
Received November 19, 2019, accepted November 30, 2019, date of publication December 5, 2019,
date of current version December 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957874

A Multi-Agent Approach for Reactionary
Delay Prediction of Flights
YASH GULERIA 1, QING CAI 1, SAMEER ALAM 1, AND LISHUAI LI 2
1School of Mechanical and Aerospace Engineering, Air Traffic Management Research Institute, Nanyang Technological University, Singapore 639798
2Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong

Corresponding author: Sameer Alam (sameeralam@ntu.edu.sg)

This work was supported by the Nanyang Technological University-Civil Aviation Authority of Singapore (NTU-CAAS) Research
through the School of MAE, Air Traffic Management Research Institute, Nanyang Technological University, Singapore, under
Grant M4062429.052.

ABSTRACT Flight schedules are highly sensitive to delays and witness these events on a very frequent
basis. In an interconnected and interdependent air transportation system, these delays can magnify and
cascade as the flight itineraries progress, causing reactionary delays. The airlines, passengers and airports
bear the negative economic implications of such phenomenon. The current research draws motivation from
this behavior and develops a multi-agent based method to predict the reactionary delays of flights, given
the magnitude of primary delay that the flights witness at the beginning of the itinerary. Every flight is
modeled as an agent which functions in a dynamic airport environment, receives information about other
agents and updates its own arrival and departure schedule. To evaluate the performance of the method,
this paper carries out a case study on the flights in Southeast Asia, which covers eleven countries. The
model is tested on a six-month ADS-B dataset that is collected for the calendar year 2016. Through the
reactionary delay values predicted by the multi-agent based method, the flights are first classified as delayed
or un-delayed in terms of departure. The classification results show an average accuracy of 80.7%, with a
delay classification threshold of 15 minutes. Further, a delay multiplier index is evaluated, which is a ratio of
the total delays (primary+reactionary delays) and the primary delays for each aircraft. The majority of delay
multiplier values range between 1-1.5, which signifies that for except a few outliers, the primary delays do not
significantly cascade into reactionary delays for the flights in Southeast Asia. The outliers represent scenarios
where primary delays magnify and propagate as reactionary delays over subsequent flight legs. Therefore,
the proposed method can assist in better flight scheduling by identifying itineraries which experience higher
reactionary delays.

INDEX TERMS Air traffic management, agent-based method, ground delay analysis, Southeast Asian
airports, reactionary delays.

I. INTRODUCTION
A. BACKGROUND AND LITERATURE REVIEW
The commercial civil aviation sector is a complex, distributed
network, with a vast number of elements interactingwith each
other to meet a common objective of safe and in-time trans-
port of passengers [1]. This sector has witnessed immense
growth in terms of infrastructure, territorial coverage and
customers, over the past few decades. The International Air
Transport Association (IATA) forecast predicts 8.2 billion
passengers by the year 2037, at an annual compounded
growth rate of 3.5% [2]. With the ever-increasing air traffic
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and limited CNS (communication, navigation and surveil-
lance) and airspace capacities, the flight schedule planners try
to reduce the buffers between flight arrivals and departures in
order to maximize aircraft utilization and meet the increasing
demand. Similarly, the airport management aims to service
and prepare the aircraft for departure faster, to increase the
airport’s gate availability. Such plans and practices increase
the likelihood of delay generation [3], [4].

The direct and indirect costs associated with delays [5],
its effect on passengers and an increasingly competitive
commercial aviation market have driven research to predict
and minimize air traffic delays [6]–[8]. Strategies such as
the Ground Delay Programs (GDP) [9], [10], Collabora-
tive Decision Making (CDM) [11] and Air Traffic Flow
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Management (ATFM) [12], [13] have been heavily
researched and implemented in order to improve the infor-
mation flow between the participating airports and contain
the overall flight delays. It has been reported in the literature
that the major portion of all the flight delays occurs on
ground at the airports [14]. These delays originating at one
location propagate downstream to other airports, leading to
the emergent behaviour which is called delay propagation.
Over the past few decades, research methodologies to char-
acterize and predict delay propagation have evolved from
pure statistical methods and heuristics [15], [16], to queuing
models, network theory approaches, machine learning and
agent based techniques [14], [17]–[19].

