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ABSTRACT Real-time locating and tracking Technology plays a significant role in location-based IoT
applications. With the extensive installation of WiFi access points, the WiFi based indoor positioning
approach has become one of the most widely used location technologies. However, due to the limitations of
wireless signals, the classic WiFi-based method has become labor-intensive. Recently, the WiFi-based two-
way ranging approach was introduced into the 802.11-REVmc2 protocol, which is built on a new packet type
known as fine timingmeasurement (FTM) frame. In this work, we introduce the round-trip timemeasurement
with clock skew and analyze the distribution of the round trip time (RTT) ranging error. A calibration method
is presented to eliminate the RTT range offset at the transmitter end. We also develop an integrated ranging
algorithm based on theWiFi round trip time range and received signal strength to enhance the scalability and
robustness of the positioning system. The experimental results demonstrate that the proposed fusion method
achieves remarkable improvement in scalability and precision in both static and dynamic tests, including
outdoor and indoor environments. Compared with the classic fingerprinting approach, the performance of
the system is remarkably improved, and achieves an average positioning accuracy of 1.435 m with an update
rate of every 0.19 s.

INDEX TERMS Indoor localization, smartphone, WiFi fine time measurement (FTMs), round trip time
(RTT), received signal strength (RSS), Kalman filter.

I. INTRODUCTION
With billions of units in everyday use throughout the world,
the smartphone has become a highly popular personal com-
munication, ubiquitous computing, and entertainment plat-
form. Many free and handy location-based applications offer
great convenience for users in their daily lives. As the foun-
dation of location-based services (LBS), accurate position
information in the outdoors can be obtained from the Global
Navigation Satellite System (GNSS). It is also true that a
strong demand exists for a localization capability that can
operate in buildings, both for individual users and Internet
of Things (IoT) applications. As a high-interest research
topic in academic and industrial field, real-time locating and
tracking technology (RTLTT) has attracted the attention of
many scholars who devote time and study to this area and are
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expected to play a pivotal role in the upcoming era of artificial
intelligence (AI).

The current smartphone-based RTLTT can be divided
into three categories: radio frequency (RF)-based methods,
sensor-based methods and data fusion methods. The RF-
based methods rely on wireless communication signals to
locate and track the smartphone, including cellular [1]–[4],
Wi-Fi [5]–[22], Bluetooth Low Energy (BLE) [23]–[26],
Radio Frequency Identification (RFID) [27]–[29]. These
approaches are based on different observations such as signal
coverage, received signal strength (RSS), range (via time
of arrival or round-trip time), range difference (via time
difference of arrival) and direction (via angle of arrival).
The sensor-based methods use smartphone built-in sensors
to estimate the absolute or relative position. For example,
the inertial navigation system (INS) [28], [30], [31] and
pedestrian dead reckoning (PDR) [32]–[35] algorithms
use measurements from the accelerometer, gyroscope,
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magnetometer and barometer to estimate the relative dis-
placement of the target. Magnetic matching (MM) meth-
ods [36]–[41] use the intense magnetic field interference
and anomalies caused by the metal structure of the building
to estimate the locations. Speaker/microphone-based ultra-
sonic (US) location systems [42]–[44] rely on the time of
flight (TOF) or time difference of arrival (TDOA) measure-
ments of US signal, which enabling centimeter- or decimeter-
level location accuracy. Visual positioning systems [45]–[47]
locate a camera by matching a captured image with a previ-
ously geo-referenced image database or 3D models. Because
each RTLTT has advantages and limitations, multi-sensor
fusion methods [28], [48]–[53] are used to leverage the
best features of each type of location-dependent observation
and have become mainstream methods for indoor pedestrian
localization. However, due to the complexity of the indoor
environment and channel circumstances, as well as the unpre-
dictability of user behavior, no one ubiquitous solution exists
for indoor positioning similar to that of GNSS.

Recently, the WiFi-based two way ranging (TWR)
approach found its way into the 802.11-REVmc2 proto-
col [54], which is built around a new packet type called a fine
timing measurement (FTM) frame. Compared with TOA and
TDOA, one of the most significant benefits of the RTT tech-
nique is that no clock synchronization is needed between the
transmitter and receiver, which reduces the complexity and
remarkably enhances the reliability of the indoor positioning
system. Additionally, under the assumption that the clocks
run at the same rate on the transmitter and receiver, the RTT
ranging error and range between the two devices are nearly
independent. Although the standardized FTM protocol can
offer high-resolution ranging measurement and a high update
rate compared with classic fingerprinting methods, the RTT
range still encounters the following limitations:
• Similar to other wireless signals, RTTmeasurement also
suffers from reflection, fading and shadowing in indoor
environments.

• Due to the presence of phase noise, the clock cannot
operate at an absolutely stable and accurate speed, which
results in time measurement error at both the transmitter
and receiver.

• The differences in the chipset hardware and firmware of
WLAN cards at the transmitter end result in different
processing time delays, which should not be included in
the RTT measurement.

• As a point-to-point, single-user protocol, the FTM pro-
tocol is limited to concurrent processing capacity [55].
An AP cannot simultaneously respond to large numbers
of FTM requests.

