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ABSTRACT Aiming at the situation that complementary ensemble empirical mode decomposition
(CEEMD) noise suppression method may produce redundant noise and wavelet transform easily loses
high-frequency detail information, considering wavelet packet transform can be used to perform better
time-frequency localization analysis on signals containing a large amount of medium and high frequency
information, according to the noise and useful signal components of both the characteristic of self-correlation
function is different, the CEEMD and wavelet packet threshold jointed method is proposed. The method
uses the energy concentration ratio to find noise and useful signal component demarcation point to denoise
the microseismic signals. Firstly, we utilize adaptively decompose the signal from high frequency to low
frequency by the CEEMD; Secondly, using the self-correlation method to select the intrinsic mode function
(IMF) that needs noise suppression, the wavelet suppression method is used to suppress the noise of
several high-frequency components whose self-correlation coefficient is below the critical value K; Finally,
the IMF component after the wavelet packet threshold noise suppression is reconstructed with the noise-
free IMF component. In order to verify the effectiveness of the proposed method on the noise suppression
of microseismic signal, we added a Gaussian white noise to the Ricker wavelet signal similar to the
microseismic signal. The experimental results show that the signal-to-noise ratio (SNR) of the signal is
raised more than 10dB. The energy percentage is higher than 92%. In practical engineering, our proposal
achieves an effective noise suppression effect on the microseismic signal.

INDEX TERMS Complementary ensemble empirical mode decomposition, wavelet packet threshold, self-
correlation, noise suppression.

I. INTRODUCTION
As the mining intensity of coal mines has increased year by
year, the impact of coal mine power disasters has become
more and more fierce, which has aggravated the impact
of ground pressure and increased mine pressure. The mine
operators have faced great challenges in coal mine safety
issues. In the last century, micro-seismic monitoring tech-
nology of digital mines began to emerge. Many countries

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

have established mine microseismic monitoring networks,
which have been widely used in earthquake pressure predic-
tion [1]–[4]. Because the coal rock damage is mostly micron-
level vibration intensity, the signal is very weak, and the
external noise causes the received signal to always be mixed
with noise, which makes the signal’s effectiveness greatly
reduced [5]–[9]. In order to improve the effectiveness of coal
and rockmicroseismic signals, it is necessary to make full use
of noise suppression means to suppress the signal [10]–[14].
The noise suppression of the noisy microseismic signal can
better provide real and effective signals to reduce the noise
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signal interference for the subsequent work such as the initial
phase picking, the source location, and the focal mechanism
interpretation.

Microseismic signals are characterized by randomness and
non-stationarity. Many signal noise reduction methods have
been proposed, among which the empirical mode decom-
position method and wavelet transform method are the two
methods that have great influence [15]–[21]. In the coal rock
microseismic signal, the noise is concentrated in the high
frequency part, and the useful signal is concentrated in the low
frequency part. EMD(Empirical mode decomposition) can
decompose the signal into a series of sub-signals of IMF. Each
IMF is a different function component, which can describe
the input signal at different scales. After Hilbert transform,
the instantaneous properties with obvious physical meaning
can be obtained [21]–[23]. Meanwhile, EMD has the charac-
teristics of orthogonality, self-adaptation completeness, etc.,
and is suitable for nonlinear analysis. However, when the
IMF component of a certain frequency band in the signal
is discontinuous or there is intermittent signal noise inter-
ference, modal aliasing occurs, which reduces the accuracy
of the decomposition. In order to solve the modal aliasing
phenomenon, Peng Ping et al. proposed the EEMD(Ensemble
empirical mode decomposition), by adding white noise to
the signal, changing the signal extreme point distribution,
and obtaining the upper and lower envelopes in accordance
with the signal characteristics, eliminating the modal aliasing
effect, but EEMD is not good for signal reconstruction [24].
The CEEMD method can effectively solve the problem of
large reconstruction error caused by noise pollution in the
EEMD method by adding positive and negative paired aux-
iliary noise. The essential decomposition process of the
CEEMD method has not changed. It is still independent
of EMD decomposition after adding positive and negative
pairs of auxiliary noise. Finally, the corresponding order IMF
component of each implementation is used as the final result,
but its decomposition. Part of the random noise information
still exists in the obtained single IMF component, and the
improper setting of the auxiliary noise parameter will cause
the number of IMF components to be inconsistent.

