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ABSTRACT As the main regulator of microbial community composition, bacteriophages exist widely on
Earth. However, since they are hidden in metagenomes, most of them are unknown. To identify phages
from metagenomes more effectively, a new tool named VFM (Virus Finding & Mining) is presented in this
paper. VFM has two versions, i.e., bin-VFM and unbin-VFM. Eighteen new features describing the codon
usage bias, the proportion of hits of clusters of orthologous groups of proteins (COG), and 1-mer and 2-mer
frequency are introduced to improve the performance of the classifiers. By using missing value interpolation,
bin-VFM improves the classification performance for short sequence bins significantly. Compared with
previous tools for virus mining, bin-VFM and unbin-VFM perform much better for simulated and real
metagenomes with short and long sequences respectively. Thus, VFM may play a helpful role in studies
of metagenome-related problems, such as horizontal gene transfer and antibiotic resistance. VFM is freely
available at https://github.com/liuql2019/VFM.

INDEX TERMS Codon usage bias, COG, missing value interpolation, metagenomic viruses, phage mining,
short k-mer frequency.

I. INTRODUCTION
Viruses are the most abundant and widespread life forms
on Earth [1]. Their habitats include host bodies [2], such
as humans [3]–[5], animals [6]–[8], insects [9], and
plants [10], as well as natural environments [11], includ-
ing marine [12]–[14], freshwater [15], springs [16],
soil [17]–[19], and other niches [20], [21]. In the metage-
nomes [22] obtained from these habitats, the majority
of viruses are bacteriophages, which have great impacts
on the composition and function of the microbial floras
and then affect the host bodies and surrounding environ-
ments [23]–[25]. Antibiotic resistance genes have been
proved to be associated with bacteriophages infecting
the microbes of humans [26]. Horizontal gene transfer
among microbial species is also regulated by their parasitic
phages [27]. Therefore, the identification of phage sequences
from a variety of metagenomes plays a crucial role in metage-
nomic research.
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However, compared with prokaryotic and eukaryotic
organisms, information on relatively few viruses has been
deposited in the current biological databases. Since viruses
have no universal marker genes that characterize them,
it remains difficult to discover novel viruses hidden in
metagenomes. The unknown sequences in metagenomes,
which include a large number of novel viruses, are aptly
described as ‘‘dark matter’’ [28]. Tools such as VIP [29],
VirusSeeker [30], ViromeScan [31], and FastViromeEx-
plorer [32] have been designed for the identification of virus
reads which are based on homology comparison with known
organisms in databases; these tools perform well for map-
ping virus reads to known viruses, whereas novel viruses
are hardly discovered. Applications such as virSorter [33],
virMine [34], virFinder [35], and virMiner [36] focus on
contig identification of phages in metagenomes. virSorter
makes use of subjective guidelines to make decisions, while
the subtleties of features are difficult to detect. Usingmachine
learning, virFinder uncovers viruses based on 8-mer fre-
quency [37]; virMiner uses features calculated by gene hits
to several gene databases, which exploits contigs from actual
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human metagenomes as training data that may result in
species bias and mislabeling of the training data. By rely-
ing on gene information, MARVEL [38] benefits from the
binning technique [39], [40] to ensure better classification
performance for the bins of long contigs, where its perfor-
mance for bins consisting of short contigs requires improve-
ment. Furthermore, binning process may lead to some hybrid
incorrect bins and the single contig from some low abundance
species cannot be binned in some cases.

Here we propose a machine learning-based detector named
VFM with two versions. In addition to six features used by
MARVEL, another eighteen new features are used, including
five features related to codon usage bias, one feature related to
the proportion of COGgene hits, two features related to 1-mer
frequency, and ten features related to 2-mer frequency. The
bin version named bin-VFM aims to find phages more accu-
rately from metagenomic bins, especially for bins consisting
of short contigs. To achieve this goal, for bins with only one
gene at most, the mean values of the features related to two
or more genes in the training set are inserted to deal with the
missing value problem. The other version (unbin-VFM) uses
the same features as bin-VFM to handle unbinned sequences,
especially long contigs. Both versions provide state-of-the-art
performance compared with other tools previously designed
for phage mining.