In this work, we aim to develop an integrated ranging algo-
rithm based on the WiFi round trip time range and received
signal strength to enhance the scalability and robustness of
the positioning system. The architecture of the proposed
positioning system on a smartphone is illustrated in FIGURE
1. Because of the presence of phase noise, the clock cannot
operate at an absolutely stable and accurate speed. Therefore,

FIGURE 1. Scheme of positioning system.

the first task is to analyze the time surveying error caused by
the clock skew in the RTT time measurement. Using a clock
model, we also analyze the distribution of the RTT ranging
error, which can be modeled as a Gaussian random process
with zero mean and variance σ 2. Additionally, although the
fine timing measurement frame is standardized in the 802.11-
REVmc2 protocol, the differences in the network-card hard-
ware and firmware results in processing delay [56], [57],
which should not be counted in the RTT measurement. The
RTT range offset caused by this delay in a transmitter is
calibrated to further improve the accuracy of the RTT range.
Finally, to address the limitation of RTT ranging, a scalar
Kalman filter [58] is presented for fusion of the calibrated
RTT range and RSS. Relying on the three remarkable char-
acteristics of the Kalman filter, i.e., data filtering, smoothing
and prediction, the proposed ranging method shows remark-
able improvement in scalability and precision in both static
and dynamic tests. The position accuracy, robustness and
update rate of the system are notably improved in the real
indoor environment, particularly compared with those of
classic fingerprinting approach. Furthermore, the proposed
method can complement the availability of the positioning
system when a FTM request is denied.

In summary, the major contributions of this paper are listed
as follows:
• We introduce round-trip time measurement with clock
skew and analyze the distribution of the RTT ranging
error which can be modeled as a Gaussian random pro-
cess with zero mean and variance σ 2.

• Proceeding from the differences in transmitter hardware,
we analyze the range offset caused by processing delay.
A calibration approach is proposed to further improve
the accuracy of the RTT range.

• The proposed ranging method shows remarkable
improvement in scalability and precision in both static
and dynamic tests, including outdoor and indoor envi-
ronments.

• The position accuracy, robustness and update rate of
the system are significantly improved in the real indoor
environment, particularly comparedwith those of classic
fingerprinting approach.

The remainder of this paper is organized as follows: Related
works are summarized in Section II. Section III analyses
the Wi-Fi signal observation in this paper, and Section IV
describes the proposed integrated strategy of RTT range and
RSS for indoor localization. Section V discusses the experi-
ments and results. Section VI and VII provide a discussion
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and conclusion of the whole work, respectively, and give
suggestions for future research.

II. REKATED WORKS
A. INDOOR POSITIONING TECHNOLOGIES BASED ON
WIFI
The current WiFi based indoor positioning systems can be
divided into two categories: fingerprinting and multilatera-
tion approaches.

1) FINGERPRINTING-BASED APPROACH
As one of the popular approaches for indoor positioning,
fingerprinting-based methods offer many advantages, i.e.,
they are easily realizable and infrastructure-free. For these
approaches, the two steps of offline database-building and
online location estimation are necessary. In offline database-
building, time-series RSS [5]–[11] measurements or channel
state information (CSI) [12]–[14] data are collected at the
reference points to build the wireless fingerprinting database.
In real time location estimation, the location is estimated by
matching the real-time signal measurement with the previ-
ously built fingerprinting database.

RADAR [5] is the first RSS-based fingerprinting system
that uses a K-nearest neighbor (KNN) algorithm to esti-
mate the location indoors. A weighted K-nearest neighbor
(WKNN) [6] algorithm and a feature scaling-based K-nearest
neighbor (FS-KNN) [7] method are proposed to improve the
accuracy of the classical KNN algorithm. Hu [8] proposed a
self-adaptive weighted KNN algorithm in which adapts with
the RSS observation. Furthermore, Horus [9] used a proba-
bilistic method for indoor positioning with RSS observation.
Bayesian approaches [10], [11] have been used to enhance
the quality fingerprinting database via a large number of
data samples. In addition, PhaseFi [12] uses a deep network
instead of the fingerprinting database and estimates the loca-
tion using a radial basis function (RBF)-based probabilistic
method. FIFS [13] utilizes the weighted average CSI values
over multiple antennas to improve the performance of RSS-
based method for indoor fingerprinting. DeepFi [14] learns a
large amount of CSI amplitude data from three antennas for
indoor localization based on a deep network.

However, both RSS-based and CSI-based fingerprinting
methods have certain drawbacks. Large numbers of sam-
ples are needed to build a fingerprinting database, which is
time-consuming and labor-intensive. Worse still, the radio
map always suffers from the changing indoor environment.
To maintain the positioning accuracy, the database must be
updated constantly, and differentiation of mobile terminals
also influences the positioning accuracy both online and
offline.

2) TRILATERATION/MULTILATERATION APPROACHES
The trilateration method uses the geometric properties of tri-
angles to estimate the target location [15]. These approaches
rely on the ranges between the transmitter and receiver, and

FIGURE 2. Multilateration, the process of converting ranges to a position.

need to survey the transmitter locations for position estima-
tion. As shown in FIGURE 2, the 2D position of a smartphone
X = (x, y) can be estimated from at least three ranges:

X = (ATA)−1ATL

A = 2

 x1 − x2 y1 − y2
...

