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ABSTRACT In this paper we introduce a new light field codec, dubbed WaSPR (warping and sparse
prediction on regions), which has additional features and improved performance when compared to our
recently introduced WaSP (warping and sparse prediction) codec. We present in detail the overall scheme,
including the initial WaSP structure, and the additional new features of WaSPR, including a region based
sparse prediction stage, and the addition of a more efficient way to encode the prediction residuals by
including separate inter-view coding of residuals obtained at each hierarchical level. The new scheme is
demonstrated to improve over both modes of the JPEG Pleno Verification Model software version 2.1, and
is shown to provide competitive results when compared against several recently published light field codecs.

INDEX TERMS Light field coding, image coding, plenoptic, multi-view.

I. INTRODUCTION
Light field imaging technologies encompass a wide variety of
methods for recording the plenoptic representation of light.
The origin of the research into the plenoptic representa-
tion of light dates back to the early 20th century [1], [2]
with substantial advancement after the introduction of digital
imaging [3], [4]. Nowadays, there exist plenoptic cameras for
consumer [5] and industrial use [6]. In addition to plenoptic
cameras, the research community has been using camera
arrays for digital sampling of light fields. Both plenoptic
cameras and camera arrays produce data that have charac-
teristics different to those of 2D images due to the higher
dimensionality which originates from the recording of the
directional information of light rays. The direction of the light
rays can be considered as additional sampling in two dimen-
sions resulting in the commonly applied 4D parameterization
used for light fields. Compared to traditional 2D imaging
technologies, the higher dimensionality of light fields allows
for post-processing of light fields into a 3D model of the
scene, or into several 2D images each corresponding to a
different view point of the scene. For this reason light field
imaging has gathered much interest from research and indus-
trial communities.

Our earlier light field compression methods evolved from
compression of plenoptic camera images [7] and high-density
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camera array (HDCA) images [8] into a general light
field coding architecture dubbed warping and sparse pre-
diction (WaSP) [9]. Light fields acquired from plenoptic
cameras and camera arrays are both interpreted in the 4D
prediction framework and the WaSP method is an efficient
coding tool for light fields of both types. This property to
some extent differentiates WaSP from many other light field
coding algorithms, as explained in Section I-C, with several
of the algorithms designed to be efficient or practical with
only one type of light field data. After being published to
the JPEG Pleno Light Field work group in the 80th JPEG
meeting in Berlin, WaSP was selected as the verification
model (VM) software for VM1.0 [10], VM1.1 [11] and as the
4D prediction mode in VM 2.1 [12], all which have been used
by the research community for evaluating the performance of
light field coding algorithms as will be further discussed in
Section I-C. For further discussion of JPEG Pleno light field
coding, we refer the reader to [13] and [14].

This paper has two goals: firstly, it presents in detail the
architecture and the design of the WaSP light field codec,
which is the basis for 4D prediction mode of the JPEG Pleno
Light Field draft standard. We introduced WaSP earlier in a
conference paper [9], and its publicly available [15] imple-
mentation was adopted as the VM 1.0 and 1.1 of JPEG Pleno
standardization activity, being also already cited and used as
an anchor in the scientific literature. To complete the descrip-
tion ofWaSPwe present here in more detail the scheme of the
initial WaSP codec. Secondly, we introduce a more advanced
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version of WaSP, called warping and sparse prediction on
regions (WaSPR), with inter-view residual coding and more
efficient region-based sparse prediction producing state-of-
the-art results. Moreover, we show that on densely sampled
light fields WaSPR turns out to have better performance
compared to the 4D transform mode of the JPEG Pleno Light
Field draft standard [14].

The paper is divided as follows. In Section I-A we present
the notation and definitions of the light field data as used by
the encoder. In Section I-B we describe the most common
acquisition methods for the light fields used in this work.
In Section I-Cwe briefly describe the recent light field codecs
found in the literature. In Sections II and III the full architec-
ture and warping based view prediction of WaSP andWaSPR
are described in detail. In the rest of this paper the intersection
of the elements of WaSP andWaSPR is denoted as WaSP(R).
In Section IV the new region-based sparse prediction scheme
is described. Section V discusses the usage of auxiliary
codecs in encoding of texture and normalized disparity [16]
data, and presents the inter-view residual coding scheme of
WaSPR. In Section VI the hierarchical structure of the codec
is detailed together with a discussion of the rate-distortion
(R-D) optimization algorithm for the view prediction residu-
als. In Section VII details on the codestream of the proposed
codec are specified. R-D results are provided in Section VIII,
and finally conclusions are provided in Section IX.

A. DEFINITIONS AND NOTATIONS
We use the parameterization of the plenoptic function by two
planes: the first, having coordinates (t, s), being the angular
view point plane, and the second plane having coordinates
(v, u) in any angular view as illustrated in Figure 1. The
array of angular or sub-aperture views is indexed by the
rectangular grid,

t ∈ {0, . . . ,T − 1},

s ∈ {0, . . . , S − 1}, (1)

and each sub-aperture view, or sub-aperture image, is defined
as a rectangular array of pixels,

v ∈ {0, . . . ,V − 1},

u ∈ {0, . . . ,U − 1}. (2)

All the texture and disparity data to be encoded are defined
over the above two grids, hence being considered 4D data,
and we call 4D prediction the operations involving simulta-
neously the data at various indices along the four coordinates,
while 2D prediction (or encoding) refers to operations involv-
ing only the coordinates (2).

The texture component of the light field is defined on the
above two grids (1) and (2), where the color component c
of a single pixel is identified as X (t, s, v, u, c), where c ∈
{0, . . . ,Nc − 1} is the color index with Nc being the num-
ber of color components. We refer to the entire texture part
light field as X, which is a five-dimensional array, with the
generic element X (t, s, v, u, c) having the limits of the indices

FIGURE 1. In the 4D two-plane parameterization of light fields, each
angular view or view point (t, s) will have its corresponding sub-aperture
image, sampled on the plane (v,u).

given by (1), (2) and c ∈ {0, . . . ,Nc − 1}. We refer to the
angular view at coordinates (t, s) as the V × U × Nc color
image X(t, s), and hence the data to be encoded is the set of
texture views,

{X(t, s)}0≤t≤T−1;0≤s≤S−1. (3)

The final decoded light field data is identified by the super-
script dec on the corresponding elements of the input texture
views, e.g.,

{Xdec(t, s)}0≤t≤T−1;0≤s≤S−1.

In the process of warping the texture views we use additional
input data specifying the normalized disparity, defined as
Z̃ (t, s, v, u) on the same two grids (1) and (2). We refer to
the normalized disparity angular view at coordinates (t, s) as
the V × U image Z̃(t, s). All normalized disparity views are
defined as a set,

{Z̃(t, s)}0≤t≤T−1;0≤s≤S−1, (4)

from which the encoder uses as input data only a very sparse
subset. Since normalized disparity data is needed also at the
decoder, we denote Z̃dec the decoded normalized disparity
data, which is used for warping operations at both the encoder
and the decoder.

During the view prediction stage of a given angular view
(t, s), the already processed (encoded and decoded) views
are used for prediction. The prediction stage includes a
disparity based warping followed by a merging procedure,
in which multiple warped views are blend together to form
a more complete prediction. We denote the predicted texture
view, obtained after the actions of warping and merging,
as Xdec

merged(t, s), and similarly for the normalized disparity

view Z̃dec
merged(t, s). Due to occlusions some pixel locations

of the merged views may still have an undefined value.
The merged views are further subjected to inpainting,
in which the relatively sparse set of pixel locations miss-
ing in all of the warped views are filled with neighboring
values. We denote the inpainted texture views of the light
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field as Xdec
inpainted(t, s) and similarly for normalized disparity

Z̃dec
inpainted(t, s).
Each view X(t, s) of the light field array has an associated

hierarchical level H (t, s) ∈ N reflecting the order in which
the views are predicted one from the others. These levels are
marked in a T × S hierarchy matrix H. The following matrix
illustrates a possible view configuration for T = S = 5 with
highest hierarchical level hm = 3,

H =


1 3 2 3 1
3 2 3 2 3
2 3 1 3 2
3 2 3 2 3
1 3 2 3 1

 ,
where the reference views are located at the center and the
corners of the view array (where the hierarchical level is
H (t, s) = 1), and the subsequent hierarchical levels 2 and
3 are occupied by the rest of the views. For further discussion
of H see Section VI.