II. MATERIALS AND METHODS
A. SIMULATED BINS AS TRAINING AND TEST SETS
The dsDNA phage and bacterial genomes were obtained
from the NCBI RefSeq database. The species in the train-
ing sets consisted of 1247 phages in the Caudovirales
order and 1029 bacteria released before January 1, 2016;
8 kbp sequences were sampled randomly from those genomes
to generate simulated bins, each of which contained
10 sequences derived from the same genome [38]. To sim-
ulate bins most of which had no genes, another training set
was created. Each bin contained 10 sequences with the length
of 500 bp. In order to cover more regions of a genome, 500 bp
sequences were selected 10 times randomly from the same
genome to generate 10 bins.

The test sets contained phages in the Caudovirales order
and bacteria released after January 1, 2016; 200 phages and
400 bacteria were chosen at random from these genomes for
the test sets. Seven test sets were created by using sequences
with seven different lengths (0.5 kbp, 1 kbp, 2 kbp, 3 kbp,
4 kbp, 8 kbp, and 12 kbp). For each length, 10 sequences were
selected randomly from every chosen genome to simulate a
bin in the test set. The training and test sets are available at
https://www.jianguoyun.com/p/DYIe6QgQ7I_kBxihkPUB.

B. EXTRACTING FEATURES FROM SIMULATED BINS
24 features were chosen to create a feature vector for every
simulated bin. These features were divided into three cate-
gories based on gene statistics, gene coding, and oligonu-
cleotide usage frequency respectively. The features in the first

category included gene length, strand shift frequency [41],
spacing size, gene density, and ATG frequency [38]. The
features in the second category included five features related
to codon usage frequency bias [42], two features describing
the proportion of pVOG [43] gene hits, and the proportion
of COG [44] gene hits among all genes. One-fourth of the
COG gene database was selected at random after removing
some genes of viral origin [34]. The features in the third
category included 1-mer usage frequency and 2-mer usage
frequency for the overall coding and non-coding regions. The
former consists of two-dimensional features, whereas the lat-
ter is comprised of ten-dimensional features. In detail, 1-mer
frequency counted the frequency of A and G in a sequence
with T and C omitted as the number of T is equal to A and
the number of C is equal to G. For the same reason, 2-mer
frequency counted the frequency of AA, AT, AG, AC, TA,
TC, TG, CG, CC, GC. Each feature of a bin was calculated
based on the weighted average of the corresponding feature
from all contigs in the bin.

Considering that different sequence lengths exist in a real
metagenomic bin, weight parameters were used for the fea-
ture average calculation. The weights corresponding to the
above mentioned features were as follows. The weight for
the gene length was the number of genes in the sequence.
The weight for spacing size was the number of spaces
between every two genes. The weight for gene density was
the sequence length calculated by base. The weight for strand
shift frequency was the number of spaces between two genes.
The weight of the ATG frequency was the sequence length
minus two. All five weights of the features indicating codon
usage frequency bias were the sum of all gene lengths in the
sequence. All weights for the 1-mer frequency features were
the same, i.e., the sequence length, whereas, for the 2-mer
frequency features, the weights were the sequence length
minus one. In order to address the problem that many 0.5 kbp
sequences have no genes, 4-mer frequency was chosen as the
features of the 0.5 kbp training set. The 4-mer frequency was
calculated for every sequence in a bin prior to calculating their
weighted average. The sequence length minus three was used
as the weight parameters.

C. TRAINING AND TESTING FOR SIMULATED BINS
The classifier trained for phage bin prediction is bin-VFM.
Following feature acquisition from the 0.5 kbp and 8 kbp
training sets, two models were trained using these features.
Logistic regression and random forest algorithms in
Python3.5 were used for the 0.5 kbp and 8 kbp training
sets respectively. For the logistic regression, the value of the
C parameter, which determines the L2 regularization degree,
was 10−7, which was acquired by the trial on a validation set
created using a small portion (slightly more than 1/10) of bins
in the training set. Number 50 was chosen as the tree number
for random forest algorithm.