With regard to delay propagation, Pyrgiotis et al. [20]
considered an analytical queuing and network decomposition
model to characterize delay propagation. This study, however,
was only able to give a macroscopic analysis of daily and
hourly delay at 30 main airports of US. Rebello and Balakr-
ishnan [21] developed a two-step approach to first classify
the delay above or below a threshold and then, estimate the
departure delay propagation along a link at some time in the
future. Their delay classification results for a day’s forecast
with a threshold of 60 minutes yielded an accuracy of 72.8%.
On similar lines, Belcastro et al. [22] attempted to classify
and predict flight delays due to weather conditions. They
reported an accuracy of 74.2% while classifying delays with
a delay threshold of 15 minutes. Choi et al. [18] proposed a
binary classification model to predict weather induced arrival
delays of flights, which was tested on multiple algorithm
like random forest, AdaBoost, kNearest-Neighbors and Deci-
sion Tree. Researchers have also explored Bayesian network
models to understand the effects of delay propagation [23],
[24]. In one of the recent research efforts, Chen and Li [25]
introduced an optimum feature selection process to improve
the prediction performance of their machine learning based
model and claimed to overcome the problem of feature selec-
tion, prevalent in most machine learning works in air traffic
management.

Agent based modelling is a different paradigm, which
has also been used in transportation studies. In the past,
agent based methods have been implemented in research
involving aircraft collision avoidance [26], air traffic flow
management [27] and aircraft sequencing and schedul-
ing [28]. Bouarfa et al. [19] discussed the emergent phe-
nomenon shown by air transportation systems and used
an agent based model to assess the safety risk of an
active runway crossing; due to the dependency of safety
on the joint functions of many parameters like pilots, con-
trollers, ground staff, technology, etc. Agent based models
have also been implemented in delay propagation analysis.
Fleurquin et al. [7] developed an agent based model to access
the effect of three factors namely, airport congestion, air-
craft rotation and flight connectivity on delay propagation
by evaluating the size of the delayed airport clusters. The
basis of selection of only these parameters is although not
clear. In their subsequent paper [8], they extended their work

to analyze the effect of meteorological disruptions (weather)
in the US air traffic network. For both of the papers, aircraft
were modeled as agents.

B. RESEARCH MOTIVATION
According to the Central Office for Delay Analysis (CODA),
Eurocontrol, reactionary delay remained the largest cause
of departure delay of the flights for July 2019 (see Fig. 1).
Similar trend has been documented for the months of April,
May, June, etc for 2019 and 2018 as well. In order to contain
the problem of delay propagation, identifying the individual
influence of major sources of delay is believed to be critical,
so that remedial actions to curb delay are focused on reducing
these critical parameters.

FIGURE 1. Major causes of departure delay for July 2019 for the flights in
Europe. The picture is obtained from the Central Office for Delay Analysis
(CODA), Eurocontrol [29].

It can be seen from the documented literature that the
problem of flight delay has been studied with a view to
predict delays due to the aggregated effect of multiple factors.
Research efforts which focus on the effect of individual fac-
tors on the overall delays are mainly concentrated to predict-
ing weather related effects, with no significant literature on
predicting reactionary delays over an aircraft’s flight itinerary
and its influence on the total delays. With an aim to bridge
this research gap, the current research provides a unique yet
simple approach to predict the reactionary delays and identify
cases where primary delays show a magnified and cascading
effect leading to higher reactionary delays, with a case study
of the Southeast Asian (SEA) airport network. This research
can assist in better flight schedule planning through prior
knowledge of flights expecting higher delay. We develop a
multi-agent based method to evaluate the reactionary delays
on various flight legs of a daily aircraft itinerary, wherein each
flight is regarded as an agent. In order to maximize flight
services, an aircraft normally has to undertake multiple flight
legs. Given that each aircraft has a primary departure delay
in the first flight leg, we let the agents (flight) travel among
the airports based on their daily itineraries and predict the
reactionary delays on each of the subsequent flight leg. The
functionality of the proposed method is tested through a case
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FIGURE 2. Proposed multi-agent based method for reactionary delay prediction of flights.

study by analyzing the Automatic Dependent Surveillance
Broadcast (ADS-B) data for SEA Airport network, for a
period of six months.

A higher level abstract diagram of the central idea of
research in this paper is shown in Fig. 2. The ADS-B data
is filtered to extract information of departure delays, arrival
delays and actual en-route time for every flight and flight
itineraries are obtained. Every agent (flight) receives informa-
tion regarding its initial departure delay and its schedule. The
agents then, function in the airport environment according to
this information and the rules discussed in Section 3. The
output of this analysis is the reactionary delays for every
aircraft’s subsequent flight legs, predicted flight arrival and
departures details for subsequent legs and the evaluation of
delay multiplier index.

The document is further organized as follows - Section II
documents the preliminaries of the paper. Section III
describes the research problem and research methodology for
reactionary delay prediction. In section IVwe discuss the case
study used to test the methodology, data reprocessing and
discussions on the results obtained. Section V accumulates
the concluding comments and the future work scopes of this
research.

II. RESEARCH PRELIMINARIES
A. AIRCRAFT, FLIGHT AND ITINERARY
An aircraft can be identified by its registration number, which
is unique. An aircraft is tagged as a flight when it travels
between different airports. As shown in Fig. 3, the aircraft
with registration number 9MAQC is a different flight for each
origin-destination pair. These two terminologies have been
cautiously used in the paper.