...

x1 − xk y1 − yk


L =

 Range
2
2 − Range

2
1 − (x22 − x

2
1 )− (y22 − y

2
1)

...

Range2k − Range
2
1 − (x2k − x

2
1 )− (y2k − y

2
1)

 (1)

where (xk , yk) represents the location of APk , and Rangek is
the measuring distance between the APk and the smartphone.

The RSS value attenuates rapidly with increasing range
between the transmitter and receiver. Therefore, use of this
rule can convert the RSS observation into a range. However,
because the propagation channel is severe and the spatial
topology is complex indoors, the attenuation rule is difficult
to determine. In one-way ranging or TOA [16]–[18], [59],
the separation between the transmitter and receiver is cal-
culated using the travel time and speed of the signal.
TDOA [19]–[21], uses the measurement of propagation time
difference to calculate the range difference and estimate the
location. Compared with the RSS-based ranging method,
the time-based ranging system can obtain a higher accuracy
and update rate. However, precision of time surveying and
clock synchronization results in the limitation of system
robustness and availability. With the increase in the size of
the system, the complexity of the hardware and positioning
algorithm also increase, which makes the system complex,
expensive and fragile in dynamic indoor environments [48].

B. FINE TIMING MEASUREMENT
The IEEE 802.11 working group approved amendment
802.11-REVmc2 for the WiFi standard in 2016. A new
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WiFi-based TWR approach was included in this amendment.
In this technique, a smartphone initiates the FTM process
by sending an FTM request to an access point (AP). The
AP and smartphone start to send the FTM message and wait
for its acknowledgement packet while the transmission and
reception timestamp of each are recorded. This protocol is
a ping-pong approach that calculates the propagation time
by measuring the time it takes for a packet to be sent from
an AP to a mobile and back again [22]. The round-trip time
(RTT) is estimated based on the transmission timestamp of
the FTM message and the reception of its ACK. FIGURE
3 shows an example of one burst with 1 FTM message. The
RTT is calculated for an FTM message as follows:

RTT = (t4 − t1)− (t3 − t2) (2)

Thus, the distance between the AP and smartphone can be
obtained as follows:

RangeRTT =
RTT
2
· c (3)

III. ANALYSIS OF WIFI SIGNAL OBSERVATIONS
A. CLOCK MODELING
The combination of an oscillator and counter constitute a
clock which is a device used to measure time. An oscillator
is an electronic circuit designed to generate periodic signals,
usually a sinusoidal waveform. An ideal oscillator generates a
pure sine wave, but phase noise (a ubiquitous common noise
that exists in oscillators in practice) means that the oscillator
cannot produce a pure sine wave. Usually, the noise is similar
to the oscillation frequency and cannot be removed from the
oscillation signal. This noise is referred to as oscillator phase
noise.

Phase noise is the frequency domain representation of
rapid, short-term, random fluctuations in the phase of a wave-
form cause by time domain instabilities (‘‘jitter’’) [60]. In this
section, phase noise in oscillators is modeled by jitter, which
is an impulse that perturb the oscillator. The response to the
perturbation is and is given as shown:

1v(t) = (1+ α(t))v(t + φ(t)/2π f0)− v(t) (4)

where v(t) is the oscillator output voltage without jitter, α(t)
represents the variation in amplitude, f0 and φ(t) represent the
center frequency and random jitter of the oscillator, respec-
tively.

Considering the effect of phase noise on the oscillator in a
very short time, we can linearize (4) to obtain the following

1v(t) =
dv(t)
dt
·
1φ(t)
2π f0

(5)

This equation demonstrates that jitter affects the oscillator
frequency periodically [61], which leads to the random offset
and drift in a clock.

Due to the presence of phase noise, a clock cannot work
at an absolutely stable and accurate speed, a phenomenon
known as clock drift. As an important vital cause of clock
drift, phase noise is usually dominated by many factors (i.e.,

FIGURE 3. The 802.11mc2 fine timing measurement (FTM) protocol.

oscillator quality, pressure, humidity, use age). Therefore, for
different clocks or even the same clock, the clock offset and
drift rates are also not the same.

Clock offset is the difference the between measurement of
a clock and the ground truth, and the clock offset θ (τ ) can be
expressed as written:

θ (τ ) = R(τ )− τ (6)

where τ is the actual time, and R(τ ) represents the time
readings from a clock at τ .
Clock skew υ(τ ) is defined as the time difference with

ground truth time τ , which is the instantaneous drift of a
clock.

υ(τ ) =
dθ(τ )
dτ
≈
dθ (τ +1τ )− dθ (τ )

1τ
(7)

The measurement Tmt of a clock with skew and offset can
be modeled as follows:

Tmt = T̃t + T0 +
t∑

k=1

υk · τk + ω(t) (8)

where T̃t is the ground truth time, T0 represents the initial
clock offset, υk and τk are the clock skew and sample period
in the sample index k , respectively, and ω(t) represents the
random measurement noise.