There are Nref views on the first hierarchical level of the
light field and their indices in the angular grid are denoted as
(tRi , s

R
i ), where i ∈ {0, . . . ,Nref − 1}. For ease of notations

we refer to a view on the lowest hierarchical level by using
the index i, instead of using its angular indices. Similarly,
the intermediate views in the light field are indexed by (t Ij , s

I
j ),

where the linear index j ∈ {0, . . . ,Nint − 1} is an alternative
way to specify the index of an intermediate view.

Each intermediate view j has its own set of texture refer-
ence viewswith their set of indices denoted as�X

j , and a set of
normalized disparity reference views with their set of indices
denoted as �Z̃

j . The number of texture reference views for
intermediate view j is denoted as NX

j = |�
X
j |, and similarly

N Z̃
j = |�

Z̃
j |. Both the texture, and the normalized dispar-

ity reference views are obtained from the decoded views
Xdec and Z̃dec.
The total number of bits B available for encoding a given

light field X is converted to bits per pixel (bpp) by,

R =
B

TSVU
, (5)

whereR is further divided as,

R =
Nref−1∑
i=0

(
Rref
i +RZ̃

i

)
+

Nint−1∑
j=0

Rres
j , (6)

with {Rref
i }, {R

Z̃
i }, and {R

res
j }, representing the reference

view rates, the normalized disparity rates, and the view pre-
diction residual rates respectively. The bit depth of the texture
component of the light field X is b, i.e., X (t, s, v, u, c) ∈
{0, . . . , 2b − 1} and bit depth is preserved during encoding
and decoding.

B. LIGHT FIELD ACQUISITION
Light fields are usually obtained either using a plenoptic
camera or an array of conventional cameras as done in the
case of an HDCA. A plenoptic camera, such as the Lytro

Illum, see for example the dataset in [17], differs from regular
digital cameras by having a microlens array in front of the
imaging sensor. The microlens array is a hexagonal grid of
small lenses (lenslets) each covering a small fraction of the
total number of pixels of the imaging sensor. The pixels
under each microlens are illuminated by light rays entering
the main lens from different directions of the scene. This
allows the microlenses to record directional information of
the light rays. The 2D positions on the imaging sensor under
each microlens correspond to different view points (t, s), and
an individual pixel in each view point is indexed by the
microlense index (v, u). The performance of the plenoptic
camera is limited by the dimensions of the imaging sensor and
the dimensions of the microlenses, and this results in a lim-
ited angular and spatial separation between successive view
points. However, the plenoptic camera can be implemented
in a single device, making it a consumer product comparable
to a regular digital camera.

The images acquired by plenoptic cameras are further
processed to obtain a rectified array of views [18], which
is the plenoptic input data considered in the current paper
following the specifications in the JPEG Pleno common test
conditions (CTC) [19]. Compared to the plenoptic camera,
a HDCA produces light fields with higher image resolution
together with wider angular and spatial separation between
view points. In a typical HDCA, each view (t, s) is acquired
with a high resolution imaging sensor producing a higher def-
inition image when compared to the array of views acquired
with a plenoptic camera.

C. LOSSY LIGHT FIELD CODING
Several different approaches for encoding 4D light fields
in lossy manner have been proposed in the literature. The
existing codecs can be roughly divided into: pseudo-temporal
codecs (exploiting existing inter-view redundancies using
existing codecs such as HEVC [20]), transform based codecs
(directly exploiting the 4D structure of the light field), and
predictive codecs (which attempt to exploit directly the 4D
redundancies but use predictive transforms instead of a fixed
transform). Many of the proposed light field coding algo-
rithms try to make efficient use of standardized 2D image and
video codecs in various coding stages. Some of the codecs
are designed for dense light fields (see Figure 2) and others
for sparsely sampled light fields (see Figure 3) with only few
attempting to encode both types of light fields.

The pseudo-temporal encoding approach has been one
of the most prominent in the literature [21]–[25]. Such an
encoder considers the static light field to be a video sequence
obtained using particular scan orders of the views (t, s). The
video sequence can be obtained as a sequence of individ-
ual sub-aperture views [21], but the approach has also been
demonstrated on the raw lenslet image without such pre-
processing [22]. State-of-the-art video codecs are highly effi-
cient in exploiting inter-view redundancies and this property
can be exploited when considering the sub-aperture views
as pseudo-temporal sequence of frames. The rate-distortion
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FIGURE 2. A densely sampled light field with small inter-view disparities.
The figure illustrates a set of 3× 3 views from light field Greek with high
similarity between the sub-aperture images due to the closeness of the
view points (t, s).

FIGURE 3. A sparsely sampled light field with large inter-view disparities.
The figure shows a set of 3× 3 views from light field Set2, illustrating that
large distances between the sampled view points in the (t, s) plane imply
significant differences of the corresponding sub-aperture images. For this
type of light fields, pixel-wise alignment using warping is necessary to
efficiently exploit the inter-view redundancy between the sub-aperture
images.

performance of different pseudo-temporal sequence methods
depends on the scan order of the view points, the choice of
the video codec, and on the tuning of the codecs parameters.
In [23] the light field acquired using a plenoptic camera
is interpreted as a multi-view sequence and the multi-view
extension of HEVC is used in a novel rate allocation scheme.
In [24] the sub-aperture views of the light field are divided
into quadrants with each quadrant exploiting both the center
view, and the neighboring views, within an optimized scan
order. An approach to maximize the inter-view redundancy
on a plenoptic image by designing a suitable coding order of
the views is presented for HEVC in [25].

In [26] a 4D discrete cosine transform (DCT) based codec
for plenoptic camera images is proposed for coding of dense
light fields. Reminding the 2D DCT scheme of the legacy
JPEG codec, the 4D DCT approach divides the sub-aperture
images of the lenslet image into 4D blocks, and each block
is processed by applying 4D DCT, then the significant trans-
form coefficients are specified by a hexadeca-tree, and finally
the significant coefficients are entropy coded. The method is
called multidimensional light field encoder using 4D trans-
forms and hexadeca-trees (MuLE) and serves as the 4D
transform mode in JPEG Pleno Light Field VM 2.1. A joint
homography and low-rank approximation scheme (HLRA) is
used in [27] to first align the sub-aperture views and subse-
quently to obtain a sparse representation of the aligned struc-
ture followed by the use of HEVC for encoding the novel rep-
resentation. HLRA is shown to improve over HEVC pseudo-
temporal sequence coding of dense light fields. In [28] a small
number of sub-aperture images are encoded using HEVC,
and subsequent views are reconstructed using a shearlet trans-
form based prediction scheme. In [29] the plenoptic image is
encoded by a sparse set and disparities. The sparse set and the
disparities are encoded with HEVC and the rest of the plenop-
tic image is synthesized using disparity based reconstruction,
interpolation, and inpainting. In [30] a motion compensated
wavelet lifting scheme is used to encode the sub-aperture
images. Similar to our encoding strategy, the disparity map is
first estimated and subsequently encoded in the codestream.
An elaborated disparity model is used in [16], together with
hierarchical disparity compensated inter-view transform, fol-
lowed by wavelet decomposition and coding using EBCOT
[31]. The scheme is demonstrated in encoding of high reso-
lution HDCA data with R-D performance superior to HEVC.

Our earlier lossy light field codecs are all based on dispar-
ity compensated predictive coding. In [7] the lenslet image
was sliced into a set of non-rectified sub-aperture images
from which a set of reference views were selected. The
reference views were jointly encoded as a subsampled lenslet
image instead of separated images. A segmented version of
the scene depth map at the central sub-aperture view was
encoded and the displacements of a region from central to
all other views were obtained and encoded. For each region
in each view a sparse predictor is designed based on its
neighboring views.