In the initial stages of the prediction process, one of the
two models should be chosen based on whether the bin being
predicted contains gene(s). The logistic regression model was
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applied to the bins without genes using 4-mer frequency
features. In contrast, the random forest model was applied
to the bins with one gene at least in it using the 24 features.
For short contig bins, some features related to at least two
genes, strand shift frequency and spacing size in detail, would
be missing values. However, feature vectors with missing
values can’t be handled by the model. Prior to the prediction,
such null values were filled with missing value interpola-
tion based on mean values of the features of the training
data. Specifically, the null values of the two features were
filled by the mean value of the corresponding feature in the
training set, respectively, which improved the performance
for short contig bins. The prediction results showed whether
the bins were phage bins or not, followed by the proba-
bilities as a phage bin. Fig.1 is the program flow chart of
bin-VFM.

FIGURE 1. Program flowchart of bin-VFM.

D. TRAINING AND TEST SETS FOR SIMULATED
UNBINNED CONTIGS
The genomes of phages (Caudovirales order) and bacte-
ria released before January 1, 2016 were split based on
three different lengths (2 kbp, 4 kbp, and 8 kbp) to cre-
ate three unbinned training sets. To maintain a balance
between phages and bacteria, the bacterial sequences were
selected randomly to be equal to the phage sequences. The
genomes used for the test sets of Bin-VFM were split into
sequences with lengths of 2 kbp, 3 kbp, 4 kbp, 8 kbp,
and 12 kbp for five unbinned test sets. Since the num-
ber of bacteria exceeds phages in real metagenomes [45],
the test sets were created by selecting 2000 phage sequences
and 4000 bacterial sequences for each certain length.

The unbinned training and test sets are also available at
https://www.jianguoyun.com/p/DYIe6QgQ7I_kBxihkPUB.

E. TRAINING AND TESTING FOR SIMULATED UNBINNED
CONTIGS
The classifier trained for the phage contig prediction is named
unbin-VFM. Corresponding to the lengths of 2 kbp, 4 kbp,
and 8 kbp, three models were trained using the random forest
algorithm and the same 24 features as for bin-VFM. To utilize
the training program developed for bin-VFM, one file was
created for each contig as a single contig bin. The simple bins
of the three training sets were dealt with as the training pro-
cess of bin-VFM to generate three models for the lengths of 2
kbp, 4 kbp, and 8 kbp respectively. For the shorter contigs in
the training and test sets, some features related to genes may
be missing values. Missing value interpolation was executed
and the averages of the corresponding feature values in the
training set were used to fill in the missing values. The 2 kbp
model was developed for predicting contigs shorter than
4 kbp, the 4 kbp model was used for contigs between 4 kbp
and 8 kbp, and the 8 kbp model was used for contigs longer
than 8 kbp. All contigs in the unbinned test sets were pre-
dicted by the three models based on the lengths of the contigs.

F. COMPARISON WITH OTHER TOOLS USING
THE SIMULATED TEST SETS
In order to evaluate the performance of VFM for the test
sets with different lengths of bins or contigs, other tools
described in previous publications were used for comparison,
i.e., virSorter, virFinder, and MARVEL. The same test sets
were used for all tools to conduct a fair comparison and
evaluate the ability of the tools for phage detection. The
sequences with a certain length may be inappropriate for
some tools. MARVEL cannot handle 0.5 kbp bins without
genes. In this case, MARVEL would not participate in the
evaluation for the 0.5 kbp test set.

Five metrics, namely, recall, specificity, precision,
accuracy, and the F1 score were calculated to quantify the
performance of the tools. The equations for calculating the
metrics are described as follows.