The wavelet transform method is suitable for non-
stationary and nonlinear signals and also has advantages in
local information processing. Some scholars have proposed
combining the CEEMD method with the wavelet transform
method to perform noise suppression on microseismic sig-
nals. Compared with the single CEEMD method and the
separate wavelet transform method, this combination method
has a better effect on the suppression of micro seismic
signal noise [25], [26]. However, using the wavelet trans-
form method to perform threshold denoising on the high-
frequency IMF component decomposed by CEEMD still
loses some high-frequency detail information, and the use-
ful signal is still incomplete. And the wavelet transform
method adaptability is poor. When wavelet decomposition is
performed, only low frequency is decomposed, resulting in
high-frequency detail information loss. The wavelet packet

transform can provide a more detailed decomposition of
the signal, and this decomposition has neither redundancy
nor omission, so it can also perform better time-frequency
localization analysis on signals containing a large amount of
medium and high frequency information.

Therefore, we proposed the CEEMD global threshold
and wavelet packet transform combined noise suppression
method based on self-correlation function to suppress the
noise of coal rock microseismic signals. The idea is as fol-
lows: Firstly, the CEEMD method is used to decompose the
micro-seismic signals of the noisy coal rock into several IMF
components. Secondly, the IMF component with more noise
is determined by the characteristics of self-correlation func-
tion, and then we use the wavelet packet threshold method to
suppress the noise of the IMF component with more noise.
Finally, the IMF component after wavelet packet threshold
denoising is reconstructed from the remaining IMF compo-
nent after CEEMD decomposition without noise suppression,
to achieve the purpose of noise suppression.

II. RELATED WORK
A. CEEMD PRICIPLE
CEEMD is based on the improved EMD method, which
overcomes the modal aliasing problem of EMD and retains
the processing advantages of EMD for nonlinear signals. The
CEEMD method adds auxiliary noise in the form of positive
and negative pairs, which eliminates the residual auxiliary
noise in the reconstructed signal, and the number of added
noise sets can be low and the calculation efficiency is high.
CEEMD includes the following steps:
Step 1 : Add n sets of auxiliary white noise in positive and

negative pairs in the original signal to generate two sets
of IMFs. (

m1
m2

)
=

(
1
1

1
−1

)(
x (t)
n (t)

)
(1)

where x(t) is the original signal; n(t) is the auxiliary
noise, the amplitude of which can be selected from
0.2 to 0.5 times the standard deviation of the original
signal or can be appropriately adjusted and increased
with the intensity of the noise; The m1 and m2 are
respectively added to the positive and negative paired
noise signal, so that the number of sets of signals is 2n;

Step 2: EMD decomposition is performed on each signal in
the set, and each signal obtains a series of IMF compo-
nents, where in j-th IMF component of the i-th signal is
imfij(t) ;

Step 3: Then average the multi-component quantity combi-
nation

imfj(t) =
1
2n

2n∑
i=1

imfij(t) (2)

where imfj(t) is the j-th IMF component of the signal
after CEEMD decomposition. The method ensures the
completeness of the signal decomposition, can better
solve the modal aliasing effect, and the calculation effi-
ciency is greatly improved.
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FIGURE 1. CEEMD decomposition results and their corresponding spectrum.

In this paper, CEEMD is used to decompose the original
noisy signal into multiple IMF components, and then use
the wavelet packet threshold method to perform noise sup-
pression. We can visually see from Fig. 1 that each IMF
component and spectrogram of the noisy signal after CEEMD
decomposition.