B. ROUND TRIP TIME RANGING ESTIMATION
Figure 3 shows the principle of WiFi RTT, and the RTT
measured by an ideal clock can be calculated using the equa-
tion (2). It is the nature of all clock systems to suffer from
skew, drift and jitter. FIGURE 4 shows the RTT measured
by clocks with clock skew and offset. This example uses is
a single 802.11mc2-supported AP and a smartphone. Both
the AP and smartphone have initial timing offsets, which
are denoted by T T0 and T R0 , respectively. In addition, υT

k

and υR
k
are the clock skew of the transmitter and receiver,

respectively.
As mentioned in the previous section, the measurement of

a clock with skew and offset can be modeled as shown in
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FIGURE 4. Round Trip Time (RTT) measurements with skewed clocks.

equation (8) and substituted into equation (2).

RTTm =
(
T T4 − T

T
1

)
−

(
T R3 − T

R
2

)
+ Tp + 2 · ωTk + 2 · ωRk

= (T̃4 − T̃1)−
(
T̃3 − T̃2

)
+ Tp

+

 T4∑
k=T1

υTk · τk −

T3∑
k=T2

υRk · τk

+ ωk (9)

where RTTm is the round trip time measured by the clock,
T̃ represents the time measured by an ideal clock, Tp rep-
resents the MAC processing time delay, ωTk is the AP clock
measurement noise with zero mean and variance σ 2

T , ω
R
k is

the smartphone clock measurement noise with zero mean and
variance σ 2

R, and ωk represents the total clock measurement
noise with zero mean and variance σ 2

= σ 2
T + σ

2
R.

Many previous research studies [62], [63] have indicated
that the time-varying clock skew caused by the phase noise
in oscillator is a stochastic process. In this paper, we model
the time-varying clock skew as a Gaussian random process
with zero mean and variance σ 2. Therefore, equation (9) can
be simplified as shown:

RTTm = R̃TT + Tp + ωc (10)

whereωc is the total clockmeasurement noise with zeromean
and variance σ 2

= σ 2
T+σ

2
R+σ

2
υT
+σ 2

υR
, σ 2

υT
and σ 2

υR
are the

clock skew variance of transmitter and receiver, respectively.
Finally, the RTT range RangeRTT is given by the following:

d =
RTTm − Tp

2
· c+ ω

= dm − doffset + ω (11)

whereRTTm and dm represent the RTTmeasurement and RTT
range measurement, respectively, doffset is the range offset
cause by MAC processing time delay, and ω is the random
measurement noise.

In this paper, we performed a survey on the RTT range
data for fifty-four testing points, which measured the position
with the total station in an indoor environment. In FIGURE
5, the orange colored bars represent the histogram of the
raw RTT range error and give the best fit to the Gaussian

FIGURE 5. Comparison of range error histogram with a distribution fitting
between raw RTT range and calibrated data.

distribution (blue curve) with a 0.656 m mean and 2.515 m2

variance. The green bars represent the histogram of the cal-
ibrated data error, which removes range offset from the raw
data. The red curve shows that calibrated data can be consid-
ered to obey a standard normal distribution with a zero mean
and 2.515 m2 variance.
Despite standardization according to the IEEE 802.11 pro-

tocol, the MAC processing time also depends on the chip
set hardware and the firmware of the actual WLAN cards
in use [64]. In other words, theoretically, no significant cor-
relation exists between the range offset caused by the pro-
cessing time delay and the distance between the transmitter
and receiver. Therefore, the range offset must be fixed via
transmitter calibration.

The collection of time-series RTT range readings at each
reference point is used to calibrate the range offset doffset ,
which is calculated as follows:

doffset =
1
n

n∑
k=1

(dm,k − d) (12)

where dm,k is the range measurement at the reference point,
for which the geometric range between transmitter is d , and
n is the total sample number.

C. WIRELESS RANGE ESTIMATION BASED ON RSS
The RSS (received signal strength), also referred to as RSSI
(Received signal strength indicator), is a measurement of
the power present in a received radio signal. Theoretically,
the RSS value attenuates rapidly with the increase in range
between the transmitter and receiver. The received power PR
at the receiver can be modeled as follows:

PR ∝ PT ·
Gt · Gr
4πdn

(13)

where PT represents the transmitted power from the trans-
mitter, Gt and Gr are the antenna gains of transmitter and
receiver, respectively. Finally, d is the range between them.