An aircraft itinerary is a sequence of flights that an aircraft
takes from origin to final destination. An itinerary may con-
sist of a single or multiple flight legs, where one flight leg is
an origin destination pair (see Fig. 3).

FIGURE 3. A sample itinerary of a given aircraft with two flight legs.

B. MULTI-AGENT BASED METHOD
Air traffic management (ATM) operations show an emergent
behavior due to the combined dynamic interactions between
various individual components such as human resources,
technical facilities, passengers, airlines, airports, different
ATM centres and other stakeholders. With the continuously
increasing complexity of such ATM systems, agent based
methods (ABMs) provide a suitable tool to model such sys-
tems with the desired level of abstraction [19]. ABMs are
suitable and can enhance the analysis of problem domains
which are geographically distributed, contain subsystems in
a dynamic environment and where subsystems are required
to interact with the environment [30]–[32] and hence, are
very suitable for applications in a complex airport network.
Individual components of an dynamic, distributed system
communicate with each other through simple rules. It is the
interaction guided by the cumulation of these simple rules,
that gives rise to complex behavior at the global level. On a
similar note, agents in this method are guided by simplistic
rules to interact with the environment and update their current
state. The key components of the multi-agent based method
used in the current research are described as below-
• Agent - The term ‘agent’ can be defined as a system
situated in a certain environment, which is capable of
performing autonomous actions tomeet its design objec-
tives [33], [34]. In the current method, every flight is
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FIGURE 4. Agent-environment abstract diagram.

modeled as an agent whose objective is to depart from
the origin and arrive at the destination at the stipu-
lated time and receive information from the environment
regarding simultaneous arrivals or departures ofmultiple
agents. The information of the primary departure delays
of the first agent and a daily schedule are provided from
the ADS-B data.

• Agent environment - For every agent, the environment
corresponds to its previous departure airport and its
current destination airport. All the agents in unison,
function in an environment incorporating all the airports.

• Agent decisions (action and interaction) - an agent’s
actions involve utilizing information of scheduled depar-
ture time, scheduled en-route time, the agent’s origin and
destination, from the data, to complete its assigned task
(travel from its origin to destination). Agents interact
with the environment when there is a commonality in
their origin or destination, i.e if multiple agents depart
from or arrive at the same airport at the same time. In this
case the agent decide their sequence of arrival and depar-
ture based on pre-defined rules. For instance, in case
of simultaneous arrivals at an airport, the sequence of
arrival is decided on the basis of departure delays that
these agents witnessed on the flight leg. Similar rules
apply for the agents departing from a common airport.

III. PROBLEM DESCRIPTION AND METHODOLOGY
A. PROBLEM DESCRIPTION
An aircraft’s schedule for the entire day may consist of
multiple flight legs and it is prone to witnessing delay on
one or all of these flight legs. The current research problem
focuses on the prediction of reactionary departure delays that
the aircraft witnesses on subsequent flight legs based on its
delay in the primary flight leg and also, the inputs from the
environment regarding the schedules of other flights. The
departure delays that are obtained from the ADS-B data are
‘observed delays’, which can be a cumulation of multiple
factors other than just the propagated delay, such as delays
due to gate unavailability, ground holding due to weather or
even crew unavailability at some instances, to name a few.
In this research, a multi-agent based method has been used to
predict the reactionary departure delays, i.e. the delays that
have been solely propagated from the primary flight leg due
to the initial departure delays, to the subsequent flight legs,

FIGURE 5. Flowchart of the proposed method for reactionary delay
prediction.

bymaking use of the information of the flight’s primary delay
in the first flight leg and the scheduled arrival time, scheduled
departure time, scheduled en-route time over the subsequent
flight legs and the input from the environment regarding the
schedules of other flights.

The research focus i.e the SEA airport network possesses
a unique characteristic of fairly short haul flights, with
flight time of most flights within 2 hours (also discussed in
Section IV-C, Fig. 7). With such short flight times the flights
that incur delay during departures are unable to recover the
delay en-route and most of the times, have a delayed arrival
at the destination. This claim is also supported in Fig. 7 by
the plot between departure delays and the subsequent arrival
delays, which is linear, signifying the inability of the flight to
recover delays.

B. METHOD OVERVIEW
In the proposed methodology, every flight acts as an agent
which carries out its own flight schedule in an environment of
multiple airports, receives information regarding arrivals and
departures of other agents from the environment and updates
its schedule accordingly. In this process generation of reac-
tionary delays takes place. An overview of the methodology
is shown by a flowchart in Fig. 5.

