested that
only the B state presents packet loss, whereas the other two
states are free-loss states [144]. A simple 3SMM is presented
in Figure 11.

FIGURE 11. Three-state Markov chain Gilbert model [144].

A second alternative eliminates the transitions between
states I and G and allows state I to have an independent
self-loop probability (1−Q′), as illustrated in Figure 12 [144].
The matrix P of the transition probabilities of the model

presented in Figure 12 is given by

P =


G B I

G 1−p p 0
B q w 1− q− w
I 0 Q′ 1− Q′

 (8)

An independent self-loop probability for state I enables
two categories of error-free periods to be defined that occur
between periods of packet loss. Setting the self-loop probabil-
ity to be high in state G and low in state I leads to long periods

FIGURE 12. Three state packet loss model [144].

of no losses in state G, while state I models short periods of
no losses that occur in-between packet losses in burst-like
conditions. This gives more control over the characteristics
of packet loss and loss-free periods [144].

Using the stationary distribution of the Markov chain,
the average packet loss burst length can be evaluated as
βloss =

1
1−w . PLR is given by

PLR =
Q′p

p(1− q− w)+ Q′(p+ q)
. (9)

Milner and James [144] evaluated the accuracy of the
3SMM model compared with the two-state Markov and
Gilbert models for WLAN and GSM (Global System for
Mobile communications). Analysis reveals that all models are
able to accurately reproduce the packet loss rate and burst
lengths. A comparison of the average packet loss burst lengths
of the real packet loss data and loss-free burst lengths reveals
that for more lossy channels, the 3-state Markov chain and
Gilbert model are more effective than the 2-state Markov
chain. The distribution of loss-free bursts shows that the
3SMM is most effective in reproducing the characteristics of
the real sample traces [144].

D. Gilbert-Elliot WITH DELAY PARAMETER
Usually, packet loss models do not use delay or jitter. How-
ever, models that allow us to use and investigate these param-
eters can increase the reliability of models, as proposed by
Lee and Chanson [145].

The model is based on two Markov chains, where the state
space is designed using the parameters D, A and C . D is the
maximum delay limit, A is the maximum packet inter-arrival
time, andC is the highest error state number. The firstMarkov
chain keeps track of the packet delay, and the second Markov
chain models the error process. The delay dimension is used
by negative states to keep track of future arrivals, and A can
be set to infinity for handling infinite inter-arrival times [145].
The authors assumed that a finite buffer is sufficient because
the arrival packets do not exceed a delay limit; however,
if they exceed the packet, they are discarded.

The error dimension is given in the transition matrix P,
where state 0 represents a successful transmission and state 1
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FIGURE 13. Extended Gilbert model [9].

represents packet failure.

P =
(
c0,0 c0,1
c1,0 c1,1

)
(10)

The steady-state probability πi,j of the state (i, j) is
expressed in terms of πD,1, i.e., πi,j = ki,jπD,1, where πD,1
is the transition probability to an error state, and ki,j is to be
found using the balance equations of the Markov chain [145].
(D, 1) is the only state where a packet can be dropped due to
excessive delay. PLR is given by

PLR =
πD,1

a
(11)

where a is the arrival probability of a packet in a slot and is
used to obtain the fraction of packets lost [145].

Simulation tests with C > 1 indicate a non-two-state
Markov chain that would consequently increase the com-
plexity of the model; thus, [145] used C = 1. The results
indicate that PLR is affected by the delay threshold and is
nearly independent of the arrival rate except if the rate is
close to 1. Similar to other models, Lee and Chanson also
assumed that packet losses may occur in bursts, which means
that, in a success state, all packets are received, and the
queue length will likely decrease to zero before the next error
burst arrives. The results showed that increasing the threshold
delay exponentially decreases the probability of packet losses
because the delay limit does not result in overflow of the finite
buffer. The results also showed that reducing the delay limit
results in higher PLR. The authors stated that the parameter
estimation has a higher computational complexity, therein
being a major disadvantage of the model.