B. THE PRINCIPLE OF WAVELET PACKET NOISE
SUPRESSION
The basic principle of wavelet packet threshold denoising is
to first decompose the input signal into wavelet packet, obtain
the wavelet packet coefficient. And then select an appropriate
threshold, and process the coefficients generated after the

wavelet packet decomposition according to the threshold
function. If the wavelet packet coefficient is smaller than
Threshold, the wavelet packet coefficient is considered to be
caused by noise, and the partial coefficient is removed. If
the wavelet packet coefficient is greater than the threshold,
then the coefficient is considered to be caused by the sig-
nal, and the wavelet packet coefficient is retained. Finally,
thewavelet packet coefficients obtained after thresholding are
reconstructed to obtain the denoised signal.

The formula for a continuous wavelet transform for any
function is:

WTx (a, b) =
1
√
|a|

∫
+∞

−∞

x (t)ψ∗
(
t − b
a

)
dt (3)
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FIGURE 2. Schematic diagram of wavelet packet decomposition.

where ψ∗(t) is the conjugate of the mother wavelet func-
tion; a is the scale parameter; b is the translation parameter;
WTx(a, b) is the continuous wavelet transform.

In the continuous wavelet, the scale parameter a and the
translation parameter b are discretized separately, and a = aj0,
b = maj0b0, j ∈ Z , m ∈ Z , a0 6= 1 are taken.
Then the wavelet basis function is:

ψj,k (t) = a−j/20 ψ
(
a−j0 t − mb0

)
(4)

Discrete wavelet transform:

WTx (j,m) =
∫
+∞

−∞

x (t)ψ∗j,m (t) dt (5)

Wavelet decomposition is an effective time-frequency
analysis method, its disadvantage is that it only partially
decomposes the low-frequency information, but the high-
frequency components are not processed, so the resolution is
poor. The wavelet packet further decomposes the undecom-
posed high frequency portion, and the time-frequency reso-
lution is improved. Therefore, wavelet packet decomposition
is a more effective method [27]–[31].

The function calculation method of wavelet packet decom-
position is:

di,j,2n =
∑
n

h (k − 2i) dk,j+1,n

di,j,2n+1 =
∑
n

g (k − 2i) dk,j+1,n
(6)

The calculation method of the reconstruction function of
the wavelet packet is:

di,j+1,2n =
∑
n

h (i− 2k) dk,j,n +
∑
n

g (k − 2i) dk,j+1,n

(7)

where di,j,2n is the i-th wavelet packet coefficient of the
nth node of the j-th layer; h(k) and g(k) are the expansion
coefficients.

Figure 2 is a schematic diagram of three-layer wavelet
packet decomposition. Through experimental analysis,
we decompose the signals with 2, 3, 4, and 5 layers respec-
tively, and find that the signal-to-noise ratio (SNR), energy
percentage (ESN), and root mean square error are the highest.
RMSE) is the smallest, so the 3-layer decomposition is cho-
sen to achieve the desired effect. S is the original signal, S1,1

is the high frequency component, S1,2 is the low frequency
component, S1,1 is further divided into S2,1, S2,2 ; S1,2 is
further divided into S2,3, S2,4 ; according to this rule, it is
sequentially decomposed step by step.

After the signal S is decomposed by the n-layer wavelet
packet, it can be expressed as:

S = SN .1 + SN .2 + ...+ SN .2N−1 + SN .2N (8)

In formula (8), SN .1, SN .2, . . . , SN .2N−1, SN .2N represents
2N sub-bands decomposed by the n-layer wavelet packet. The
2N sub-bands effectively retain the useful part of the original
signal. The noise is concentrated in the high-frequency part,
but the low-frequency part still retains part of the noise.
Therefore, the wavelet packet threshold noise reduction must
be performed on the 2N sub-bands.