The attenuation rule of the RSS vs. distances is known as
the path loss model (PLM), which can be modeled by the
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following expression [28], [48], [65], [66]:

RSS = RSS0 − 10 · n · log10(
d
d0

)+ ω (14)

where RSS0 represents the RSS value observed at the refer-
ence point, the geometric range between transmitter is d0.
n is the path loss exponent, and ω represents the Gaussian
random noise with zero mean and variance σ 2

RSS and is used
to describe the random process of shadowing [48], [67].
According to the equation (14), the RSS observation RSS (t)
at time t obey the normal distribution with a RSS0 − 10 ·
n · log10

(
d (t)

/
d0
)
mean and σ 2

RSS (t) variance. Therefore,
the probability density function (PDF) of RSS (t) is given as
follows:

pdf (RSS)

=
1

√
2πσRSS (t)

exp

−
(
RSS (t)−

(
RSS0−10 · n · log10

(
d
d0

)))2
2σ 2

RSS (t)

 (15)

The distance d can be obtained by the maximum likelihood
estimate (MLE) as follows:

d̂ = argmax
d

pdf (RSS) (16)

Because the logarithm function is a continuous and strictly
increasing function over the range of the likelihood, the max-
imum of the likelihood necessarily maximizes its logarithm.
To solve the maximum in a simple manner, we differenti-
ate the log-likelihood function with respect to distance d to
obtain the slope and set it equal to zero.

∂ ln (pdf (RSS))
∂d

=

10 · n · d ·
(
RSS (t)−

(
RSS0 − 10 · n · log10

(
d
d0

)))
σ 2
RSS (t) · d

2
0 · ln 10

= 0 (17)

By simplifying equation (17), we write:

RSS (t)−
(
RSS0 − 10 · n · log10

(
d
d0

))
= 0 (18)

Consequently, the maximum likelihood estimator of the
range d is given by the following:

d = d0 · 10
RSS0−RSS

10·n (19)

The calibrated path loss model and the RSS samples in the
reference points are shown in FIGURE 6.

IV. INTEGRATION STRATEGY
The Kalman filter [58], also known as line quadratic estima-
tion (LQE), is a highly efficient recursive filter that estimates
the state of a dynamic system from a series of inaccuracies
and noise-containing measurements. When using the Kalman
filter, it is no assumed that the error obeys the Gaussian

FIGURE 6. Theoretical path loss model. The solid red line corresponds to
the PLM equation (14). The blue points represent the RSS samples in the
reference points, which are used to calibrate the RSS0 and n.

distribution. However, the filter yields the exact conditional
probability estimate in the special case that all errors are
Gaussian [68]. The errors of WiFi RTT range and PLM range
are modeled as a Gaussian random process in the previous
section. Therefore, a scalar Kalman filter is designed to inte-
grate these two range observations on a smartphone. The
scalar state dk in the KF at epoch k is expressed as follows:

xk = [dk ] (20)

The discrete linearization of the system model can be
expressed as follows:{

xk|k−1 = Akxk−1|k−1 + ωk
zk = Hkxk|k−1 + νk

(21)

where xk|k−1 is the predicted state, xk−1|k−1 is the previous
state at epoch k − 1, and zk is the measurement vector.
The transition matrix is Ak = I1×1, the design matrix is
Hk =

[
1 1

]T . ωk is the process noise with the covariance
matrixQk = E

(
ωkω

T
k

)
, and νk is themeasurement noisewith

covariance matrix Rk = E(νkνTk ). The observation vector is
specified as shown

zk =

 dRTTk − d
offset
k

d0 · 10

RSS0 − RSSk

10 · n

 (22)

where dRTTk is the raw RTT range at epoch k , doffset is
the calibration range offset, RSS0 represents the RSS value
observed at the reference point, the geometric range between
transmitter is d0. n is the path loss exponent.
FIGURE 7 shows the algorithm of a Kalman filter designed

to fuse the WiFi RTT range with the RSS observation for
locating smartphone or IoT indoors.

V. EXPERIMENTAL EVALUATION
A. EXPERIMENTAL SETUP
Three experiments were conducted to test the performance
of the proposed algorithms. The first test consists of an
evaluation of the accuracy of proposed ranging algorithm for
static testing in outdoor and indoor environments. A total
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FIGURE 7. Design of the Kalman filter.

of 20 reference points were set between the 802.11 mc
protocol-supported AP and smartphones in an outdoor open
field and corridor. The reference points for the measured
distance ranged from one meter to twenty meters. Based on
the Intel Dual Band Wireless-AC 8260 card and its open-
source Linux driver, we built the WiFi APs for experiments.
TheWiFi data, including RTT range and RSS, were collected
for one minute at each reference point using Google Pixel and
Google Pixel 3 both with Android P. The ground truth of the
range was measured using a tape measure.

The second test was designed to evaluate the accuracy
of the proposed algorithm for dynamic testing in a corri-
dor and in an outdoor environment. The testing trajectory
was set between the 802.11 mc protocol-supported AP and
smartphones in an outdoor open field and a corridor. The
ground truth of the range was measured using the Leica
Nova TS60 total station, which can automatically track a 360-
degree prism and supply one observation every 0.15 s with
3-mm precision. The 360-degree was carried on the back of
a participant who walked along the trajectory several times.
The Google Pixel and Google Pixel 3 both with Android P
were used to collect the RTT range and RSS in this experi-
ment.