E. EXTENDED Gilbert
An extension of the Gilbert model using multiple states is
shown in Figure 13 [138], [146]. There are two categories
of states, described as RRL and LRL. The single state S0
represents the RRL state, which is a loss-free state, and LRL
has m states {S1, . . . , Sm}, where the state S1 represents the
first lost packet after a previously received packet in S0, and
state Sm representsm consecutive packets lost. When a packet
is successfully received, the system returns to S0. Every loss
event will lead the system to a subsequent loss state Si+1 until
the LRL reaches the m-th state [9]. The occurrence of a loss
event will depend upon the history.

There are two types of LRL models, i.e., those with
non-limited and limited state spaces.

FIGURE 14. Loss run-length model with unlimited state space
(m → ∞) [146].

FIGURE 15. Loss run-length model with limited state space [146].

1) LRL WITH NON-LIMITED STATE SPACE
This model is defined by a random variable X . If X = 0,
the packet is not lost.X = N means thatN consecutive packet
are lost, and if X ≥ N , at least N consecutive packets are lost.
This condition allows us to establish a LRL model as shown
in Figure 14 with a possible infinite number of states and
gives loss probabilities dependent on the burst length. Each
packet loss increases the burst loss length, and if the packet is
successfully transmitted, then the system returns to the X = 0
state [146].

The probability of transition between states for N > 1 can
be described as conditional loss probabilities p(N−1)(N ) =

P(X ≥ N )/P(N ≥ N − 1) [146]. A random variable Y
describes the distribution of the burst loss length. E[Y ] is
the expected value of the mean burst loss length within v
arrivals using the loss run-length occurrences 2N . The PLR
for v→∞ is represented by [146].

PLR =
∞∑
N=1

N
2N

v
(12)

where N is the number of consecutive packets lost,2N is the
loss run-length, and v is the number of arrival packets.

2) LRL WITH LIMITED STATE SPACE
This model is shown in Figure 15, where m is the last state
of the model. In the last state, a loop transition with pmm
probability is added. If 0 < N < m, X represents the number
of N consecutive packets lost [146].
Changes in m influence the performance of the model due

to the computational complexity, in which higherm results in
higher loss burst lengths. The PLR can be expressed by [146]

PLR =
m∑

N=1

N2w,m(N )
mv

(13)

where 2w,m(N ) is the number of N consecutive packets lost
within a window of length m, N is the number of consecutive
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FIGURE 16. Adaptation of the extended Gilbert.

packets lost, m is the last state, and v is the number of arrival
packets.

The authors designed models of different complexity that
capture loss characteristics, with the well-known Gilbert
model being a special case of these models, and showed
how to parameterize the model using data traces. They
concluded that to support a wide range of applications,
an ‘‘intermediate model’’ is needed, which has to be more
complex than the simple Gilbert model. The complexity of
such an intermediate model is determined by the application
requirements [146].

F. ADAPTATION OF THE EXTENDED Gilbert
A multi-state model is proposed as an adaptation of the
extended Gilbert model. The model is based on Markov
chains with two run lengths (RRL and LRL) with m- and
k-order mechanisms, respectively. The mechanism is shown
in Figure 16 [9] and has the following main elements.
• In RRL, every received packet drives the system to the
next state with a transition probability of PSiSi+1 until
RRL reaches the state Sm. In the last state, if a packet
is received, the system remains in the same state with
transition probability PSmSm . Otherwise, if a packet is
lost, the system returns to the state L0. In each state of
RRL, if a packet loss occurs, the system returns to the
initial state L0 with a transition probability ofPSiL0 . With
every return to L0, the system becomes free of temporal
dependencies on the past RRL states [9].

• In LRL, each packet loss drives the system to the next
loss state with a transition probability of PLiLi+1 until it
reaches the state Lk . In the last LRL state, if a packet is
lost, the system remains in the same state with probabil-
ity PLkLk . If a packet is received in any state, the system
returns to the state S0 with a transition probability of
PLiS0 [9]. In every return to S0, the system becomes free
of temporal dependencies on the past LRL states [9].

The steady-state probability of the model is defined as
the sum of all steady-state probabilities of RRL and LRL∑

m πS +
∑

k πL = 1, where πS and πL are the steady-state
probabilities of successful and failed states for statesm and k ,
respectively. PLR is given by [9]

PLR =
∑
k

πL; (14)

thus, PLR is a sum of all state probabilities of LRL [9].
The model was evaluated using three different transition

probability distributions: constant, Gaussian, and exponential.