C. RESEARCH ASSUMPTIONS AND REASONS
In order to solve the research problem given in the above
section, the following assumptions together with their corre-
sponding reasons are provided below.
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TABLE 1. Definitions of parameters used in the proposed method.

1) One of the fundamental assumptions in the current
work is that the flights do not witness or absorb delays
enroute their destination. Similar assumption has been
made for the delay analysis in existing works [35].
Further, for the SEA region, the majority of flight are
short haul (see Fig. 7 for reference). It can be argued
that due to smaller enroute times, recovering delays
enroute is not feasible.

2) Further, flight arrival and departure take place at sepa-
rate runways at every airports considered in the analy-
sis. This has been done to relatively simplify the model
and keep it generic in nature.

3) A flight is classified as delayed if the arrival or depar-
ture takes place 15 minutes after the scheduled time.
This is in reference to the delay definition used by the
Federal Aviation Administration (FAA) [36].

4) It has also been hypothesized that no flight can depar-
ture more than 5 minutes prior to its actual departure.
If a flight has an early departure of more than 5 min-
utes, the actual departure time is set to be equal to the
scheduled departure time.

5) The minimum turn around time for every flight has
been fixed at 70 minutes. This is based on the data
analysis in section IV-C.
The abbreviation used in the algorithms have been
mentioned in Table 1.

Based on the above assumptions, we then predict TADfi and
TAAfi for all fi ∈ [1,Nf ] in the following way.
1) If fi is the first flight leg of an aircraft’s itinerary, then

we estimate TADfi as

TADfi = TSDfi + TDDfi

2) If fi is an intermediate flight leg of an aircraft’s itinerary,
then we calculate TADfi in the following ways.

When TSDfi − TED < TAAfi−1 + TATfi < TSDfi or TAAfi−1 +
TATfi ≥ TSDfi , then we set

TADfi = TAAfi−1 + TATfi

The term TED is the maximum early departure time which
is set to be 5 minutes, and the term TAT is the minimum
turnaround time which is set to be 70 minutes.

When TAAfi−1 + TATfi < TSDfi − TED, then we set

TADfi = TSDfi

3) Based on TADfi , we then update TAAfi as

TAAfi = TADfi + Tenfi

D. DEPARTURE SEQUENCE MANAGEMENT PRINCIPLE
The algorithm starts with a daily itinerary generated from
the ADS-B data. For an aircraft’s flight itinerary, the first
agent (flight) has its specified actual departure time and the
primary departure delay and it departs from the origin at
that specified time. In case of multiple departures at the
same time from an airport, we propose a departure sequence
management principle, which is explained in Algorithm 1.
A list of all origin and destination airports is obtained for all
agents (flights) from the itinerary and is filtered to obtain the
list of agents departing at time T . A list of unique origins is
the obtained and the agents departing from common airports
are identified. Step 5 of the algorithm sequences the flights
in case multiple agents depart from the same airport. The
agents are sequenced in the increasing order of magnitude of
delays, for the case when departure delays are different. If the
departure delays are a combination of negative and positive
delays, the agents with positive delays are sequenced first,
followed by the agents with negative delays, all on the basis of
the previous rules. For the rare case of same departure delays,
random sequencing has been adopted. After an agent departs
for the airport, the other agents are assigned a delay Tδ . For
every departing agent, its arrival time at the destination is
updated.

E. ARRIVAL SEQUENCE MANAGEMENT PRINCIPLE
The algorithm for arriving agents (flights) follows the same
logic as the departure sequence assignment mechanism. For
the flights arriving at an airport at the same time, Algorithm 2
is followed to sequence them for arrival. Similar to the case
of departure sequence management, Step 4 of the algorithm
defines the rules for sequencing the arriving flights at an air-
port. When the arrival delays are different, the arriving flight
are sequenced in the increasing order of their magnitude of
delays. If the arrival delays are a combination of negative and
positive delays, the flights with positive delays are sequenced
first, followed by the flights with negative delays. For the case
of same arrival delays for all flights arriving at an airport,
random sequencing has been adopted.

The sequencing of the arriving and the departing flights is
fundamentally based on ‘first come first served’ principle but
this is applicable if the arrivals and departures are at different
times. Due to delays, if multiple departures are scheduled at
the same time at a given airport, we assign a departure delay
of 2 minute to the next sequenced flight, to compensate for
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Algorithm 1 Departure Sequence Management Mechanism
1) Define the origin and destination sequences Orgs :=

(O1,O2, . . . ,ONf ) and Dsts := (D1,D2, . . . ,DNf )
withOi andDi being the origin and destination of flight
fi;

2) Given a time point T , ∀i ∈ [1,Nf ], get the flight
sequence F := (fi, fj, . . . , fk ) with tADfi = T ;