The wavelet packet threshold method is extremely impor-
tant in terms of threshold selection. Soft thresholdmethod and
hard threshold method have good noise suppression effect in
practical applications, but the traditional soft and hard thresh-
old noise suppression adopts fixed threshold method, which
has many shortcomings [32]. The hard threshold is widely
used because it can effectively maintain the signal amplitude,
but the hard threshold reconstruction signal is discontinuous
at the threshold point and will oscillate, and there is a Pseudo-
Gibbo phenomenon. The soft threshold method overcomes
the shortcomings of signal discontinuity, but does not have the
advantage of maintaining a hard threshold. There is a constant
deviation between the wavelet estimation coefficient and the
wavelet coefficient [33]. Both the soft threshold method and
the hard threshold method have discontinuities and signal
distortion problem.

We assume that ωi,t is the original wavelet packet coeffi-
cient, ω̂j,k is the wavelet packet coefficient after thresholding,
i and t are wavelet packet nodes, λ is the threshold, and
sgn (ωit) is the sign function. The soft and hard threshold
function expressions are as follows:

The hard threshold function is:{
ω̂i,t = ωit , |ωit | ≥ λ

ω̂i,t = 0,
∣∣ωi,t ∣∣ < λ

(9)

The soft threshold function is:{
ω̂i,t = sgn (ωit) (|ωit | − λ) , |ωit | ≥ λ

ω̂i,t = 0,
∣∣ωi,t ∣∣ < λ

(10)

In order to eliminate the problem of soft threshold noise
suppression method and hard threshold noise suppression
method, scholars have proposed an improved threshold func-
tion [34]:{

ω̂it = sgn
(
ωi,t

) (∣∣ωi,t ∣∣− αλ) , ∣∣ωi,t ∣∣ ≥ λ
ω̂it = 0,

∣∣ωi,t ∣∣ < λ
(11)

When α → 0, the threshold function is a hard threshold;
when α → 1, the threshold function is a soft threshold
function. This function is actually a soft-hard threshold com-
promise function, and different noise suppression effects can
be obtained by adjusting the value.
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FIGURE 3. Comparison of three wavelet threshold functions.

The three threshold functions of the hard thresholdmethod,
the soft threshold method and the improved threshold method
are shown in Figure 3, in which the abscissa is the original
wavelet coefficient and the ordinate is the coefficient obtained
by the threshold function processing.

C. SELF-CORRELATION ANALYSIS
According to the decomposition step of CEEMD in section
1.1, the signal is decomposed into IMF components with
frequencies from high to low. In actual engineering, the noise
tends to be characterized by high frequency. If the boundary
point K of the high frequency and low frequency IMF com-
ponents can be determined and the useful signal contained in
the high frequency IMF can be picked up, the useful signals
can be reconstructed by superimposing the low frequency
IMF to achieve the noise suppression purposes. In this paper,
the different characteristics of the noise signal and the useful
signal self-correlation function are used. The boundary point
K is determined by combining the energy ratio, and the noisy
signal IMF component to be processed is obtained [35].

1) SELF-CORRELATION FUNCTION AND ENERGY
CONCENTRATION RATIO
The self-correlation function of the random signal reflects
the degree of similarity between the signal and its own at
different points in time. It is a measure of the time domain
and is defined as:

Rx (t1, t2) = E [x(t1)x(t2)] (12)

where a is a random signal and the normalized self-
correlation function appears as:

ρx (t1, t2) =
Rx (t1, t2)
Rx (0)

(13)

where Rx (0) represents the value of the correlation function
of the signal at the same time as itself. Obviously, any random
signal has a maximum value.

It is considered that the white noise is different from the
normalized self-correlation function of the general signal.
The normalized self-correlation function value of random
noise is the largest at zero, and the other points are immedi-
ately attenuated to zero. However, the general signal normal-
ized self-correlation function value is the maximum at zero
but does not immediately decay to zero, which is a process of

slow decline. Since the randomness of the values of random
noise at each time point is weakly correlated, the value of
each time point of the general signal has a certain correlation,
which is characterized by strong correlation.h(x)T
How to accurately determine the self-correlation of random

signals from the whole, and give the definition of energy
concentration ratio: the ratio of the energy of a random signal
over a certain period of time to the energy of the whole signal,
which is expressed as:

ηx (t1, t2) =
Ex (t1, t2)
Ex (t)

=

∫ t2
t1
x2 (t) dt∫

∞

t x2 (t) dt
(14)

where x(t) is a random signal, if it is a discrete sequence, then
equation (15) is expressed as:

ηx (n1, n2) =
Ex (n1, n2)
Ex (n)

=

n2∑
n1
x2 (n)∑

n
x2 (n)

(15)

After the signal is decomposed by CEEMD, a set of
IMF components is obtained. The normalized self-correlation
function corresponding to the IMF component can be
regarded as a set of random sequences. Calculating the
energy concentration ratio of the interval near the zero point,
the sequence can be judged to be at zero. The degree of energy
concentration in the nearby interval, and then the magnitude
of the self-correlation of the IMF components.

2) DETERMINATION OF THE K VALUE OF THE BOUNDARY
POINT
Calculate the coefficient on the basis of equation (16):

ρj =

∣∣∣∣∣ηj(Vn)− 1
j−1

j−1∑
i=1
ηi(Vn)

∣∣∣∣∣
ηj(Vn)

(16)

where ηj(Vn) is the energy concentration ratio of the j-th
IMF normalized self-correlation function on the interval
[V− n,Vn]. Obviously, if the first j-1 IMFs are noise func-
tions, then the value of ρj−1 is close to 1, and the value of
p is significantly larger than 1. Because it indicates that the
self-correlation of the j-th IMF is less than half of the average
value of the first j-1 IMFs when ρj ≥ 1. Accordingly, the first
j-1 IMFs are noise functions, and the cut-off point K is the j.
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FIGURE 4. Flow chart of noise suppression based on CEEMD and wavelet
packet threshold.

D. NOISE SUPPRESSION STEP
In this paper, CEEMD is combined with the wavelet packet
threshold noise suppression method. The implementation
steps of the noise suppression method are described as fol-
lows:
Step1: The original signal f (t) is decomposed into

n IMFs by CEEMD, which called as Ω , Ω =

{IMF1,IMF2,. . . ,IMFn}.
Step2: Calculating the K value by self-correlation anal-

ysis to determine the IMFs that need to perform
noise suppression, which called as δ, δ ={IMF1,
IMF2,. . . ,IMFk}.

Step3: The wavelet packet improved threshold method is
used to suppress the noise of the selected δ.

Step4: Reconstructing the noise-suppressed IMFs after the
wavelet threshold noise suppression and the CEEMD-
decomposed IMFs without noise suppression to obtain
the noise-suppressed signal I (t).

The flow chart is shown in Figure 4.

FIGURE 5. Ricker wavelet signal. (a) The waveform of signal f (t); (b) The
time spectrum of signal f (t); (c) The waveform of signal f ′(t); (d) The time
spectrum of signal f ′(t).

III. SIMULATION EXPERIMENT AND ANALYSIS
Since the Ricker wavelet has similar characteristics to the
seismic signal, we use Ricker wavelet to verify the perfor-
mance of the selected method. The mathematical expression
of the synthetic Ricker wavelet can be expressed as:

s (t) = exp

(
−

(
2π fp
r

t
)2
)
cos 2π fpt (17)

where t represents time; fp represents peak frequency; r
represents wavelet width. In the simulation analysis, fp =
30Hz, r = 3 is taken, the sampling frequency is 1000Hz, and
the number of sampling points is 1000. Add Gaussian white
noise to the simulated signal f (t) to make its signal-to-noise
ratio 5dB, which is recorded as f ′(t) . The waveform of the
simulated signal f (t) and the noisy signal f ′(t) and its time
spectrum are shown in Figure 5.

We use the CEEMD method, the wavelet packet threshold
noise suppression method, and the method of this paper to
suppress the noise of the noisy Ricker wavelet signal f ′(t),
as shown in Figure 6.