For sparsely sampled light fields with large inter-view
disparities, such as the HDCA images, obtaining a consistent
disparity based segmentation over the light field becomes
difficult due to significant occlusions. Additionally, the large
disparities between neighboring views render the sparse pre-
diction scheme of [7] computationally complex. In [8] the
segmentation based sparse prediction approach was replaced
by optimal prediction based on a fixed set of reference
views with inter-view correspondences obtained from dispar-
ity based warping. Each warped reference view provides a
prediction of the target view, and the final prediction was
obtained using occlusion based segmentation with a separate
least squares predictor for each region in each view. In [9]
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the prediction scheme of [8] was improved by introducing a
hierarchical prediction scheme with residual coding and the
overall method was dubbed WaSP.

Recently several papers [32]–[36] have been published
with comparisons to JPEG Pleno VM implementations of
WaSP for encoding densely sampled light fields such as the
ones obtained with a plenoptic camera. These light fields
represent a subset of the JPEG Pleno datasets [19]. Graph
learning technique is used in [32] at the encoder to capture
the inter-view redundancy of the light field and the resulting
graph is transmitted losslessly. A subset of views are encoded
using HEVC and the remaining views are reconstructed by
solving a minimization problem at the decoder side. The
results demonstrate performance better than VM 1.0. In [33]
a block-based least squares sense optimal linear predictor
is used to predict the light field from a subset of HEVC
encoded reference views with residual encoded using a low-
rank approximation strategy. The scheme is demonstrated to
perform better than both of the encoding modes of VM 2.1 on
dense light fields. An iterative segmentation, known as a
collection of super-rays, is proposed in [34]. A low rank
approximation using singular value decomposition (SVD)
is then performed on the super-rays and the resulting eigen
images are entropy coded using HEVC. The method is
demonstrated for densely sampled light fields and shows
performance gains when compared to VM 1.1. The super-
ray concept was further used together with a reversible graph
transform in [35] where the geometry-aware graph based
transform (GBT) is used instead of the SVD to sparsify
the inter-view redundancies between the super-rays, and
the resulting graph transform coefficients together with the
disparity information are entropy coded using arithmetic
coding. For encoding densely sampled light fields GBT was
shown to offer coding performance exceeding VM 1.1 at
higher rates. In [36] a hierarchical coding strategy based
on Fourier disparity layer (FDL) representation is proposed.
A subset of views are encoded using HEVC from which the
FDL representation is obtained. The FDL is then used to
hierarchically predict subsequent views and view prediction
residual is again encoded using HEVC. The method was
shown to offer improvements over VM 1.1.

In [37] the performance of the WaSP codec was improved
by utilizing a breakpoint adaptive discrete wavelet transform
(BPA-DWT) in coding of the normalized disparity views.
For encoding HDCA datasets, the BPA-DWT approach was
shown to preserve better the discontinuities appearing in
the normalized disparity images. Therefore, the warping and
merging operations of WaSP can utilize the normalized dis-
parity information more precisely and improvements in the
R-D performance were demonstrated. The near-lossless per-
formance of WaSP for encoding of medical light fields was
reported in [38] where it was compared against the near
lossless performance of the 4D DCT transform [26] and the
recent lossless light field codec known as minimum rate
predictors [39].

II. ENCODER ARCHITECTURE
In this section the main parts of the WaSP(R) encoder are
introduced. The light field encoder takes as input a subset
of the texture views (3) and a subset of normalized disparity
views (4). These input views are reference views, or views
at the lowest hierarchical level. The task of the encoder is
to create a bitstream from which the decoder can reconstruct
all the texture views (3). According to the CTC, we consider
experiments where all texture views (3) are available, and
only a small subset of normalized disparity views is available.
We note an important additional functionality: the decoder
can decode from the bitstream the complete set of normalized
disparity views (4), which are lossy reconstructions obtained
in identical way at the encoder and decoder.

The encoder block scheme is shown in Figure 4. The
encoder’s main task is to encode the texture part of the light
field with the lowest possible distortion, given a specific rate
R. In the proposed codec this is achieved by utilizing the
normalized disparity information during the prediction of the
intermediate views. The block scheme for the intermediate
view reconstruction is shown in Figure 5. The intermediate
view reconstruction stage is a combination of hierarchical
texture view prediction and residual coding. Existing image
coding tools, in this work labeled as auxiliary codecs, such as
JPEG 2000 [40] or HEVC, are used for encoding: 1) full tex-
ture views at lowest hierarchical level, 2) texture prediction
residual for intermediate views, and 3) normalized disparity
data at the lowest hierarchical level. In this paper we use JPEG
2000 for encoding the normalized disparity views and HEVC
for encoding the texture and residual views.

A. TEXTURE
We encode RGB or YCbCr views, having Nc = 3, with V
and U being anywhere from 512 for low resolution images,
to 2000 for high resolution datasets. In the experimental
section results are additionally demonstrated on encoding
only the luma (Y) channel for being able to report compar-
isonswith recent light field codecs for which the experimental
results were available for luma channel only. In all our exper-
iments, the bit depth for the texture components is b = 10.

B. NORMALIZED DISPARITY
For each view (t, s) we define the normalized disparity map at
pixel (v, u) as Z̃ (t, s, v, u). The normalized disparity map will
be used for creating horizontal and vertical disparity maps
between a reference view (t1, s1) and any target view (t2, s2),
which are needed for warping the view (t1, s1) to the location
of view (t2, s2). Denoting the center coordinates for reference
and target as Cx(t1, s1) and Cx(t2, s2) respectively, we obtain
the horizontal baseline as,

1x = Cx(t1, s1)− Cx(t2, s2),

and similarly for the vertical baseline,

1y = Cy(t1, s1)− Cy(t2, s2).
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FIGURE 4. WaSP(R) block scheme. The views on the lowest hierarchical level are encoded first. The remaining views of the light field are
encoded in the hierarchical order and the block scheme for encoding the intermediate views is depicted in Figure 5. The decoded reference
texture and normalized disparity views enter the encoder memory from which they are accessed in the view prediction blocks in Figure 5.

FIGURE 5. Main prediction block of WaSPR for intermediate view (t I
j , sI

j ), j ∈ {0, . . . ,Nint−1} together with prediction residual coding using the
auxiliary codec. This diagram is a detailed version of the main encoding block illustrated by a single box in Figure 4.

On the discrete grid, in case of no occlusion, the pixel (v, u)
in view (t1, s1) corresponds to the pixel (v̂, û) in view (t2, s2)
obeying the disparities,

v̂ = v+ bZ̃ (t1, s1, v, u)1ye,

û = u+ bZ̃ (t1, s1, v, u)1xe. (7)

The rounding to the closest integer operation, denoted b·e
in (7), produces the necessary equations for warping with an
integer number of pixels. The subsequent optimal texture pre-
diction operations are introducing further adjustments of the
integer precision warping, resulting in an equivalent overall
warping operation using fractional pixels.

C. TEXTURE RECONSTRUCTION BASED ON WARPED
REFERENCE VIEWS
At each intermediate view X(t Ij , s

I
j ) the texture view recon-

struction includes the following operations:
1) For k ∈ {0, . . . ,NX

j − 1}, pick the k’th view index
(t, s) from �X

j . Since all angular indices in �
X
j belong

to lower hierarchical levels, (t, s) is the angular index

of an already encoded and decoded view. Warp
Xdec(t, s) to obtain the warped view Wk

j . Proceed and

in the end obtain all warped views {W0
j , . . . ,W

NX
j −1

j }.

2) Merge the warped views {W0
j , . . . ,W

NX
j −1

j } and obtain
Xdec
merged(t

I
j , s

I
j ) (see Section III-B).

3) Inpaint Xdec
merged(t

I
j , s

I
j ) to obtain Xdec

inpainted(t
I
j , s

I
j ) (see

Section III-C).
4) Perform sparse filtering to obtain Xdec

pred(t
I
j , s

I
j ) (see

Section IV).
5) Obtain view prediction residual Ej = X(t Ij , s

I
j ) −

Xdec
pred(t

I
j , s

I
j ).

6) Encode Ej using rate Rres
j ; then decode, and store the

result in Edec
j .

7) Add the decoded view prediction residual to the pre-
diction and obtain Xdec(t Ij , s

I
j ) which is the final recon-

struction of the texture.

The warping operation applies a pixelwise horizontal and
vertical displacement on the pixels of the reference view,
and the magnitude of the displacement is obtained as a
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FIGURE 6. Warping a reference view to a nearby camera position yields
almost complete reconstruction. Black regions correspond to scene
points which were not seen by the camera at the reference view location.
The above image is the result of warping the reference view X(0,2)
to the camera position of the target view X(4,2).