3) Get the subset Org = (OFi ,O
F
j , . . . ,O

F
k ) with OFi

being the origin of flight fi ∈ F ;
4) UniqOrg = unique(Org); //identify the unique origins
5) For i = 1 to length(UniqOrg), do

a) F ′ = find(Org == UniqOrg(i)); // F ′ ⊂ F
b) TDDF ′ = T − TSDF ′ ; //delays for all f

′
i ∈ F

′

c) If size(unique(TDDF ′ )) == 1, i.e., all f ′i ∈ F
′ have

the same departure delay, then randomly select a
f ′i from F ′;

d) Ifmax(TDDF ′ ) ≤ 0, then select the f ′i fromF ′ with
the largest departure delay;

e) Ifmin(TDDF ′ ) ≥ 0, then select the f ′i from F ′ with
the smallest departure delay;

f) If min(TDDF ′ ) < 0 ∧ max(TDDF ′ ) > 0, then from
the flights with nonnegative delays select the f ′i
with the smallest departure delay;

g) Set TADf ′i
= T and set TADf ′j

= T + Tδ , ∀f ′j ∈

F ′ \ f ′i .
6) End
7) For all fi ∈ F , do

a) Set TAAfi = TADfi +Tenfi ; //update the arrival time
b) If D(i) == O(i + 1), then set TADfi+1 = TAAfi +

TATfi .
8) End

the vortex effects. The Manual of Standards-Air Traffic Ser-
vices, Civil Aviation Authority of Singapore (CAAS), [37]
mentions a 2 minute separation while take-off and landing
when a medium category aircraft follows a heavy category
aircraft and a 3 minutes separation when a medium category
aircraft follows a super heavy category aircraft. This value
has been standardized to 2 minutes for the current research
considering that the majority of aircraft used for short haul
flight are medium and heavy aircraft. For flights arriving at
a common airport, if the final approach fix is the same due
to the delays associated with the flights (which we refer to
as simultaneous arrival for the current research), we assign
a 2-minute delay to the arriving aircraft which, on a higher
abstraction level represents the ATC actions such as holding
the aircraft in order to maintain the separation standards.

IV. CASE STUDY
A. ADS-B DATA
The findings represented in the current paper have been
obtained using the ADS-B data for the months of June,
July, September, October, November and December 2016,

Algorithm 2 Arrival Sequence Management Mechanism
1) Given a time point T , ∀i ∈ [1,Nf ], get the flight

sequence F := (fi, fj, . . . , fk ) with TAAfi = T ;
2) Get the subsetDst = (DFi ,D

F
j , . . . ,D

F
k ) withD

F
i being

the destination of flight fi ∈ F ;
3) UniqDst = unique(Dst); //the unique destination
4) For i = 1 to length(UniqDst), do

a) F ′ = find(Dst == UniqDst(i)); // F ′ ⊂ F
b) TADF ′ = T − TSAF ′ ; //delays for all f

′
i ∈ F

′

c) If size(unique(TADF ′ )) == 1, i.e., all f ′i ∈ F
′ have

the same arrival delay, then randomly select a f ′i
from F ′;

d) Ifmax(TADF ′ ) ≤ 0, then select the f ′i from F ′ with
the largest arrival delay;

e) If min(TADF ′ ) ≥ 0, then select the f ′i from F ′ with
the smallest arrival delay;

f) If min(TADF ′ ) < 0 ∧ max(TADF ′ ) > 0, then from
the flights with nonnegative delays select the f ′i
with the smallest arrival delay;

g) Set TAAf ′i
= t and set TAAf ′j

= T+Tδ , ∀f ′j ∈ F
′
\f ′i .

5) End
6) For all fi ∈ F , if D(i) == O(i+ 1), then set TADfi+1 =

TAAfi + TATfi .

TABLE 2. Related variables and their definitions.

procured from Flight Aware. The ADS-B data, out of the
many parameters, provides information regarding the flight
ID, registration number, origin, destination, actual departure
time, actual arrival time, en-route time, scheduled and actual
block in time and block out time.

Through the ADS-B data, the following information for
each flight leg can be derived-

TATsch = TS.BlkOut − TS.BlkIn
TATact = TA.BlkOut − TA.BlkIn

DD = TS.BlkOut − TA.BlkOut
DA = TS.BlkIn − TA.BlkIn

The terminologies used in these equations are defined
in Table 2.

B. SOUTHEAST ASIAN AIRPORT NETWORK
An air transport network is usually described and visualized
as a graph with nodes indicating the airports and the edges
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FIGURE 6. Southeast Asian Airport Network. The airports are weighted
according to the degree centrality, where bigger dots imply higher
connectivity.

indicating the flight movements between the airports [38],
[39]. The Southeast Asian Airport Network can be visualized
as an undirected network where the nodes represent the air-
ports and the edges highlight the flights between the airports,
as shown in Fig. 6. Contrasting geographical and weather
conditions, relatively smaller flight duration in the SEA as
compared to the US, and the lack of research inclination to
this region has been the driving factor to analyze the SEA
airport network.