Recall = TP/P (1)

Specificity = TN/N (2)

Accuracy = (TP+ TN )/(P+ N ) (3)

Precision = TP/(TP+ NP) (4)

F1 = 2×(Precision×Recall)/(Precision+ Recall)

(5)

In these equations, P, N, TP, FP, TN, FN are the number
of real positive cases, the number of real negative cases,
the number of true positives, the number of false positives, the
number of true negatives, and the number of false negatives
respectively in final results, where phages are labeled as
positive and bacteria as negative. F1 is a better index than
accuracy for imbalanced test sets.
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G. PERFORMANCE EVALUATION USING REAL
METAGENOMES
Some differences exist between simulated contigs and real
metagenomic contigs; therefore, the performance of VFM
was investigated using real metagenomes. Contigs created by
cross-assembly of the Amazon River plume samples from the
Amazon dataset [46] were used for testing. The assembly tool
was Rey 2.3.1 [47] using 31-mer. Bin-VFM and MARVEL
were chosen for the test of bin prediction. Before binning,
contigs shorter than 500 bp were removed. COCACOLA [48]
was used for implementing the binning tasks in which the
cluster number was set to 500. BLASTn [49] was used to
assign class labels to the contigs in these bins as a benchmark
by alignment with the genomes of phages and bacteria
released before December 1, 2018 in the NCBI Refseq
database. For the unbinned contig test of unbin-VFM and
virFinder, 1% of the metagenomic viral contigs (mVCs) [1]
were selected randomly for recall test and the environmental
contigs (>= 2kbp) that were labeled as bacteria previously
for the bin prediction test were chosen for specificity test.

III. RESULTS
A. THE OVERALL DESIGN OF VFM
To achieve better performance for phage mining, eighteen
new features related to codon usage bias, COG gene ratio,
and short k-mer frequency (k = 1,2) were used to create a
new longer feature vector based on the six features previ-
ously reported [38], [41] (see Method). Codon usage bias
refers to the fact that different species often have distinct
synonymous codons in their genes; this can be used as a
gene-related marker for identification [42]. The clusters of
orthologous groups of proteins (COG) database consists of
a large number of microbial orthologous genes; it has been
updated since 2014 and can be used to identify prokaryotic
sequences [44]. Considering that the large volume of the
COG database would slow down processing speed, a smaller
COG database consisting of 1/4 of the original genes (some
virus shared genes were deleted [34]) is used for the COG
gene ratio calculation. The reason for using 1-mer and 2-mer
frequency is that the short k-mer frequency can also facilitate
phage mining tasks.

With the random forests algorithm, one model was trained
using 8 kbp bins for bin-VFM and three models were trained
using contigs with lengths of 2 kbp, 4 kbp, and 8 kbp for
unbin-VFM. All the bins and contigs for training originated
from ssDNA phages and bacteria released prior to January, 1,
2016; the data were downloaded from the National Center
for Biotechnology Information (NCBI). When bins or con-
tigs are predicted, for the bins with contigs or the unbinned
contigs that are long enough to contain two or more genes
in one sequence, all 24 features can be calculated. However,
some features related to two or more genes should be sup-
plemented for the bins with one-gene contig(s), which are
sometimes mixed with no-gene contig(s), as well as unbinned
short contigs with one or no genes. In order to solve this

problem, the missing feature(s) of the bins or contigs are
preprocessed by missing value interpolation and the averages
of the corresponding values in the training set are used to
fill in the missing values. In particular, for bins consisting
of only no-gene contigs, 4-mer frequency features are used
instead of the 24 features because most of the 24 features
are incalculable in such cases. The no-gene bins are pre-
dicted by a specially trained classifier using the features
of 4-mer frequency. In addition, all the feature vectors of
the contigs in a bin are fused by calculating the weighted
means to weigh their contributions to the bin. After feature
extraction, all feature vectors are used by either the bin-VFM
model or corresponding unbin-VFM model for phage
prediction.