FIGURE 7. Warping a reference view to a faraway camera position
produces only a partial reconstruction. Similar to Figure 6 black regions
correspond to pixels which are not seen by the camera at the reference
view location. The above image is the result of warping the reference
view X(20,98) to the camera position of the target view X(4,2). Since the
reference view resides on the lower right corner of the camera array,
the upper and left parts of the view at the target location cannot be
reconstructed using warping of the reference view alone.

multiplication of the normalized disparity with horizontal
and vertical baselines. The warping algorithm is presented
in Section III-A. Step 2 applies the mixing, or merging of
the multiple warped reference views into a single predicted
intermediate view.

The warping operation in Step 1 may introduce areas
of missing pixels which originate from the occluded
areas appearing when changing the view point, as shown
in Figures 6-7. Warping a view to nearby camera position
can be used to construct an almost complete prediction of
the view, as shown in Figure 6. However, for views far
apart in the angular grid, as seen in Figure 7, warping will
introduce large missing areas of pixels due to occlusions.
Increasing the number of neighboring views (see hierarchical
coding of views in Section VI) usually solves the occlusion
problem, leaving only a small number of undefined pixels
in the merged image. In Step 3 to complete the predicted
view the inpainting algorithm of Section III-C is applied on
the merged result. Step 4 applies adjustment of the predicted

view using sparse filtering, see Section IV. Steps 5-7 obtain,
encode, and decode the prediction residual and obtain also
the final decoded view, needed also at the encoder in the case
the current viewwill be used as a reference for encoding other
views. The encoding of the prediction residual is optional and
when targeting extremely low rates the encoding of prediction
residual is usually disabled.

D. NORMALIZED DISPARITY RECONSTRUCTION BASED
ON WARPED NORMALIZED DISPARITY VIEWS
Normalized disparity views are predicted similarly to the pre-
diction of texture views. At each intermediate view (t Ij , s

I
j ) the

reconstruction of the normalized disparity view Z̃dec(t Ij , s
I
j )

includes the following operations:

1) For k ∈ {0, . . . ,N Z̃
j − 1} pick the k’th view index (t, s)

from�Z̃
j and warp Z̃dec(t, s) to obtain the warped view

Gk
j . Proceed and in the end obtain all warped views

{G0
j , . . . ,G

N Z̃
j −1

j }.
2) Merge the warped normalized disparity views

{G0
j , . . . ,G

N Z̃
j −1

j } to obtain Z̃dec
merged(t

I
j , s

I
j ).

3) Inpaint Z̃dec
merged(t

I
j , s

I
j ) to obtain Z̃dec(t Ij , s

I
j ).

The normalized disparity views make no use of the predic-
tion residual since often the normalized disparity views are
obtained for a very sparse subset of views and in some cases
the encoder receives only one normalized disparity view.
Therefore it is not possible to obtain prediction residual for
most of the normalized disparity views. For the same reason
the normalized disparity views are merged using the median
operator instead of the predictive merging algorithm.

III. VIEW PREDICTION
Section II-C already provided an overview of the view pre-
diction algorithm used in WaSP(R). In this section further
details are provided on view warping and on the occlusion
aware predictive view merging algorithm.

A. VIEW WARPING
View warping together with the view merging algorithm of
Section III-B are the first layer of the texture prediction
tools, and they transforms the texture and normalized dis-
parity components of the view (t1, s1), located at the camera
coordinates Cy(t1, s1),Cx(t1, s1), to the camera coordinates
Cy(t2, s2),Cx(t2, s2) of the view (t2, s2). Therefore, view
warping produces a prediction of view (t2, s2) conditional
on texture and normalized disparity at view (t1, s1). The
quality of the prediction is constrained by both the quality
of the normalized disparity at view (t1, s1), the precision of
the camera center coordinates Cy, and Cx, and the quality of
the reference view texture.
The warping procedure described in Algorithm 1 begins

with the initialization of the warped normalized disparity and
the warped texture views at lines 4-9. The pixel values in
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the warped normalized disparity view are initialized to minus
infinity, which enables for quick detection of remaining
undefined pixels after warping. At lines 14-15, for each pixel
(v, u), the horizontal and vertical disparities are obtained by
multiplying the normalized disparity Z̃ (t1, s1, v, u) with the
vertical and horizontal baselines 1y, 1x which have been
obtained from the camera center coordinate arraysCy andCx
at lines 10-11. The obtained disparities Dv,Du are rounded
to the nearest integer. The current pixel coordinates (v, u) at
view (t1, s1) are transformed to the warped pixel coordinates
(v̂, û) at view (t2, s2) on lines 16-17.
The warped pixel coordinates may reside outside the image

dimensions and an out of bounds test is performed at line 18.
If the warped pixel coordinates lie inside the image dimen-
sions the algorithm proceeds to check for a possible occlu-
sion. The occlusion check at line 20 compares the normalized
disparity value at thewarped pixel coordinates (v+Dv, u+Du)
in the warped normalized disparity view to the normalized
disparity value (v, u) at the reference, and overwrites the
warped normalized disparity value only if it is smaller than
the one at the reference. This ensures that pixels from objects
closer to the camera plane are not overwritten by more distant
objects. If the warped pixel coordinates pass the occlusion
test, the warping action takes place at lines 21-25 and the
normalized disparity and texture values of view (t1, s1) at
pixel coordinates (v, u) are copied to the warped normalized
disparity and texture views at (t2, s2) in pixel coordinates
(v+ Dv, u+ Du).

B. TEXTURE VIEW MERGING USING OCCLUSION BASED
SPARSE LINEAR PREDICTION
In this section we present the linear prediction model used in
WaSP(R) for texture view merging. First we describe the sets
of reference texture and normalized disparity views used in
the view merging operations, followed by the introduction of
the occlusion based segmentation used in the linear prediction
stage. Then the method for obtaining the linear prediction
coefficients is described in detail.

Let us consider an intermediate view (t Ij , s
I
j ) with N x

j
reference texture views indexed by the elements of �X

j =

{(tX0 , s
X
0 ), . . . , (t

X
N x
j −1

, sXN x
j −1

)}. The warped reference texture
views are denoted as,

W0
j = Xdec(t

X
0 ,s

X
0 )

W (t Ij , s
I
j ),

...

W
N x
j −1

j = Xdec
(tX
Nxj −1

,sX
Nxj −1

)

W (t Ij , s
I
j ),

and the warped normalized disparity views are denoted as,

G0
j = Z̃dec(t

X
0 ,s

X
0 )

W (t Ij , s
I
j ),

...

G
N x
j −1

j = Z̃dec
(tX
Nxj −1

,sX
Nxj −1

)

W (t Ij , s
I
j ).

Algorithm 1 View Warping of View at Camera Location of
the View (t1, s1) to Camera Location of the View (t2, s2)

1: procedure ViewWarping( ˜Zdec, Xdec, Cy, Cx, t1, s1, t2,
s2)

2: V = {0, . . . ,V − 1}
3: U = {0, . . . ,U − 1}
4: for all v, u do
5: Z̃ (t1,s1)

W (t2, s2, v, u) = −∞
6: for all c do
7: X̃ (t1,s1)

W (t2, s2, v, u, c) = 0
8: end for
9: end for
10: 1y = Cy(t1, s1)− Cy(t2, s2)
11: 1x = Cx(t1, s1)− Cx(t2, s2)
12: for all v ∈ V do
13: for all u ∈ U do
14: Dv = bZ̃dec(t1, s1, v, u)1ye
15: Du = bZ̃dec(t1, s1, v, u)1xe
16: v̂ = v+ Dv
17: û = u+ Du
18: if v̂ ∈ V ∧ û ∈ U then
19: Ẑ = Z̃DEC (t1, s1, v, u)
20: if Z̃ (t1,s1)

W (t2, s2, v̂, û) < Ẑ then
21: Z̃ (t1,s1)

W (t2, s2, v̂, û) = Ẑ
22: for all c do
23: X̂ = XDEC (t1, s1, v, u, c)
24: X̃ (t1,s1)

W (t2, s2, v̂, û, c) = X̂
25: end for
26: end if
27: end if
28: end for
29: end for
30: end procedure

The goal of the encoder is to synthesize, or predict,
the texture part of the intermediate view (t Ij , s

I
j ) using the

information available in both sets {W0
j , . . . ,W

N x
j −1

j } and

{G0
j , . . . ,G

N x
j −1

j }. In the following section we introduce an
occlusion based segmentation used in a sparse subset selec-
tion on the warped pixel values so that only the most relevant
parts of the warped reference views are utilized for interme-
diate view prediction.