The scenarios considered are 6LoWPAN and Wi-Fi net-
works. In both scenarios, PLR was calculated by varying
the transition probabilities between states with the following
results [9]:
• Constant transition probability distribution: if the suc-
cessful transition probability is close to 1, then PLR is
low. Otherwise, a smaller successful transition probabil-
ity (1%) results in a higher PLR [9].

• Gaussian transition probability distribution: if the suc-
cessful transition probability is larger, then PLR is
smaller. In this case, the minimum PLR is less than 2%.
On the other hand, the largest PLR value occurs when
the successful transition probability has the smallest
value. In this situation, the packet loss is approximately
45% [9].

• Exponential transition probability distribution: a max-
imum PLR of 30% was identified for a loss transi-
tion probability close to 1 and the smallest successful
transition probability. On the other hand, a minimum
packet loss transition probability and maximum value
of successful transition probability result in a PLR close
to 0.4% [9].

G. PH DISTRIBUTION
Wolter et al. [147] proposed a revision of the Gilbert-Elliot
model for wireless communication. The original exponen-
tially distributed sojourn time is replaced by a phase-type
(PH) distribution, which was considered using a continuous-
or discrete-time PH distribution. In a discrete phase-type
(DPH) distribution, the transition to the next state is per-
formed with regard to packet arrival instances and based on
the previous state probability. On the other hand, the contin-
uous phase-type (CPH) distribution uses the packet arrival
process to determine the lengths of the loss and loss-free
periods. Simulations results comparedwith experimental data
show that while the simple Gilbert models fit the density of
the LRL well, they cannot capture the oscillations present
in the histogram of the RRL [147]. Both DPH and CPH fit
the oscillation of RRL well; however, DPH presents better
fits. Extending the distribution of the sojourn time in the
Gilbert-Elliot model to a PH distribution adds more com-
plex loss-length curves to achieve a good fit; however, this
increases the parametrization complexity.

H. Gilbert-Elliot WITH SUBSTATES
Because burst losses are assumed to be a natural behav-
ior of Wi-Fi, the classical Gilbert-Elliot model does not fit
RRL with spikes. The DPH distribution method solves this
problem but at high computational complexity due to the
additional states. To solve the problems of DPH, Feng et al.
[148] suggested a Gilbert-Elliot model with multiple states,
as illustrated in Figure 17.

The multi-state model is based on a general G state defined
as a set of four sub-states (G1,G2,G3 and G4) and a sin-
gle B state. The packet loss probability pi, i ∈ {1, 2, 3, 4}
is calculated for each state Gi to transit to the single B state.
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FIGURE 17. Gilbert-Elliot model with multi-states.

The B state can transit only to the G1 state, with a transition
probability of q. In state B, the packet loss has a probability
of b.

The accuracy of the Gilbert-Elliot model with sub-states
is verified using the log-likelihood method, and the results
indicate that this model significantly outperforms the
Gilbert-Elliot and PH distribution models [148].

I. HIDDEN Markov MODEL (HMM)
The HMM is a category of stochastic processes that are used
in several applications, such as speech recognition, video
identification, finance, and tool wear monitoring [149], and
has become an alternative for modelling packet loss in Wi-Fi
networks. An HMM is a double stochastic process formed by
two parts: an underlying stochastic process that is not observ-
able directly (i.e., it is not possible know the exact actual
state) and can only be observed through another process and
a second process formed by a set of stochastic processes
that produce the observable sequence [150]. Silveira and
Silva [151] explained that the first process is a Markov chain
and that the second process is an observation process whose
distribution at any given time is fully determined by the actual
state of the Markov chain. Strong statistical foundations and
efficient learning algorithms are some of the advantages of
HMMs for Wi-Fi due to the statistical behavior and massive
amount of data available.

Hartwell and Fapojuwo [152] tested the performance of
the HMM using 3, 4 and 5 states with 2 million incoming
UDP packets collected in an 802.11a network. Gilbert and
Gilbert-Elliot models were also considered. The authors sug-
gested the use of the Baum-Welch algorithm for the estima-
tion of the HMM parameters. The Baum-Welch algorithm is
an iterative expectation-maximization algorithm that, given
an initial parameter configuration, adjusts model parameters
to locally maximize the likelihood of unlabeled data [153].
The Gilbert model presents worse results when compared
with HMM. In addition, increasing the number of states
improves the performance of the HMM model [152].