The concept of centrality is used to identify the most
important or central nodes in this network [40]. Out of a mul-
tiple centrality measures like the degree centrality, between
centrality, eign-vector centrality and closeness centrality,
we choose degree centrality as the most apt for our analysis.
Degree centrality is a measure of the number of connection or
the number of edges connected to a node. The airports with
highest degree centrality are shown in Table 3. Through this
analysis we can identify the 20 most important airports from
a total of 136 airports (ICAO codes) in the Southeast Asian
Airport network.

C. STATISTICS FOR FLIGHTS IN THE SEA
ADS-B data for six months in 2016 is analyzed to draw initial
inferences regarding the active airports, number of flights and
delay patterns of the Southeast Asian airport network. The
basic statistics for the flight data are provided in Fig. 7.
The monthly active number of airports can be seen in the

first subfigure of Fig. 7. There are on average, 130 airports
in operation in each of the studied months. The number of
active airports in December is the highest. Also, the number
of flights are the highest in July and December.

The third subfigure demonstrates the average departure
delays as well as overall delays for the flights operated in
the studied six months. We can see from the figure that the
departure delays and the overall average delays are around
22 minutes. Since in July and December the flight activities
are the highest, the average delays in this two months are also
the largest, above 25 minutes as can be seen from the figure.

The second row of Fig. 7 further visualizes the probability
distributions of arrival and departure delays of the flights

TABLE 3. Top twenty airports in the Southeast Asia. The un-weighted
degree represents the number of airports to which the current airport is
connected. Weighted degree represents total arrivals to and departures
from the current airport.

operated in the SEA. The plots show that arrival and the
departure delays show similar trends over the months. In the
literature, it has been reported that flight delays normally fol-
lowWeibull distribution. To verify whether this phenomenon
also applies to flights in the SEA, we use three probability
distribution functions, i.e., Weibull (1), Lognormal (2), and
Exponential (3) [41], [42] to fit the departure delay distribu-
tions. The PDF of those three distributions are given below.

f (x, k, λ) =
k
λ

( x
λ

)k−1
e−(x/λ)

k
(1)

f (x, u, σ ) =
1

x
√

25σ 2
e−

(ln x−u)2

2σ2 (2)

f (x, α, β) = αeβx (3)

In the above equation, k is the shape and λ is the scale
parameter, µ is the expected value (mean) and σ is the
standard deviation. Table 4 lists out the statistics for the
curve fittings of the departure delays. For each curve fitting
we record the R2 and RMSE values. We also record the
confidence intervals for the parameters in the corresponding
probabilistic distribution function at the significance level
of 95%.

The R2 test and the RMSE show the maximum value
of 0.8533 and minimum value of 0.0034, respectively, for
the Weibull distribution. The curve fitting results shown in
Table 4 indicate that the delays of the flights operated in the
SEA also follow the Weibull distribution.
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FIGURE 7. Statistics of flight over a period of 6 months (June, July, September, October, November and December) obtained from the ADS-B
data.

TABLE 4. Statistical values for the curve fittings of the departure delays.
SL – Significance Level; CI – Confidence Interval.

Capturing the correlation between departure delays from
the previous airport and the arrival delay to the destination
airport reveals that except for a few outliers, most of the
flights that depart late tend to arrival late at the destina-
tion i.e a flight that witnesses positive departure delay will
have a positive arrival delay. This is also the reason that the
subsequent analysis focuses on departure situations. Plotting
the distribution of the turn around time (TAT) reveals that
majority of flight have a turn around time of 60 to 70 minutes.
Hence, a TAT of 70 minutes is chosen for the analysis.

The distribution of the flight en-route time have also been
analyzed it it can be see from the last subfigure that majority

of flight are short haul, with en-route time between 40 to
120 minutes.

D. FLIGHT ITINERARY EXTRACTION
The experimental design focuses on the airport network
of 11 Southeast Asian countries namely Indonesia, Vietnam,
Cambodia, Malaysia, Singapore, Laos, Myanmar, Thailand,
Philippines, Brunie and Timor-Leste. The time horizon for
itinerary generation has been kept as one day for the analysis.
In order to choose a starting time to obtain primary delays and
generate flight itineraries, the number of hourly departures of
the flights are plotted. It is visible from Fig. 8 that the time
period between 16:00 hours (UTC) and 20:00 hours (UTC)
has theminimumdeparture activities. Hence, the starting time
point of the itinerary is chosen from 19:00 hours (UTC) since
this time is a relatively low activity period [7].