1) OCCLUSION CLASSES
For any warped view, due to occlusions, it is possible that not
all pixel locations get assigned a value in the main loop of the
warping algorithm of Algorithm 1. Different reference views
produce different occlusion patterns, and the aggregation of
this information can be used to infer a useful segmentation of
the predicted intermediate view. Each occlusion class corre-
sponds to a different sparse subset of the reference views used
to obtain the best linear predictor involving only the relevant
reference views at each pixel location. We introduce the
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non-occlusion operator δ(G(v, u)) as,

δ(G(v, u)) =

{
1, G(v, u) > −∞ (non-occluded)
0, otherwise,

(8)

allowing to define the vector-state of occlusions at the pixel
(v, u), as follows. The occlusion state at a pixel (v, u) in the
current view (t Ij , s

I
j ) is a binary vector b(v,u)j of length N x

j
having the elements,

b(v,u)j (k) = δ(Gkj (v, u)), k ∈ {0, . . . ,N x
j − 1}.

We introduce the matrix Fj of dimensions V ×U defined by,

Fj(v, u) =

N x
j −1∑
k=0

2kb(v,u)j (k),

where each element Fj(v, u) is a label containing the inte-
ger representation of the binary vector b(v,u)j . The class
Fj(v, u) = 0 corresponds to the pixels where all reference
views are occluded, and therefore is not used for prediction.
In essence Fj is a segmentation with 2N

x
j classes of the pixels

in the warped images Gk
j and Wk

j . The occlusion classes for

intermediate view j are given by the set Cj = {0, . . . , 2N
x
j −1}.

In the following section we describe how to design a set of
merging weights for each of the classes in C.

2) DESIGN OF THE LINEAR PREDICTORS
For a given color component c, the merging weight matrix,
or coefficient matrix 2c

j has dimensions 2N
x
j × N x

j and con-
tains the weights used to obtain the merged intermediate
texture view Xdec

merged(t
I
j , s

I
j ). The merging weights are given

for each occlusion class m ∈ Cj as the m’th row in 2c
j .

The weight of the n’th reference view is given by the n’th
column of2c

j . For a pixel (v, u) belonging to classmwe have
Fj(v, u) = m and the merged intermediate texture view is
evaluated as,

Xmodel(t Ij , s
I
j , v, u, c)=

N x
j −1∑
k=0

W k
j (v, u, c)δ(G

k
j (v, u))2

c
j (m, k).

(9)

The matrix of optimal parameters 2c
j is obtained for each

of its rows by performing a least-squares design for minimiz-
ing the sum of squared residuals

∑
(v,u) (ε(v, u, c))

2 for all
(v, u) so that Fj(v, u) = m, using the linear model (9),

X (t Ij , s
I
j , v, u, c) = Xmodel(t Ij , s

I
j , v, u, c)+ ε(v, u, c),

where ε(v, u, c) becomes a function of the parameters 2c
j

through (9). Hence, the full matrix 2c
j is obtained by solv-

ing 2N
x
j least squares problems. The coefficients are further

rounded to 10 bits in the fractional part, obtaining the index
of quantization,

2
c
j = b2

c
j 2

10
e. (10)

Both the encoder and decoder will use the quantized version
2
c
j /2

10 instead of the full precision 2c
j and the indices of

quantization are written in raw format in the bitstream.
The predicted intermediate view is defined as the linear

combination (9) of the reference views over the occlusions
classes m ∈ Cj using the quantized parameters from (10) and
the model output is further rounded to the nearest integer,
to obey the constraint on the integer alphabet of the decoded
image, resulting in,

Xdec
merged(t

I
j , s

I
j , v, u, c) = bXmodel(t

I
j , s

I
j , v, u, c)e,

with obtained values further clipped to the known range of
pixel values {0, . . . , 2b − 1}.

C. INPAINTING
During the warping process some of the pixels (v̂, û) remain
undefined due to occlusions. These locations can be detected
using the non-occlusion operator (8) after the execution of
Algorithm 1. When predicting an intermediate view with
several reference views the frequency of occluded pixels is
low and their effect on the image can be approximated by salt-
and-pepper noise. Based on this observation, in WaSP(R) we
apply a simple median filtering based inpainting procedure
to fill in the undefined values prior to sparse filtering and
residual coding. The inpainting procedure sequentially scans
the missing values of the image in row-wise scan order, each
time filling them by the median of their (non-occluded) 3×3
neighborhood. Each successfully filled (i.e., filtered) pixel is
then considered as non-occluded and the algorithm quickly
fills the occluded parts of the image with the procedure
repeated until all missing pixel locations are filled. Same
inpainting algorithm is used for both texture and normalized
disparity.

IV. REGION-BASED SPARSE PREDICTION
In WaSPR the region-based sparse filter is used to perform
the final adjustment of the merged and inpainted intermediate
view Xdec

inpainted(t
I
j , s

I
j ), resulting in an equivalent refinement

of the initial integer-pixels warping to a fractional pixel pre-
cision displacements. The sparse filter reduces the magnitude
of the prediction residual by adjusting the texture component
in the Nr different disparity regions defined as a set of pixel
locations,

ϒf = {(v, u)}, f ∈ {0, . . . ,Nr − 1},

with the sparse linear predictors obtained using a greedy
sparse algorithm. Next we will describe how the regions and
their corresponding sparse filters are obtained.

A. OBTAINING DISPARITY BASED REGIONS
The regionsϒf , for which the sparse predictors are designed,
are obtained from the normalized disparity map Z̃dec(t Ij , s

I
j ).

The segmentation process is recursive, each time subdividing
a given region into two new regions, with the threshold being
the median value of the given region. For adequately small
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Nr this simple segmentation process obtains a segmentation
with rather uniform sizes |ϒf |, and for example with Nr = 2
the process obtains a foreground-background segmentation
which we found very useful when using the proposed scheme
for coding of plenoptic camera images at very low rates.

B. DESIGN OF THE OPTIMAL SPARSE PREDICTORS
FOR EACH REGION
Let us denote by Xc(t Ij , s

I
j ) the (V ×U ) matrix that is the c’th

color component of the texture image X(t Ij , s
I
j ). We want a

model for Xc(t Ij , s
I
j ), and we linearize the matrix by columns,

obtaining the (VU × 1)-vectors ȳcj , ∀c ∈ {0, . . . ,Nc − 1}.
For each region ϒf we select the corresponding rows as
(|ϒf |×1)-vectors ycj,f . We express the linear predictionmodel
to be estimated from the set of matrix equations,

ycj,f = Dc
j,f2

c
j,f + ε

c
j,f , (11)

where,

ycj,f ∈ R|ϒf |,

Dc
j,f ∈ R|ϒf |×((N

X
j +1)Nfull+1),

2c
j,f ∈ R(NX

j +1)Nfull+1,

εcj,f ∈ R|ϒf |,

whereNfull = (2Lj+1)2 represents the number of elements in
the spatial template9(v,u) defined as the vector of coordinate
pairs,

9(v,u) = [(v− Lj, u− Lj),

(v− Lj, u− Lj + 1), . . . , (v+ Lj, u+ Lj)],

and Lj is a configurable parameter for the filter usually in the
range of {1, 2, 3}. The p’th row of the regressor matrix Dc

j,f is
constructed in the following way,

1) p’th row ofDc
j,f corresponds to a value at pixel location

(v, u) ∈ ϒf ,
2) the columns k, k ∈ {0, . . . ,Nfull − 1} of the p’th row in

Dc
j,f are defined as a specific neighbor in the regressor

template 9(v,u) for the intermediate view j,

Dcj,f (p, k) = Xdec(tj, sj, v̂, û, c),

3) and the rest of the columns (n + 1)Nfull + k of the
p’th row in Dc

j,f are defined as a specific neighbor in
the regressor template 9(v,u) for reference view n ∈
{0, . . . ,NX

j − 1},

Dcj,f (p, (n+ 1)Nfull + k) = Xdec(tXn , s
X
n , v̂, û, c),

where (v̂, û) = 9(v,u)(k) and (tXn , s
X
n ) ∈ �

X
j .