Figure 6 shows that the noise suppression method of this
paper is more stable than the CEEMD noise suppression
method or the wavelet packet transform method. The noise-
suppressed signal waveform is smoother than before without
suppression. The noise-suppressed signal is basically consis-
tent with the original signal in terms of overall characteristics
and peak value, and the noise suppression effect is more
obvious.

In order to further prove the noise suppression effect of
we proposed in this paper, the signal-to-noise ratio (SNR),
the root mean square error (RMSE) and energy percentage
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FIGURE 6. Comparison of three noise suppression for noisy Ricker wavelet. (a) The waveform of noisy signal; (b) Signal waveform after noise
suppression using CEEMD method; (c) Signal waveform after the noise suppression using wavelet packet method; (d) Signal waveform after noise
reduction using proposed method; (e) Time-frequency spectrum of noisy signal (a); (f) Time-frequency spectrum of signal (b); (g) Time-frequency
spectrum of signal (c); (h) Time-frequency spectrum of signal (d).

TABLE 1. Comparison of noise Suppression results of three different methods.

(Esn) are used as indicators of noise suppression.

SNR = 10 log10

[
N∑
i=1

y2i
(xi − yi)2

]
(18)

The root mean square error formula is:

RMSE =
1
N

√√√√ N∑
N=1

|yi − xi|2 (19)

The formula for the energy percentage of the signal after
noise suppression and the original signal is:

Esn =

(
N∑
i=1

|xi|

)/(
N∑
i=1

|yi|

)
(20)

In equations (18), (19), and (20), yi is the original signal, xi
is the signal after noise suppression, and N is the number of
samples. The SNR, RMSE, and Esn before and after the signal
f noise suppression are calculated using equations (18), (19),
and (20), respectively.

As shown in Table 1, the CEEMD, wavelet packet thresh-
oldmethod and themethod of this paper respectively suppress

TABLE 2. Noise suppression Results of four noisy signals.

the noise of the signal with 5 dB Gaussian white noise.
Through the noise suppression signal of this method, the SNR
and Esn after noise suppression are obviously improved. The
RMSE is significantly reduced.

In order to quantitatively analyze the effect of the method,
Gaussian white noise of F: 0, 5, 10, 15 (SNR/dB) is added
respectively to verify the indicators, and then the effective-
ness of the noise suppressionmethod is demonstrated.We use
F1, F2, F3 and F4 respectively to represent the noise adding
0, 5, 10, 15dB. Table 2 is quantitative analysis experiment.

It can be seen from Table 2 that after applying the method
of we proposed, the SNR of the four groups of signals is

176510 VOLUME 7, 2019
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FIGURE 7. Comparison of three noise suppression for microseismic signals. (a) The original microseismic waveform of signal g′(t); (b) The waveform
of signal g′(t) after noise suppression using CEEMD method; (c) Waveform of the signal g′(t) after noise suppression using wavelet packet method;
(d) The waveform of the signal g′(t) after noise suppression using proposed method; (e) Time-frequency spectrum of signal g′(t); (f) Time-frequency
spectrum of signal (b); (g) Time-frequency spectrum of signal (c); (h) Time-frequency spectrum of signal (d).

increased to more than 10 dB, the RMSE is significantly
smaller, and the energy percentage is maintained above 90%.
Even in the case of a strong noise with SNR = 0 dB,
the signal-to-noise ratio is increased to 11.344 dB, the root
mean square error is reduced to 0.03, and the energy per-
centage is still maintained at 90.23%. It can be seen that
the noise-reduced signals have higher signal-to-noise ratio,
lower root mean square error and higher energy percentage,
which proves the rationality and effectiveness of the noise
suppression method.

IV. APPLICATION EXAMPLES
The experimental data comes from the microseismic mon-
itoring data of a coal mine in central China. The sampling
frequency of the signal is 1 kHz. Four noisy signals (Marked
as S1, S2, S3, S4) are selected for comparative experimen-
tal analysis. Each group of signals is intercepted by the
equal length of 4000 sampling points collected by the shock
absorber. Take S1 as an example for analysis, and S1 is
recorded as g′(t). The CEEMD and wavelet packet thresholds
are implemented by MATLAB programming. The proposed
method performs noise suppression experiments on q respec-
tively. The waveforms and time-frequency diagrams before
and after noise reduction are shown in Figure 7.