The third test is evaluated the accuracy of localization
using the multilateration method and included a comparison
with RSS based Finger-Printing method. This field test was
conducted in the hall of Sirindhorn Research Center atWuhan
University. As shown in FIGURE 8, the field test area covers
approximately 203 square meters. Four APs that support the
802.11 mc protocol were deployed in the hall for this test,
and approximately fifty normal APs deployed in the building
were used in the fingerprinting algorithm. Fifty-four testing

FIGURE 8. Experimental site.

points were set in the field test area and the positions were
measured with Leica Nova TS60 total station. The WiFi data,
includingRTT range andRSS,were collected for 100 seconds
at each testing point. Four smartphones were used in the
experiment, namely, including Huawei Mate9, Huawei P9,
Google Pixel and Google Pixel 3, were used in the exper-
iment. The two Google smartphones were used to test the
proposed algorithm. The other twoHuawei smartphoneswere
used to collect the RSS value for fingerprinting approach.

In the test, three indicators were established to evaluate and
analyze the performance:

(1) Positioning accuracy (or positioning error) is the dis-
tance of positioning result deviation from the ground truth.

δk =
∥∥Pk − P̃k∥∥ (23)

where δk is the positioning error at epoch k , Pk and P̃k are
the calculated position and ground truth position at epoch k ,
respectively.

(2) Robustness is defined as the percentage of the posi-
tioning result without outliers, with accuracy less than the
threshold. In this test, 5 meters and 10 meters were selected
as the threshold to evaluate the robustness of the method.

(3) Update rate is used to describe the time interval between
the two positioning epochs.

B. PERFORMANCE EVALUATION
1) STATIC RANGING PERFORMANCE EVALUATION IN
OUTDOOR AND INDOOR ENVIRONMENTS
Figure 9 and Figure 10 illustrate the maximum and minimum
values, lower and upper quartiles, median and outliers abso-
lute ranging error of the raw RTT range data, calibrated data
and proposed result at each one-meter reference point. The
red line represents the median the of absolute ranging error,
and the red points represent the outliers.
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FIGURE 9. Comparison of the absolute ranging error in an outdoor
environment: (a) Raw RTT range. (b) Calibrated range. (c) Fusion range.

As shown in Figure 9(a) and (b), the average absolute
ranging errors of the raw data and calibrated data were
0.887 m, 0.414 m, respectively, in the outdoor open area. In
Figure 10(a) and (b), the average absolute ranging error of
the raw data and calibrated data were 0.896 m and 0.519 m,
respectively, in the corridor. The absolute ranging errors of
the calibrated data were improved by 53.32% (outdoor) and
42.08% (indoor) compared with the raw RTT range data in
this test.

Figure 9(c) and Figure 10(c) show the performance of
the proposed method with the highest accuracy and greatest
robustness improvements by significant margins in both out-
door and indoor environments. In the outdoors, the proposed
ranging errors were within (0 m, 3.391 m), the 25% and 75%
errors were, respectively, 0.07 m and 0.309 m, and an error of
variance 0.058 m2 was obtained. In the indoors, the proposed
ranging error were within (0 m, 2.27 m), the 25% and 75%
errors were, respectively, 0.175 m and 0.619 m, and error
variance of 0.058 m2 was obtained

FIGURE 10. Comparison of the static ranging error in an indoor
environment: (a) Raw RTT range. (b) Calibrated range. (c) Fusion range.

The overall ranging errors of the proposed method, in both
outdoor and indoor environments, are less than the error of
the raw RTT data and calibrated data. The absolute ranging
cumulative error percentages of this test are depicted in Fig-
ure 11.

In Figure 11(a), the 50%, 95% and maximum errors of pro-
posed method are 0.157 m, 0.771 m and 2.27 m, respectively,
which are better than the corresponding values (0.828 m,
1.721 m and 10.96 m) obtained by the raw data and (0.286 m,
1.163 m and 10.11 m) obtained by the calibrated data in out-
door environment. For indoor environment, as shown in Fig-
ure 11(b), the 50%, 95% and maximum errors of proposed
method are 0.347 m, 1.161 m and 3.391 m, respectively,
which are better than the corresponding values (0.828 m,
1.838 m and 7.567 m) obtained by the raw data and (0.392 m,
1.363 m and 6.916 m) obtained by the calibrated data in
the indoor environment. The statistics of absolute error, i.e.,
means, standard deviations, variance of the error, etc., were
also listed and compared in Table 1.
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FIGURE 11. Cumulative error percentages in different cases: (a) Outdoor
environment. (b) Indoor environment.

TABLE 1. The comparison of static ranging errors.

The results indicate that the calibrated RTT range achieved
a better level of accuracy than the raw RTT range in both
outdoor and indoor environments. The RTT ranging offset

FIGURE 12. Comparison of dynamic ranging error in indoor (a) and
outdoor (b) environments.

caused by the AP MAC processing time was removed to a
certain degree by using calibrated compensation parameter.
With the integration of WiFi RSS, the accuracy and pre-
cision of the ranging performance were improved, and the
deviation of an outlier was reduced. Additionally, the overall
ranging accuracy of the indoor tests was lower than that of
the outdoor test due to the multipath effect, which results in
ranging performance degradation. In the indoor environment,
the transmitted signal is reflected and weakened by indoor
objects (i.e., wall, door, bonsai and furniture) and reaches
the receiver antenna by more than one path. These non-line
of sight (NLOS) paths have different lengths resulting in
different RTTs and RSS values, whereas the multipath effect
is significantly reduced, in the outdoor open area.