B. COMPARISON WITH OTHER TOOLS USING SIMULATED
BINS AND CONTIGS
Bin-VFM and unbin-VFM are the two versions of VFM.
Bin-VFM was developed for bins consisting of contigs with
various lengths, whereas unbin-VFMwas for single unbinned
contigs. To evaluate VFM for classifying bins or contigs with
different lengths, bin-VFM was compared with MARVEL
and virFinder using simulated bins with sequence lengths
ranging from 0.5 kbp to 12 kbp; unbin-VFM was compared
with virFinder and virSorter using simulated contigs with
lengths ranging from 2 kbp to 12 kbp. All the sequences of the
simulated bins and the unbinned contigs were sampled ran-
domly from 200 phage and 400 bacterium genomes released
after January 1, 2016. Recall, specificity, precision, accuracy,
and the F1 score were used to evaluate their performance.
VFM demonstrated better performance than the other tools
for both bins and contigs for nearly all lengths.

Bin-VFM, MARVEL, and virFinder were evaluated using
simulated bins with seven contig lengths. Since MARVEL
predicts phage bins with the probability threshold of 70%,
for a fair comparison, the same threshold was chosen for
bin-VFM and virFinder. Bin-VFM nearly outperformed both
MARVEL and virFinder for each evaluation score (Fig.2).
In particular, for recall, precision, accuracy, and F1, bin-
VFM performed much better than the other tools on the
shorter lengths (<4 kbp). In the best case, for the 1 kbp
length, bin-VFM performed∼40%,∼20%, and∼30% better
than MARVEL for recall, accuracy, and F1 respectively. For
sequences longer than 4 kbp, bin-VFM exhibited nearly the
same predictive ability as MARVEL and both performed
better than virFinder. Additionally,MARVEL failed to handle
0.5 kbp bins since there was no gene in some of the bins. For
specificity, bin-VFM and virFinder achieved similar values,
whereas MARVEL performed slightly better for the length
of 1 kbp but had much lower recall than bin-VFM for the
same length.

Unbin-VFM, virFinder, and virSorter were run on simu-
lated contigs derived from the phages and bacteria released
after January 2016. Unbin-VFM achieved the best results
for all evaluation criteria (Fig.3). Similar to previous stud-
ies, virSorter did not perform well for each of the criteria.
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FIGURE 2. Prediction results of bin-VFM, MARVEL, and virFinder for simulated bins.

VOLUME 7, 2019 177533



Q. Liu et al.: VFM: Identification of Bacteriophages From Metagenomic Bins and Contigs

FIGURE 3. Prediction results of unbin-VFM, virFinder, and virSorter for simulated contigs.
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The recall score of unbin-VFM was ∼10% higher than
virFinder. For accuracy and F1, the scores of unbin-VFM
were ∼5% and ∼8% higher than virFinder, indicating better
comprehensive capability for phage prediction. For the preci-
sion score, unbin-VFM achieved better performance for short
contigs than virFinder. Moreover, the shorter the contigs,
the better the result was. Similar to the simulated bin results,
nearly perfect specificity was achieved by all tools. It was
remarkable that unbin-VFM had higher specificity scores
than virFinder for all lengths, indicating that unbin-VFMwill
provide higher precision for real metagenomes because the
proportion of bacteria may be much larger than phages in real
metagenomes.

C. PREDICTION RESULTS OF TOOLS ON REAL
METAGENOME
In order to evaluate the performance of VFM to process
real metagenomes, the samples from a natural environment
were used [46]. After being processed via cross-assembly,
high-quality contigs were obtained. After binning the contigs,
bin-VFM and MARVEL were compared to evaluate their
performance. Given that it is very difficult to acquire correct
class labels of contigs in real metagenomes, a reliable method
was chosen to determine the labels by using BLASTn to align
the contigs to the genomes of phages and bacteria released
before December 1, 2018. Since MARVEL cannot process
bins without genes, 5 bins without genes were not used in
the MARVEL test set. The results are shown in Table 1. We
can conclude that bin-VFM performed better than MARVEL
for this real metagenome. Bin-VFM achieved ∼10% higher
recall than MARVEL. Because bacteria are more abundant
than phages in real metagenomes, the 2% higher specificity of
bin-VFM indicates that a large number of bacteria have been
filtered out. Therefore, the precision showed the maximum
percentage difference of all evaluation criterions between
bin-VFM and MARVEL at ∼13%.