E. ANALYSIS OF REACTIONARY DELAYS
The method is tested on 2 days with the highest average
delay and 2 days with lowest average delay from each of the
six months, for the analysis of reactionary delays. Table 5
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FIGURE 8. Hourly flight departures plotted for a period of 6 month to select starting time point and primary delay on the basis of minimum
flight activity period. It shows a total of 202 flights departing between the time period of 19:00 - 19:30 hours (UTC).

FIGURE 9. Comparisons of departure delay values for each flight obtained from the ADS-B data (red) and the
predicted departure delays by the multi-agent based method (blue). Figures in the second column show the residuals
of the two values for every flight.

summarizes the delay information of the studied 24 days. The
values of average delays are in minutes.

For each studied day, we extract a one-day flight itinerary
from the ADS-B data with the starting time point being
chosen in the way described in subsection IV-D. We then
apply the proposed agent-based method to the one-day flight
itinerary to evaluate the reactionary delays for the flights
contained in the itinerary.

Fig. 9 demonstrates the two-day comparisons between the
predicted departure delay values (blue dots) yielded by the

proposed agent-based method and the original flight depar-
ture delays (red dots) as recorded in the ADS-B data. The
first set of images (row 1) are for 8th July 2016 and the second
set is for 9th June, 2016. It can be seen from the figure that
the predicted results for departure delay (blue markers) over-
lap the departure delay obtained from the ADS-B data (red
markers). The RMSE for these two days are 16.21 minutes
and 29.18 minutes, respectively. From the residual plots, few
instances of outliers can be detected where the residuals are
abnormally positive and negative, which may be a reason
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FIGURE 10. Departure delay visualization on subsequent flight legs of two flight itineraries for 8th July 2016, highlighting the propagation of primary
delays.

TABLE 5. Test days selected on the basis of monthly maximum and
minimum average delays.

of higher RMSE values. Similar plots can be generated for
all the critical days. An interesting conclusion can be drawn
from these plots. The agent basedmethod predicts reactionary
delay only on the basis of primary delays and the information
of other agents during arrivals and departures. The close
proximity of these results to the actual delays suggests that
most of the flights suffer form delays which originate from
the first flight leg. For the 24 tested days, we further calculate
the delay classification accuracy based on the reactionary
delays. During the calculation, a flight is classified as delayed
if the delay is 15 minutes or more than the scheduled time of
departure.

Table 6 records the delay classification accuracy for the
24 studied days. In addition to this, average classification
accuracy for all the days of the dataset, for a delay threshold
of 15 minutes is obtained, which is 80.7%. Here, accuracy
implies the flights which were delayed according to the data
and were correctly classified as delayed by the model. The
average value of recall (true positive rate) is 78.1%. By com-
paring these values with the existing literature, [21], [22] it

is visible that the current multi-agent based method is able to
match the accuracy with significantly less input data. Their
delay classification results by Rebello and Balakrishnan [21]
for a day’s forecast with a threshold of 60 minutes yielded
an accuracy of 72.8%. On similar lines, the machine learning
algorithm proposed by Belcastro et al. [22] classifies flight
delays due to weather conditions with an accuracy of 74.2%,
with a delay threshold of 15 minutes.

The predicted departure delays on each aircraft’s itinerary
can be visualized as in Fig. 10. The departure delays on the
subsequent flight legs constitute the reactionary component
of departure delays. The figure on the left shows the predicted
departure delays in the itinerary of a aircraft with 4 flight legs.
The itinerary starts with an initial departure delays of 9 min-
utes from RPVM to RPLL. The Subsequent departure delays
from RPLL to RPVD, RPVD to RPLL and RPLL to RPVK
are 5, 30 and 31 minutes respectively. The lines are weighted
according to the departure delay witnessed at the airport of
the flight leg. Hence, here the relative weights are 1.8, 1,
6 and 6.2. The lines do not represent the actual trajectory
of flight. Some lines have been curved to provide better
visibility.

The figure on the right side has an itinerary of 5 flight legs,
starting at WADD. From the predicted departures delays,
it is visible that the initial departure delay of 28 min-
utes escalates to 46, 52 and 86 minutes for the departure
in 2nd, 3rd and 4th flight leg. Thus, the weights on the
lines are 1, 1.6, 1.8, 3.07, which are proportional to the
predicted departure delays. From the ADS-B data, it is
observable that for the first three flight legs of this itinerary,
the scheduled turn around time are relatively shorter, which
leads to the cumulation of delays over subsequent flight
leg. The turn around time before the start of the 5th flight
leg is 2hours and 28 minutes, which helps in absorbing
the majority of the previously propagating departure delay.
These two cases highlight the instances where primary
departure delays visible magnify over the subsequent flight
legs.
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TABLE 6. Delay classification evaluation for the selected days. Acc – accuracy; Prec – precision; F1-S – F1 Score.