Cardoso and Rezende [154] proposed an HMM with
three states using two different structures for indoor IEEE

802.11 networks. The first structure has transitions between
all states (HMM3g), and the other structure has transitions
only between adjacent states (HMM3bd). Computer simula-
tions comparing the HMM3g, HMM3bd, and Gilbert-Elliot
models show that both HMM3g and HMM3bd achieve good
fitting of the autocorrelation function (ACF) and the comple-
mentary cumulative distribution function (CCDF) of a data
sample. The ACF of HMM3bd achieves better fitting with
real data samples. However, even with some improvements,
HMM3bd is not yet sufficient to adequately describe the loss
process, and it is necessary to increase the number of states
to improve the accuracy. The increase in the number of states
leads to problems in the convergence of HMM training due
to its computer complexity. The investigation of the ideal
number of states is a future research topic [154].

J. LOGARITHMIC SERIES DISTRIBUTION
Carvalho et al. [155] proposed modeling the length of con-
secutive losses and successful sequences of packets transmit-
ted over RTP/UDP/IP/802.11g networks with a logarithmic
series distribution.

The model considers X as being the burst length of n lost
packets and supposes that X is a logarithmic series random
variable. The probability mass function of X is given by
P[X = n] = − θn

n ln(1−θ) , where θ is the distribution parameter
that must be estimated from a sample data [155]. The PLR is
given by

PLR =
1

P[X=0]
E[X ](1−P[X=0]) + 1

(15)

where P[X = 0] represents a successful packet transmission,
i.e., an error burst of zero length, and E[X ] is the expected
value of X .
The model was evaluated using several types of multi-

media content over IEEE 802.11 g and compared with the
Gilbert-Elliot model. The results using the chi-square test
show that the proposed model was 1.77-times more accurate
than the Gilbert-Elliot model. In addition, the authors stated
that the packet rate is the only factor that influences the pro-
posedmodel, and its performance is independent of the bitrate
in a range of source video traffic cases between 64 Kbps and
1 Mbps [155].

V. MODEL COMPARISON
In this section, we present a comparison between packet loss
models described in the previous section, herein showing
the main features and contributions of the models and their
ability to represent the packet loss behavior of modern Wi-Fi
networks.

Table 4 shows the separate characteristics of models based
on their input parameters, validation and method used for
evaluation, type of Markov chain if applied, and communica-
tion network. The communication network column shows if
the IEEE 802.11 standard had been used; it is possible verify
that Wi-Fi was used in almost all cases.
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TABLE 4. Main features of the models.

A. INPUT PARAMETERS
We list the parameters used in the models to compare the
model complexity. Parsimonious models are simple mod-
els with great explanatory and predictive power, thereby
explaining the data with a minimum number of parameters.
Overparametrization adds complexity without benefit to the
model. However, an oversimplification of the model can also
cause accuracy problems. Packet loss inWi-Fi systems can be
considered a complex problem due to the numerous reasons
for packet losses, including user behavior patterns.

There is a tradeoff between goodness of fit and parsimony.
Models with many parameters tend to achieve a better fit
than high-parsimony models. Adding many parameters can
result in a better fit for the data at hand; however, that same
model will likely be useless for prediction on other data
sets, and their training would be impractical because of their
complexity. Table 4 presents the input parameters of the main
available models.

In packet loss models, the parameters are commonly esti-
mated using traces collected from networks [9], [144], [145],
[148], [152], [154], [157], [160]. The available models for
packet loss commonly use the following input parameters:
maximum payload size, node SNR, network traffic pattern,
and state transition probabilities. We could not find a system-
atic analysis of the importance of each input parameter and
their influence on the packet loss rate.

Additionally, no studies were found incorporating Wi-Fi
backoff time in the packet loss model. Researchers have
suggested modifications of the original backoff mechanism
to prevent collisions such as scaling the contention win-
dow according to the priority of each flow or user [161],
a multi-chain backoff algorithm [162], a cognitive backoff

mechanism for 802.11ax [163], an enhanced backoff algo-
rithm [164], and a centralized random backoff [165].