The last column of Dc
j,f is set to ones and corresponds to the

bias term used in the model. The Nc least squares problems
for the model (11) are min2c

j,f
‖εcj,f ‖

2, each having the full
model solution,(

Dc
j,f
TDc

j,f

)
2c
j,f = Dc

j,f
T ycj,f .

The task of the sparse predictor is to select the sets Icj,f each
with onlymjmost relevant columns, where the value ofmj is a
configuration parameter common to all color components and
is usually in the range of {5, . . . , 25}. The sparse supports,
i.e., the column indices of the mj non-zero elements of 2c

j,f
are denoted by Icj,f ⊂ {0, . . . , (N

X
j + 1)Nfull}. The non-zero

elements of the vector2c
j,f are denoted by θ

c
j,f , and the sparse

prediction model can be written as,

ŷcj,f = Dc
j,f2

c
j,f = Dc

j,f ,Icj,f
θcj,f = D̃c

j,f θ
c
j,f ,

where D̃c
j,f is the submatrix of Dc

j,f , containing only the
columns with indices in Icj,f . The design of the sets Icj,f
can be handled by a variety of sparse recovery algorithms.
In this work we have used the optimized orthogonal match-
ing pursuit approach, and the implementation known as fast
orthogonal least squares [41]. The sets Icj,f are transmitted
using d((NX

j + 1)Nfull + 1)/8e bytes for each set and the
coefficients θcj,f using quantization as in equation (10). The
sparse filter fromWaSP [9] can be obtained by settingNr = 1
and by using using only the firstNfull columns ofDc

j,f together
with the bias column of ones.

V. AUXILIARY CODECS
In this section we explain how auxiliary codecs are used to
encode texture reference and residual data, and normalized
disparity maps. We enumerate the steps for obtaining the pre-
diction residuals, and describe how the prediction residuals
are encoded using intra coding tools inWaSP and using inter-
view coding tools in the proposed codec WaSPR. Then we
describe the quantization procedure applied to the normalized
disparity maps prior to their intra coding using JPEG 2000.

A. CODING OF THE REFERENCE TEXTURE DATA
AND PREDICTION RESIDUALS
The texture data is encoded using HEVC and refers both to
the reference views i ∈ {0, . . . ,Nref − 1} which correspond
to the original sub-aperture images at X(tRi , s

R
i ), as well as to

prediction residual views Ej at view indices (t Ij , s
I
j ). Predic-

tion residual view for intermediate view j is defined as,

Ej(v, u, c) = X (t Ij , s
I
j , v, u, c)− X

dec
pred(t

I
j , s

I
j , v, u, c),

where Xdec
pred(t

I
j , s

I
j ) is obtained after inpaiting and region-

based sparse prediction. The prediction residual view Ej
contains the remaining difference between the predicted and
the original view after the completion of the prediction
stage. The sign of the residual needs to be preserved during
the encoding-decoding cycle and a level-shift operation is
applied to Ej, followed by a rounding step,

Êj = b(Ej + (2b − 1))/2e.

Êj is then encoded with HEVC using rate Rres
j . At the

decoder the decoded residual is obtained as,

Edec
j = 2Êj − (2b − 1).
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FIGURE 8. The scan-order for the inter-view coding of texture and residual
views, indexed by (t, s), at each hierarchical level H(t, s) ∈ {1, . . . ,hm}.
Here the scan order is illustrated for a light field with T = S = 10. The
same scan order is used at every hierarchical level, and view locations
(t, s) which are not present in the current hierarchical level are skipped.

Quantizing the level-shifted residual by two ensures that the
bit depth of Êj is also b which is necessary when using an
auxiliary codec with strict bit depth requirements. However,
one bit of precision is lost.

At each hierarchical level the corresponding prediction
residual views are obtained as a group and then encoded using
standardized coding tools. In WaSP [9], [14] the coding of
texture and residual views is performed using intra coding
with JPEG 2000 [40]. Each texture reference view and predic-
tion residual thus will have its own JPEG 2000 codestream.
This approach fails to exploit the possible inter-view redun-
dancies found in both texture and prediction residual views.
For light fields obtainedwith an actual plenoptic camera, such
as the Lytro Illum, some inter-view redundancy exists even
after disparity based inter-view prediction. In the proposed
codec WaSPR, the inter-view redundancy of texture and
residual views is therefore further exploited using HEVC [20]
with serpentine scan-order (i.e., Figure 8). The same scan-
order is applied to both the texture residual views and the
texture data of the initial set of reference views on the first
hierarchical level.

B. CODING OF NORMALIZED DISPARITY
Normalized disparity Z̃ is represented as a real valued quan-
tity. For encoding of normalized disparity the WaSP(R)
framework uses as an auxiliary codec JPEG 2000 [40]. While
JPEG 2000 supports signed 32-bit floating point encoding,
we choose to apply a simple quantization procedure to the
normalized disparity Z̃ prior to encoding. The quantization

process first quantizes the floating point values of Z̃ to integer
range by applying a multiplication and truncation (round-
ing) operation and subsequently level shifts the quantized
values into the positive range. For a given reference view
i ∈ {0, . . . ,Nref − 1}, the quantization operation for the
normalized disparity data is,

Z̃q(tRi , s
R
i , v, u) = bZ̃(t

R
i , s

R
i , v, u)2

QZ̃ e,

whereQZ̃ is a quantization factor for the normalized disparity
data and for all our experiments has the value 14. To ensure
positive values, the level shifted and quantized normalized
disparity is obtained using,

Z̃ql(tRi , s
R
i , v, u) = Z̃q(tRi , s

R
i , v, u)+MZ̃ ,

where MZ̃ is defined as the absolute value of the smallest
value found in the quantized normalized disparity,

MZ̃ = |min
z̃∈Z̃q

z̃|.

After quantization and level-shifting, the normalized dispar-
ity Z̃ql is encoded with the selected auxiliary codec using the
rateRZ̃

i . The decoded normalized disparity is obtained as,

Z̃dec
= (Z̃ql −MZ̃ )/2

QZ̃ .

VI. HIERARCHICAL CODING OF VIEWS
One of the main difficulties of light field coding is the exis-
tence of occluded pixels between neighboring views. The
disparity based warping scheme can be used to reduce the
number of occluded pixels if the reference views can be
selected to surround the target view both horizontally and
vertically. A simple setup is to use as reference views the
corners of the light field but in large disparity scenes, such
as the HDCA, this approach produces inefficient prediction
and is unable to solve the occlusion problem to the fullest.

In the hierarchical coding scheme of WaSP(R) the views
are divided into disjoint subsets, each subset representing a
hierarchical level. The encoder works in an hierarchical order,
where the views on hierarchical level h are all encoded before
encoding any of the views on the hierarchical level h+1. The
views on the lower hierarchical levels operate as possible ref-
erence views to the views on the higher hierarchical levels, see
Figure 9. As the encoder proceeds towards the higher hierar-
chical levels, the density of the reference views increases and
the intermediate view prediction becomes more efficient. The
decrease of the energy of the prediction residual leads to more
efficient coding of the higher hierarchical levels. Therefore
at the higher hierarchical levels the required image quality
can be achieved with smaller codelengths for residuals. The
hierarchical configurations for three light field images greek,
I01_Bikes and Set2 are shown in Figure 10. The dense light
fields greek and I01_Bikes use six hierarchical levels with
just one view residing at the lowest hierarchical level. Full
reconstruction of subsequent hierarchical levels is still pos-
sible due to the density of the light field and substantially
difficult occlusions do not occur. For the sparse light field
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FIGURE 9. The split of the views obtained from a plenoptic camera into
six hierarchical levels. At each hierarchical level the views marked in red
are to be coded conditional on the reference views (marked in gray) using
the proposed prediction scheme. At the lowest hierarchical level 1 no
reference views are available and thus the center view is encoded
without prediction using the auxiliary codec only. Already at hierarchical
level 2 a reference view is available, and the intermediate views (in red)
can be encoded conditional on the reference views. The number and
density of reference views grows as a function of the hierarchical level
increasing the efficiency of the 4D prediction.