FIGURE 11. Delay multiplier calculated from the predicted reactionary delays for three of the chosen problematic days. Figures on
the left show the delay multipliers for each aircraft. Probability distribution of the delay multiplier values are plotted on the right.

The results on delays witnessed by each agent can
contribute to develop a global picture as to which air-
craft itineraries in a daily schedule witness significant

magnification of the primary delays into higher reactionary
delays Thus, the concept of delay multiplier [4] is invoked
to evaluate a ratio, based on the downline reactionary
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TABLE 7. Delay classification results for June and July 2016. Acc – accuracy; Prec – precision; F1-S – F1 Score.

departure delay over the subsequent flight legs of the air-
craft and its primary departure delay at the start of the
itinerary. The delay multiplier (D.M) can be described
as -

D.M = (Dp + DR)/Dp (4)

Here, DP is the primary departure delay and DR denotes the
reactionary departure delay. The D.M, here, measures the
ratio of the total departure delay in a flight’s itinerary to
the primary departure delay that it witnessed. Fig. 11 shows
the distribution of delay multipliers for 3 out of the 24 critical
days. It is evident from the probability distribution of the
delay multipliers that for these days, the majority of values lie
between 1 and 1.5. This implies that for most of the aircraft,
the primary departure delays do not significantly propagate
and magnify into reactionary delays. Someminority cases are
visible where D.M values are significantly higher, signifying
higher delay propagation over the subsequent flight legs as
reactionary delays.

V. CONCLUSION
Delays are inherent in an air transportation network and and
are detrimental to this transportation system as awhole. Flight
delays occur and propagate due to a multitude of factors and
identifying the major sources of delay can help in containing
delays, if not completely mitigating them. This paper presents
a multi-agent based method to predict the reactionary delays
in an airport network and adopts the SEA region a case study.
Each flight is modeled as an agent which operates in airport
environment.

Through this analysis, the reactionary departure delays in
an aircraft’s itinerary, emanating solely due to the primary
departure delay witnessed by flights at the beginning of
their first flight legs, are predicted. Each agent (flight), after
experiencing an initial primary departure delay, operates in
a dynamic airport environment consisting of other agents
arriving and departing at stipulated times. Through the com-
plex interaction of a multitude of agents with the airport
environment, the primary delay of agent cascades further
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TABLE 8. Delay classification results for September and October 2016. Acc – accuracy; Prec – precision; F1-S – F1 Score.

into reactionary delay. Such predictions can aid in better
flight schedule planning through prior knowledge of potential
delays on different flight legs, when the prediction of other
events which may cause delays, such as en-route weather,
airport services and equipment being unserviceable, are sig-
nificantly uncertain.

The results on classification of flights as delayed or
un-delayed show an average accuracy of 80.7% for a period
of 6 months with a delay threshold of 15 minutes. This
value is at par with the existing literature on delay propa-
gation prediction. This method utilizes the information of
the primary value of departure delay and the scheduled
arrival and departure times of the agents (flights), unlike
the other machine learning algorithms requiring multiple
features, training and test sets. The evaluation of the delay
multiplier for the SEA region highlights that the majority
of values are in the range of 1-1.5. As the values of D.M
increase, it suggests an increased contribution of the reac-
tionary delays to the overall delay associatedwith an aircraft’s
itinerary. In other words, magnification and cascading of
primary delays into reactionary components. The obtained

range of D.M (1-1.5) indicates that for the SEA region,
the primary delays do not significantly cascade and magnify
to reactionary delays for most aircraft itineraries. There are
some cases of itineraries where the magnified cascading
effect of primary delays are witnessed. This method also
enables evaluation of individual flight legs where the depar-
ture delay propagation is significantly high and at what stage
the delay is absorbed. For instance, in Fig. 10, for the itinerary
WADD-WMKK-WSSS-WADD-WIII, the departure delays
of 86minutes in the 4th flight leg is absorbed during the depar-
ture of 5th flight leg due to the turn around time of 2 hours and
28 minutes.

The methodology developed in this research is simple and
generic but is able to provide key insights on the case study
of the SEA Airport network and the behavior of delays in
this region. This research problem can further be fine tuned
by modelling the flight crew, ground staff and passengers
as agents affecting the delay and contributing to the delay
propagation effect. An analysis of these factors on individual
aircraft’s primary and reactionary delays can be done. Also,
with the information of passenger distribution to and from
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TABLE 9. Delay classification results for November and December 2016. Acc – accuracy; Prec – precision; F1-S – F1 Score.

flights, this research can be extended to evaluate delay prop-
agation trees originating from individual flights, i.e the effect
of delay of one flight on the other flights who have connecting
passengers from it.

ANNEX
The tables below show the classification accuracy for each
day, based on a delay threshold of 15 minutes.
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