B. VALIDATION
Model validation can be defined as ‘‘substantiation that a
computerized model within its domain of applicability pos-
sesses a satisfactory range of accuracy consistent with the
intended application of the model’’ [166], [167]. The model
validation involves the comparison of model outputs with
our knowledge of the real world or system. The validation
scenarios commonly used to check Wi-Fi packet loss models
include the use of testbeds, analytical comparison, and com-
puter simulations.

Analytical comparison checks whether the proposedmodel
is able to reproduce certain features of the actual system, e.g.,
the auto-correlation function of the losses. Computer simula-
tions are widely used to check whether the model is able to
generate an artificial data trace with the same characteristics
as the real trace. A testbed is a controlled experimentation
platform that implements specific use cases and scenarios.

Table 4 shows the validation strategy used by the main
models. It can be observed that all authors use computer
simulations for validation. The use of testbeds was also very
common. The use of analytical strategies is unusual because
of the complexity of the system, which does not allow deriva-
tions of simple expressions for performance comparison.

Most models use testbeds, allowing us to utilize a specific
scenario to test the model. Table 5 presents the characteristics
of each testbed used to validate the packet loss models. Some
characteristics were not provided (Not Inf.) by the authors,
making it difficult to reproduce those scenarios in the future.
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TABLE 5. Testbed characteristics.

TABLE 6. Model used for benchmarking.

Performance comparison with previous models is also
common for showing the benefits of a new model. Table 6
presents the model used for benchmarking. It is possible to
verify that most models are compared with real samples using
goodness-of-fit tests.

The use of the Gilbert-Elliot model for performance com-
parison is popular because it was one of the first models to
capture burst loss behavior, and its use is widespread in wired
networks.

C. Markov CHAIN-BASED MODELS
The use of the Markov chain-based model has some advan-
tages. First, Markov chains have been the subject of stud-
ies for a long time, and they provide a theoretically solid
foundation to explore such data. Second, their use usually
involves the discretization of the loss behavior, facilitating the
parameterization of the loss in each state.

Thus, we classify the models based on Markov chains into
three types: models with two states, e.g., the Gilbert-Elliot
model; models with variable numbers of states; and models
with a finite but fixed number of states not equal to two.
The use of two-state Markov chains is the most common.
However, two-stateMarkov chains have limited power to cap-
ture the memory behavior of burst losses in Wi-Fi networks.

Additional states are added to capture the temporal depen-
dence on the loss-run length. When the number of states
is increased, the complexity of the model also increases.
Hartwell and Fapojuwo suggested the use of Markov chains
with 3, 4 and 5 states [152]. Milner and James [144] proposed
a 3-state model. Cardoso and Rezende [154] studied the
performance of an HMM to model packet loss using 3, 4,
7 and 11 states. The results indicated that the performance of
themodel does not depend on the number of states. Younesian
et al. [9] also used a Markov Chain with a variable number of
states; however, the number of states was not given.

D. SELECTION OF A SUITABLE MODEL
The selection of an appropriate packet loss model in wireless
networks should consider the following:

• It is well established that packet losses inWi-Fi networks
occur in bursts. Markov-Chain-based models need to
use multiple states, i.e., as suggested in [9]. However,
this increases the complexity of parameter setting and
simulation.

• Usually, the models are not generic and require
parametrization to reflect the actual scenarios. User
behavior and the use of specific applications can
strongly affect the model.

• Many models were designed, tested, and compared
with traces collected from networks under con-
trolled scenarios, which means that, in most cases,
the resulting model is specific to the studied case
[141], [144], [152], [154]–[156], [168].

• Due to the diversity of available 802.11 standards, it is
not easy to obtain a suitable packet loss model for all
variants because of differences in PHY and MAC layer
specifications.