2) DYNAMIC RANGING PERFORMANCE EVALUATION IN
OUTDOOR AND INDOOR ENVIRONMENTS
With the integration of WiFi RSS, the proposed algorithm
obtained the best accuracy and robust ranging performance in
both outdoor and indoor environments, and resulted in much
lower error than the raw RTT range data and calibrated data
in Figure 12(a) and (b). The green line indicates the ground
truth distance measured using the total station, and the pink
dotted line and blue dotted line represent the raw RTT range
and calibrated data, respectively. The red solid line is the
proposed integration result.

In Figure 13(a), the 50%, 95% and maximum errors
of the fusion method are 0.504 m, 1.386 m and 2.059 m in
the outdoor open area, respectively, which are better than
the corresponding values (0.717 m, 1.876 m, and 3.522 m)
of raw RTT range data and those (0.634 m, 1.809 m, and
3.167 m) of the calibrated data. In addition, as shown in the
Figure 13(b), the 50%, 95% and maximum errors of fusion
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FIGURE 13. Cumulative error percentages in different cases: (a) Outdoor
environment. (b) Indoor environment.

method are 0.586 m, 1.966 m and 2.998 m in the indoor
corridor, respectively, which are better than the corresponding
values (0.765 m, 2.798 m, and 4.061 m) of raw RTT range
data and (0.699 m, 2.597 m, and 3.861 m) of the calibrated
data.

As shown in Figure 13(a) and (b), the average absolute
ranging errors of the raw data, calibrated data and proposed
were 0.828 m, 0.733 m and 0.566 m in the outdoor open area,
and 0.935 m, 0.910 m and 0.713 m in the corridor, respec-
tively. The ranging error variance of the raw data, calibrated
data and proposed method data were 0.364 m2, 0.369 m2

and 0.184 m2 in the outdoors, and 0.641 m2, 0.687 m2 and
0.368 m2 in the indoor, respectively. Compared with raw
RTT ranging data, the absolute ranging errors were improved
by 31.64% (outdoor) and 23.74% (indoor), and the variance
were improved by 49.45% (outdoor) and 42.59% (indoor).
The details of these tests are listed and compared in Table 2.

In this dynamic ranging test, the proposed method still
achieved the highest precision and robustness both in outdoor
and indoor environment. The overall accuracy of the ranging
result in the outdoor open area still better than result obtained
in the corridor. Because of both the RTTmeasurement and the
RSS value, in indoor environment, suffered more multipath
effect compared with in the open area. Furthermore, as shown
in Figure 12(a) and (b), we clearly found that the measure-
ment quality collected when facing the AP was superior to

TABLE 2. The comparison of dynamic ranging errors.

that collected when facing away from the AP. During the
dynamic ranging test, the participants walked towards the
transmitter while holding the smartphone in front of their
bodies and subsequently turned around and walked away
from the transmitter. The rapid signal attenuation caused by
body occlusion lead directly to this ranging performance
drop. However, this phenomenon offers potential for NLOS
detection to a certain extent. Moreover, compared with time
measurement, RSS suffered more from this effect in princi-
ple, leading to a remarkable decrease in the precision of the
pre-calibrated PLM.

3) POSITIONING PERFORMANCE EVALUATION IN
OUTDOOR AND INDOOR ENVIRONMENTS
This section evaluates the performance of multilateration
based on the RTT range and performs a comparison with
RSS-based fingerprinting method. Figure 14 illustrates the
four different positioning error distributions by interpolating
the testing area using the positioning error of fifty-four testing
points. The black solid points represent the testing points, and
the positioning errors are labeled next to each point. Four
red solid points indicate the 802.11 mc protocol-supported
APs deployed in the testing region. The gradient of the color
scale ranging from dark blue to bright yellow indicates the
positioning error from low to high.

From the color changes, the fingerprinting method
obtained the maximum percentage of the yellow region,
whereas the proposed algorithm achieved the minimum per-
centage of the yellow region in this test. The overall trend
showed increasing blue and decreasing yellow in the order
of RSS-based fingerprinting, multilateration (raw RTT range
data), multilateration (calibrated data), and multilateration
(fusion range) methods.
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FIGURE 14. Positioning errors distribution in the testing region. (a) Fingerprint (b) Multilateration (raw RTT range). (c) Multilateration
(calibrated RTT range). (d) Multilateration (proposed fusion range).

With the integration of WiFi RSS, the ranging error of the
proposed algorithm was reduced and the ranging robustness
was improved. Subsequently, the positioning accuracy was
significantly enhanced. In particular, at the position close to
each AP, the positioning accuracy was improved to a greater
extent than elsewhere in the testing area. This observation is
explained by the fact that the PLM based ranging method
obtains better accuracy within a closer range of the trans-
mitter. Therefore, the positioning accuracy of the proposed
fusion approach is higher than that of the other method.