Set2 the lowest hierarchical level occupies the corners and
the center of the camera array. The combined prediction of the
warped five reference views is enough to cover the possibly
occluded areas resulting from the warping of the individual
reference views.

The hierarchical scheme is not used for the synthesis of
the normalized disparity. Since no prediction residuals are
obtained for the synthesized disparity views, the hierarchi-
cal propagation of prediction errors may lead to dramatic
decrease in the accuracy of the synthesized disparity views.
For this reason, the normalized disparity views are always
synthesized from the lowest hierarchical level.

A. AUXILIARY CODEC RATE ALLOCATION BETWEEN
HIERARCHICAL LEVELS
With the exception of the very low bit rates (< 0.01 bpp)
most of the code length in the proposed codec is used for the
codestreams of the auxiliary codecs. Because of this a rate
allocation scheme is needed to efficiently distribute the bit
budget between different hierarchical levels. In Algorithm 2
we present an iterative algorithm which divides the joint bit
allocation of hm hierarchical levels into hm − 1 number of
optimizations.

The main procedure B = BitAllocation(B) takes as an
input parameter B the total number of bits targeted by the
encoder for coding of the texture component given by (5)
and (6). The output B is a vector containing the bit budget
for the auxiliary codec codestreams of each hierarchical level
h ∈ {1, . . . , hm}. The algorithm begins by allocating the full
bit budget B for the lowest level, and assigning 0 bits for the
rest of the hierarchical levels. If hm = 1 the procedure ends
and the full bit budget is used at the lowest hierarchical level
by setting B(1) = B. If hm > 1 the algorithm proceeds in iter-
ative fashion to obtain the values B(h) for ∀h ∈ {1, . . . , hm}
by maximizing the fidelity of the decoded light field.

The function D(B, h) encodes the light field using the rate
allocationB and obtains the fidelity of the decoded light field
for the levels up to and including h. The fidelity criterion can
be for example the peak signal-to-noise ratio (PSNR) or the
structural similarity index [42].

The first of the hm − 1 iterations obtains the optimal
splitting of the B bits between levels h = 2 and h− 1 = 1 by
maximizing the fidelity D = D(B, h) on lines 4-9 in which
the fidelity is evaluated for every split parameter γ in the
set 0B. The split parameter γ is used in the function B =
ReAllocate(Bh−1, h, γ ) which scales the bit allocations for
levels i ≤ h − 1 by γ , and assigns (1 − γ )B bits to the
level h. In the case of h = 2 the function simply applies a
γ controlled division or split of the B bits between the two
successive hierarchical levels. At line 8, after obtaining the
fidelity of the decoded light field for a set of bit allocations
for γ ∈ 0B, the algorithm picks the split parameter γo which
yields the highest fidelity of the decoded light field. TheB bits
are accordingly partitioned into the vectorBh = B2 using the
reallocation functionB2 =ReAllocate(B1, 2, γo). In the next
iteration (h = 3), the bits of levels h− 2 = 1 and h− 1 = 2
are again scaled using γo and the remaining (1 − γo)B bits
are used for the level h = 3, maximizing the fidelity of the
decoded light field for the levels h ∈ {1, 2, 3}, producing the
vector B3. The iteration ends once Bhm is obtained.

For larger light fields, such as Set2, applying the hierar-
chical rate allocation scheme for all views becomes a rather
slow process due to each hierarchical level being successively
encoded several times. By assuming that the view prediction
performance inside a hierarchical level is rather uniform,
a speed-up can be obtained by applying the rate allocation for
only a subset of the views. This strategy was used in obtaining
the rate allocation for Set2 with white crosses in Figure 10
illustrating the subset of view used.

VII. CODESTREAM
The codestream is divided into two parts: the header section,
and the codestreams for each view. The header section con-
tains necessary parameters for decoding to take place such
as the number of views in the codestream, the sub-aperture
image height V and widthU , the offset parameterMZ̃ used in
the quantization of the normalized disparity, and information
about the colorspace used. Following the header section is
a series of sub-aperture views, each having their own set
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FIGURE 10. Hierarchy matrices H for images greek, I01_Bikes and Set2. For the dense light fields a single texture and normalized disparity reference at
the center of the camera array in lowest hierarchical level is enough for good quality view prediction in the subsequent hierarchical levels. For sparse
light fields the lowest hierarchical level occupies the extremities and the center of the camera array providing occlusion free prediction over practically
the whole light field. For Set2 the white crosses indicate the subset of views which were used in rate allocation.

FIGURE 11. Comparing the rate-distortion performance of the proposed
scheme against the 4D prediction mode (i.e., WaSP) of VM 2.1 [14]. The
dashed line represents the proposed scheme with the sparse filtering
scheme of the VM 2.1 (WaSP). This reveals, that the proposed inter-coding
scheme for residuals improves over the JPEG 2000 based intra coding
used in VM 2.1 (WaSP). The solid blue line represents the proposed
scheme using the novel region-based sparse filter and the new
inter-coding scheme for residuals. Substantial improvement can be
observed against the sparse filtering scheme of VM 2.1 (WaSP, the
dashed line).

of camera parameters, prediction parameters, and both tex-
ture and normalized disparity codestreams from the auxiliary
codecs.

The parameters in the codestreams for reference and inter-
mediate views are different, since the reference views lack the
view prediction parameters and only contain the sub-aperture
view attributes, such as camera parameters, view indices, and
the codestreams from the auxiliary codec. The number of
parameters used by the view merging algorithm increases
rapidly as a function of the number of reference views but we
have used rarelymore than four references. The viewmerging
parameters are followed by the parameters of the region-
based sparse filter, which include the number of regions used,
the filter size, the filter order, the location of the regressors
in the template signaled as a bit mask, and finally the filter

Algorithm 2 Bit Allocation for Hierarchical Levels
h = 1, . . . , hm
1: procedure B = BitAllocation(B)
2: B1(1) = B
3: B1(h) = 0, ∀h ∈ {2, . . . , hm}
4: for h = 2, . . . , hm do
5: for γ ∈ 0B do
6: B = ReAllocate(Bh−1, h, γ )
7: Dγ = D(B, h)
8: end for
9: γo = argmaxγ Dγ
10: Bh = ReAllocate(Bh−1, h, γo)
11: end for
12: return B = Bhm
13: end procedure
14: function B = ReAllocate(B,h,γ )
15: B =

∑h−1
i=1 B(i)

16: for k = 1, . . . , h− 1 do
17: B(k) = γB(k)
18: end for
19: B(h) = (1− γ )B
20: return B
21: end function

coefficients themselves. In WaSPR the view parameters are
further encoded with Deflate [43]. The codestream of the
prediction residual is appended directly as the bytes given by
the auxiliary codec.

VIII. EXPERIMENTAL RESULTS
In this section the performance evaluation of the proposed
codec is discussed.

A. DATASETS
The R-D results of the proposed encoder are reported on
datasets used by the JPEG Pleno standardization activity [19].
The datasets tested are the ones provided by Multimedia
Signal Processing Group of Ecole Polytechnique Fédérale de
Lausanne (EPFL) [44], Heidelberg Collaboratory for Image
Processing (HCI) [45], and Fraunhofer Institute for Integrated
Circuits [46]. The datasets as used in this paper are available
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FIGURE 12. Rate-distortion performance of the proposed codec on plenoptic images. Comparisons are made against VM 2.1 (WaSP and MuLE) [14],
LFTC [33], and HEVC anchors [19], under the conditions specified in the CTC [19].

in JPEG Pleno database [47]. Following the conventions of
the JPEG Pleno light field standardization the sample bit
depth for the texture views is set to 10 bits and the 8 bit
datasets have been scaled to 10 bits per sample. According to
the CTC we use a sparse set of 11× 33 views from Set2 [46]
which are further cropped to the central 1080×1920 rectangle
of pixels. However, we also demonstrate the performance
of the proposed codec on the full Set2 in a comparison
against [16].