It can be seen from Figure 7 that the time-spectrum (e)
of the micro seismic signal g′(t) contains a large amount of
random noise. Although the dominant spectral distribution
of the useful signal can be seen from the time spectrum,

the dominant spectral distribution is not obvious due to noise
interference. Submerged in the noise, this will cause inter-
ference to the subsequent calculation of the energy of the
microseismic signal and the interpretation of the focal mech-
anism. Therefore, noise suppression processing is required.
The microseismic signal waveform (d) is clearer than that
before noise suppression and is better than the other two
methods. The dominant spectrum distribution in the time
spectrum is also more obvious. Do the same for S2, S3,
and S4, and then calculate the SNR, Esn, and RMSE of the
four groups of signals by equations (18) and (19) and (20),
respectively. Experimental indicators are shown in Figure 8.

It can be seen from Figure 8(a) that the signal-to-noise ratio
of the four groups of signals after noise reduction reaches
13.73dB, and the SNR of the signal S4 after noise reduction
is also 8.51dB. It can be seen from Figure 8(b) that the
maximum value of the signal after the noise suppression is
92.03%, and the minimum value is 87.56%, which is close
to the original signal energy. It can be seen from Figure 8(c)
that the RMSE of the four sets of signals does not exceed
0.07. In order to further illustrate the noise suppression effect,
we randomly selected 30 microseismic data from June to
September of this coal mine for the above analysis. The SNR
and Esn distribution of the microseismic signal after noise
suppression are shown in Figure 9.

Figure 9 shows that after 30 microseismic signals are
denoised, the SNR is between 11dB and 20dB. The 10th
group signal has a maximum SNR of 19.87dB, and the
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FIGURE 8. Noise suppression results of microseismic signals. (a) SNR of four microseismic signals; (b) Esn of four microseismic signals; (c) RMSE of four
microseismic signals.

FIGURE 9. The results of noise suppression of 30 microseismic signals selected randomly by the proposed method.

FIGURE 10. RMSE of 30 microseismic signals selected randomly after noise suppression by three different
methods.

2th group signals has a minimum SNR of 11.15dB; Esn
is between 89% and 99%, with the 10th group having the
highest Esn of 98.82% and the 18th group having the low-
est Esn of 88.35%. In order to verify the stability of the
proposed method, we also calculated the distribution of the
RMSE of the 30 sets of signals after noise suppression.
From Figure 10, we can clearly see the overall distribu-
tion of the RMSE of the proposed method is lower than

CEEMD or wavelet packet transform method. In summary,
the noise suppression method based on CEEMD and wavelet
packet threshold combined in this paper has a high SNR and
Esn, and the validity and practicality of the noise reduction
method are proved quantitatively. Themethod proposed by us
can provide a real and effective signal source for the follow-
up work of the first phase of the earthquake, the location of
the source, and the interpretation of the focal mechanism.
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V. CONCLUSION
Aiming at the shortcomings of the separate CEEMD decom-
position method and wavelet packet threshold method,
a micro-seismic signal noise suppression method based
on CEEMD wavelet packet threshold is proposed. At the
same time, the self-correlation function and the improved
wavelet packet threshold function are introduced. After the
micro seismic signal is decomposed by CEEMD, the self-
correlation function is used to more accurately determine
the noise of each signal by the self-correlation coefficient
between the microseismic signal and the IMF obtained by
the decomposition. For the larger self-correlation coefficient,
wavelet is adopted. The packet threshold noise is suppressed,
and finally the wavelet packet threshold noise suppressed sig-
nal and the no de-noising IMF component are reconstructed,
and then a useful coal rock microseismic signal is obtained.
Through experimental analysis and engineering application,
it can be found that the noise suppression effect of this method
is better than the single CEEMD method and wavelet packet
threshold method.
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