Figure 15 shows, the resulting cumulative distribution
function for this experiment. The 50%, 95% and maximum
positioning errors are 1.311 m, 2.761 m and 9.977 m, respec-

tively, for the multilateration with fusion ranging method
in the testing region, which obtained the best result. The
corresponding values of the RSS-based fingerprinting, mul-
tilateration with raw RTT range data and multilateration
using calibrated data are (3.063 m, 7.351 m, and 14.6 m),
(1.709m, 4.918m, and 15.825m) and (1.779m, 4.263m, and
14.362 m), respectively. The means, standard deviations and
variance of the error are also compared and listed in Table 4.

In this test, the positioning results from three indicators
(i.e., positioning accuracy, robustness, update rate) among the
four tests were compared and shown in Table 3. As shown,
the multilateration with fusion RTT range achieved an aver-
age positioning error of 1.435 m, ten-meter robustness
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FIGURE 15. Cumulative error percentages of localization errors.

TABLE 3. The comparison of four aspects in this test.

TABLE 4. The comparison of positioning errors.

of 100%, five-meter robustness of 99.81% and 0.19 sec-
ond update rate. The RSS based fingerprinting achieved an
average positioning error of 3.412 m, ten-meters robustness
of 99.07%, five-meters robustness of 81.18% and 2.52 sec-
onds update rate. The corresponding values of fingerprinting,
multilateration using raw RTT data and multilateration based
calibrated RTT data are (3.412m, 81.18%, and 2.52 seconds),
(2.063 m, 95.21%, and 0.23 second) and (2.042 m, 97.09%,
and 0.23 second), respectively.

The proposed fusion ranging approach obtains the best
performance, improvement (57.98% in positioning accuracy,
18.63% in five-meter robustness), and reduction in position-
ing update rate more than 13 times that of the RSS-based
fingerprinting method. The improvement (30.44% in posi-
tioning accuracy, 4.6% in five-meter robustness and 17.39%

in update rate) is compared with the result of multilateration
using the raw RTT range data.

The positioning results indicated that the proposed ranging
strategy not only promotes the location to be more robust
and precise, also significantly reduces the update rate in
a real indoor environment. This improvement is achieved
through fusion of two different types of distance observation
in WiFi signals with the designed Kalman filter, which is
used to smooth and filter the data and to predict the range
observation. Especially during the FTM request was denied
result in the number of observation less than three, which
was the minimum requirement of the multilateration. This is
the reason why the positioning update rate of multilateration
using the proposed ranging method was shorter than that
using the raw RTT range data.

VI. DISCUSSION
Overall, our studies established an indoor positioning solu-
tion on a consumer-grade smartphone. Evaluations of our
methods in various environments shown that a hybrid WiFi
RTT-RSS range can achieve a better level of accuracy than
the raw RTT and RSS range in both outdoor and indoor
environments. The results confirm that the position accu-
racy, robustness and update rate of the system were notably
improved in the real indoor environment and achieved an
average accuracy of 1.435 m with an update rate of every
0.19 s.

Compared with the most popular fingerprinting method,
both WiFi RSS-based [5]–[11] and CSI-based [12]–[14]
approaches, our approach do not need frequent and large
numbers of samples to build and maintain the database.
And due to the propagation channel is severe and the spa-
tial topology is complex indoors, our algorithm can pro-
vide more accurate range and higher update rate both than
RTT technique and PLM-based ranging method. Different
with TOA [16]–[18] and TDOA [19]–[21], the positioning
system based on RTT technique [54]–[57], [69] can obtain
high reliability and the low system complexity. Compared
with previous studies [22], [70], compensating the MAC
processing delay caused by the differences of network-card
hardware and firmware can improve the RTT ranging and
positioning precision. Besides, the proposed hybrid ranging
approach obviously reduces the influence of ranging request
deny caused by limited concurrent processing power of the
AP. To sum up, the positioning accuracy, robustness and the
update rate can be significantly improved using the proposed
method.

Although experiments have proven that our hybrid ranging
strategy performed well on testing environment. Due to the
influence of the complexity of the indoor spaces, channel
circumstances and the unpredictability of user behavior, only
wireless signal method is still challenging to achieve an accu-
rate, effective, low cost and real time positioning solution.
Our future work will focus on developing a pervasive inte-
gration platform to fuse wireless signal with MEMS sensors
data.
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VII. CONCLUSION
This paper introduced a smartphone positioning solution
indoors by fusing WiFi RTT range and received signal
strength to overcome the limitations of the WiFi round-trip
time range. Field tests were conducted to verify the proposed
ranging algorithm and the positioning solution in various
environments and with different mobility. The performance
of this fusion ranging method is reliable and can achieve
average accuracies of 0.233 m (static) and 0.566 m (dynamic)
in the outdoors, and 0.443 m (static) and 0.713 m (dynamic)
indoors. The position accuracy, robustness and update rate of
the system were notably improved in the real indoor environ-
ment and achieved an average accuracy of 1.435 m with an
update rate of every 0.19 s. Our future work will focus on
developing a pervasive integration platform to fuse wireless
signal with MEMS sensors data to reduce the impacts of
reflection, fading and shadowing of the wireless signals and
achieve a more reliable locating solution for smartphones and
IoT devices.
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