VI. OPEN ISSUES AND FUTURE RESEARCH DIRECTION
Based on our comprehensive review of available packet loss
models for Wi-Fi networks, we outline the potential chal-
lenges and open issues that require future solutions and
research.
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We observe that most of the models use input parameters
such as the discard probability per state, transition probabil-
ity between states, delay, jitter, bitrate, collision probability,
distance between devices, packet size, and packet inter-arrival
time. However, we note that other variables, such as the chan-
nel occupation, the number of devices (connected to the AP or
not) sharing the same bandwidth, SNR, and the backoff time,
were not explored. The use of additional parameters could
allow the development of new models to improve accuracy.
As stated earlier, the use of additional parameters can lead to
non-parsimonious models. The large amount of information
available in data samples should also be considered. Thus, for
the development of future models, it is suggested to use data
mining techniques to identify the most relevant parameters
and identify their inter-correlations.

The new IEEE 802.11ax standard uses orthogonal fre-
quency division multiplexing/multiple access (OFDMA),
in which each device transmits data using a frequency-time
scheduling, resulting in a collision-free solution [29]. This
should lead to a major change in packet loss behavior,
which in turn requires new models to be developed. It is
expected that new physical layer specification based on
OFDMA and new medium access control functions can
improve (i) the quality of service provisioning, (ii) coexis-
tence between technologies, (iii) throughput, and (iv) energy
efficiency [169]–[171].

The design of the packet loss models presented in this
survey did not consider the type of application running over
the Wi-Fi network. We recognize that this is a significant
issue, e.g., file sharing, video streaming, and browsing the
Internet differ greatly in terms of transmission pattern. The
application traffic pattern is directly related to the collision
probability, which in turn is related to the packet loss proba-
bility. New models can be developed targeting specific appli-
cations running over the Wi-Fi network.

The self-similarity of network traffic could induce the same
phenomenon in the packet loss behavior. None of the related
works presented a systematic analysis on the time-scale
effects of self-similarity for packet losses in Wi-Fi networks.
None of the availablemodels were designed to capture typical
characteristics of self-similar processes such as the long-term
dependence on burst behavior.

Another major change in traffic behavior will be driven
by the growth of smart city applications. The key tech-
nology behind the success of smart cities is the Internet
of Things (IoT), which is a network of systems that can
potentially grow to be composed of up to millions of dif-
ferent components, therein involving massive machine-to-
machine (M2M) communication. The enabling technologies
for IoT include radio frequency identification (RFID), Blue-
tooth low energy (BLE), near-field communication (NFC),
fourth generation cellular systems (4G), IEEE 802.15.4,
IEEE 802.11ah, the LoRaWAN protocol, and the future cel-
lular IoT [172]. IEEE 802.11ah is a Wi-Fi standard published
in 2017, designed for IoT device integration and attempting
to provide extended ranges and low power consumptions. The

development of packet loss models specific to IoT systems,
such as IEEE 802.11ah networks, remains an open area of
research.

Cognitive radio (CR) has emerged as a new design
paradigm for the next generation of services in wireless
networks. CR aims to increase the utilization of the radio
spectrum, thereby automatically detecting available channels
and then adapting its transmission or reception parameters
to allow more concurrent communications, e.g., allowing
unauthorized users to opportunistically access authorized fre-
quencies [173]. CR technology can increase the utilization of
the radio spectrum from a global perspective, thereby gen-
erating new media access patterns and changing packet loss
characteristics for secondary users and even primary users,
depending on the type of CR implementation. Currently,
techniques such as dynamic frequency selection (DFS) and
transmit power control (TPC) for the purpose of facilitating
spectrum sharing are available in IEEE 802.11h, allowing the
detection and sharing of other systems using the same Wi-Fi
channel and protecting primary users [174]. The design of
packet loss models for CR/Wi-Fi remains an open area of
research.

VII. CONCLUSION
This survey describes the main packet loss models currently
available for Wi-Fi networks and presents a brief description
of the major causes of packet loss. Packet loss models can
be used to simulate the performance of Wi-Fi systems and to
develop new techniques and algorithms. The causes of packet
loss can be classified as physical and medium access losses.
Physical losses may be caused by interference from other
networks or devices, coexistence with other technologies,
and fading due to impairment of the signal. Medium access
losses can be caused by buffer overflow and collisions due to
competition in the medium or hidden terminals.

The use of Markov chains is currently the dominant strat-
egy to model packet loss in Wi-Fi networks. A common
feature among the models is the attempt to capture the burst
behavior of losses. This survey can help researchers under-
stand the main packet loss models available for Wi-Fi net-
works.
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