The EPFL dataset provides images taken with Lytro Illum
plenoptic camera which have been post-processed into sub-
aperture images using [18]. The Lytro Illum images have a
small disparity range (less than 15 pixels between extreme
views) similar to those in the synthetic dataset provided by
HCI, where 3D rendering software was used to generate
views similar to those obtained using a plenoptic camera.

The HDCA dataset by IIS has several hundreds of pixels of
inter-view disparity, making it a very different dataset, which
is not tackled in the existing literature, excepting [16].

B. QUALITY METRICS
We demonstrate the performance of our codec according to
the quality metrics used by the JPEG Pleno standardiza-
tion using the Matlab implementations in [19]. The quality
metrics are all evaluated in the YCbCr color space includ-
ing a weighted PSNR YCbCr and PSNR Y. The weighted
PSNR YCbCr is computed as (6 · PSNR(Y) + PSNR(Cb) +
PSNR(Cr))/8.

C. CONFIGURATION OF THE AUXILIARY CODECS
The texture reference, residual, and normalized disparity cod-
ing can be performed with a variety of auxiliary codecs.
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FIGURE 13. Rate-distortion performance of the proposed codec on the densely sampled light fields Greek and Sideboard, and on the sparsely sampled
light field Set2. Comparisons are made against VM 2.1 (WaSP) [14] and HEVC anchors [19], under the conditions specified in the CTC [19].

FIGURE 14. Rate-distortion performance of the proposed codec on the plenoptic image I09_Fountain_Vincent_2 and on the densely sampled light fields
Greek and Sideboard. Comparisons are made against GBT [35], HLRA [27], and FDL [36], under the conditions specified in the publications [27], [35], [36].

Technically any image/video codec with suitable support for
the given bit depth and resolution can be used. We have
experimented with two auxiliary codecs: JPEG 2000 for nor-
malized disparity and HEVC for texture and residual.

For HEVC coding we use HEVC Test Model version 16.20
[48] with a group of pictures structure of size 8 for EPFL
and HCI datasets and intra coding for the sparsely sampled
light field Set2. The full 444 chrominance sampling is used
for the reference views and 400 sub-sampling for the residual
views; we let our prediction to fully handle the chrominance
prediction of the intermediate views. The QP parameter of
each hierarchical level was set to closely match the rates
obtained from the rate-allocation scheme of Section VI-A.

For JPEG 2000 we use the free implementation of Kakadu
version 7.10.2 [49]. We used the command line parameter
-no_info to remove a codestream marker segment which
is not necessary for decoding, -no_weights to allow for
the direct minimization of mean squared error instead of
visual quality, -precise to force 32-bit processing during
transforms increasing precision, and Clevels=6 for setting
the number of wavelet decomposition levels to six which was
considered optimal.

D. RATE-DISTORTION PERFORMANCE EVALUATION
We compare the R-D performance of the proposed
codec against JPEG Pleno VM 2.1 [14], the light field

translation codec (for which we use the acronym LFTC) [33],
HEVC in pseudo-temporal sequence [19], HLRA [27], GBT
[35], FDL [36] and the HDCA compression method of [16].
In Figures 11-15 the R-D comparisons are provided following
the common test conditions [19] with the exception that the
evaluations against HLRA, GBT, and FDL were obtained
using 9×9 views. Furthermore, when evaluating against FDL,
only the Y component was encoded as was also done in [36].
The R-D results for the codecs were obtained from their
corresponding publications and authors, with the exception
of LFTC, for which we used the implementation provided
in [50] and the parameters offered in [33].

From the Figure 11 it can be seen that for the densely
sampled light fields the gain of WaSPR compared to WaSP
comes both from the higher efficiency of HEVC compared
to JPEG 2000, and from the region-based sparse filtering;
the multiple filters being restricted to the individual disparity
regions offer a far more coherent set of predictors while the
filter in [9] attempted to combine everything in a single sparse
predictor.1 The region based sparse filter of WaSPR has an
increased computational complexity over the sparse filter
used in WaSP. Regarding the results reported in Figure 11,
we observed an average increase in the encoder execution
time of roughly 20% for high rates, and 84% for low rates,

1For visual comparison see http://www.cs.tut.fi/~astolap/WaSPR
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when comparing the new region based sparse filter ofWaSPR
against the earlier sparse filter of WaSP. However, we note
that our implementation of the proposed codec has not been
thoroughly optimized with respect to execution time.

As shown in Figures 12-13, the proposed codec performs
better than both of the VM 2.1 encoding modes on the
JPEG Pleno datasets. For encoding the EPFL dataset the
average Bjontegaard [51] rate reductions for PSNR YCbCr
are −48.1% and −27.8% against the 4D prediction (WaSP)
and 4D transform (MuLE) modes of VM 2.1 respectively.
For the HCI dataset the proposed codec obtains −28.0% rate
reduction against VM2.1, andwith the sparsely sampled light
field Set2 the proposed codec obtains−53.4% rate reduction.

At low and medium rates the proposed codec offers quite
similar performance when compared against LFTC with
the proposed scheme obtaining substantial improvement at
higher rates as shown in Figure 12. Both WaSPR and LFTC
are somewhat similar in nature; HEVC is used for coding of
reference views and a segmentation based linear predictor is
used to predict the intermediate views. Both methods rely
on a segmentation obtained from disparity based labeling;
LFTC’s segmentation is build on quad-tree partitioning using
depth boundaries while WaSPR uses more arbitrary shaped
regions discriminated by their disparity values. One likely
explanation for the R-D performance differences between
WaSPR and LFTC is the choice of segmentation, and the
difference in residual coding with the latter using a low-
rank approximation strategy. A careful study combining best
features from both approaches might obtain superior R-D
performance on all rate points.

Compared to GBT the proposed scheme obtains better R-D
results with the gain being largest at the lowest rates, as shown
in Figure 14. Similarly the proposed codec improves over
FDL with the R-D improvements becoming largest at the
higher rates. HLRA obtains better performance at the lowest
rates but at higher rates the R-D performance becomes almost
identical to the proposed method.

In Figure 15 the 21 × 97 views of Set2 were encoded at
the full 2160× 3840 resolution. Similar to [16] only the sub-
set of 11 × 33 views use residual coding and the rest of the
1674 views were predicted only using the hierarchical sparse
prediction scheme. The rate-allocation scheme was applied
on the cropped 11×33 views and the obtained QP parameters
were manually adjusted for a better performance. Both the
proposed method and [16] use warping of the texture using
normalized disparity maps and residual coding using existing
well-established image coding solutions. The method of [16]
places more emphasis on the modeling of the normalized
disparity field, with a base-anchored mesh model used to
infer disoccluded areas via backfilling strategy. We infer the
full set of normalized disparity maps with direct warping and
merging of the five reference normalized disparity maps with
region based correction using sparse filtering during texture
prediction. The method of [16] also uses BPA-DWT variant
of EBCOT [52] for coding of normalized disparity, which has
been shown to improveWaSP performance on HDCA images

FIGURE 15. Rate-distortion performance for Set2 using 21× 97 views at
2160× 3840 resolution. The performance of the proposed method is
compared to [16].

[37], while our method still relies on baseline JPEG 2000 for
coding of normalized disparity.

The rate allocation between texture/residual, normalized
disparity, and prediction parameter data varies depending on
the size of the light field and on the rate targeted by the
encoder, with the texture/residual using from 43% to 97% of
the total rate. At the highest rates most of the bits are used for
texture reference and residual coding, while at the lowest rates
the prediction parameters use an equal or larger fraction of
the encoded bits. The normalized disparity data uses between
0.04− 32.50% of the total rate.

IX. CONCLUSION AND DISCUSSION
In this paper we have described a new light field coding
scheme WaSPR based on the WaSP framework with rate-
distortion performance shown to exceed both WaSP and
MuLE modes of the JPEG Pleno VM 2.1. The proposed
codec performs well against recent state-of-the-art light field
codecs for both densely and sparsely sampled light fields.
We have provided a detailed description and discussion of
the common parts of WaSP and WaSPR, provided a rate
allocation algorithm for hierarchical coding of light fields,
introduced inter-view coding of texture reference and residual
views into the WaSP framework, and proposed a new region-
based sparse prediction scheme shown to significantly reduce
the magnitude of the prediction error resulting from direct
disparity based view prediction. The WaSPR software [53]
has beenmade publicly available for the research community.
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