TABLE 1. Prediction results of bin-VFM and MARVEL for real
metagenome.

A large number of metagenomic viral contigs (mVCs)
have been discovered from thousands of real metagenomes
by Paez-Espino et al. [1]; these can be used to evaluate phage
mining tools. Since the number of contigs is too large, 1% of
them was selected by random sampling to test the recalls of
unbin-VFM and virFinder. The result showed that the recall
of unbin-VFM (73.95%) was much better than virFinder
(67.83%) for the same probability threshold (70%). Given
the wide distribution of mVCs, we conclude that unbin-VFM
has a better ability of recalling viruses than virFinder gener-
ally. In order to evaluate the effect of filtering out bacteria,
BLASTn was used to label the contigs longer than 2 kbp.

The contigs labeled as bacteria were used for assessing speci-
ficity. For the real metagenome, unbin-VFM had a specificity
of 98.35%, where the score of virFinder was slightly lower
at 97.80%. This indicated that for real contigs, both tools
could perform well in filtering out bacteria.

IV. DISCUSSION
Here we propose two classifiers named bin-VFM and
unbin-VFM for binned and unbinned contigs to identify
dsDNA phages from metagenomes. Eighteen new features
were introduced and both bin-VFM and unbin-VFM outper-
formed their competitors. Moreover, since bin-VFM takes
advantage of missing value interpolation and short k-mer
frequency features, which ignore genes, it may better than
MARVEL that was also designed for metagenomic bin
prediction, especially for bins consisting of short contigs.
When performing binning for real metagenomes, some short
contig bins may be generated and bin-VFM is more useful
than MARVEL in this case. That is one of the reasons
why bin-VFM performed better than MARVEL for real
metagenomes. In addition, since bins may contain con-
tigs of different lengths in real metagenomes, the weighted
average of contig feature vectors for a bin is used. That
is another reason why bin-VFM had better performance
than MARVEL. In unbinning cases, unbin-VFM is the first
tool using the features of gene statistics, gene coding, and
oligonucleotide usage frequency for phage contig prediction.
Therefore, unbin-VFM showed better performance than the
other tools, except for short contigs. For both simulated con-
tigs and real contigs in themetagenome for test, the prediction
results of unbin-VFM were clearly better than the compara-
tive tools, indicating that unbin-VFM can detect more phage
contigs.

TABLE 2. Recall of virFinder and unbin-VFM for three new randomly
selected mVCs datasets.

To further investigate the recall for unbin-VFM, con-
tigs were selected randomly (1%, 0.7%, and 0.5% of
mVCs) to create three other virus sets for test. The result
showed (Table 2) that unbin-VFM outperformed virFinder
in all sets. On average, the recall of unbin-VFM was ∼6%
higher than that of virFinder. We chose two additional prob-
ability thresholds (50% and 60%) to check the recall and
specificity for unbin-VFM and virFinder (Fig.4, Fig.5). The
results were consistent with the expectation. Unbin-VFM
outperformed virFinder in all cases and the smaller the thresh-
old, the higher the recall and the lower the specificity were.
For shorter contigs, the test of longer contigs (16 kbp and
24 kbp, Table 3) showed that unbin-VFM still performed
much better.
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FIGURE 4. Performance of virFinder and unbin-VFM for simulated contigs at the probability threshold 50%.

FIGURE 5. Performance of virFinder and unbin-VFM for simulated contigs at the probability threshold 60%.

VFM was designed only for predicting tailed phages
belonging to the Caudovirales order, which is also a limitation
ofMARVEL.However, since viral metagenome communities
mainly consist of tailed phages [50], the phage data for train-
ing is appropriate for the task of metagenomic virus mining.
Furthermore, the recall test for mVCs, which contains a vari-
ety of dsDNA and ssDNA viruses from real metagenomes,
confirms the predictive ability of unbin-VFM.

In the end, there are some limitations in the two versions
of VFM. First, they are designed based on contigs, which
may include chimeric sequences. In addition, binning pro-
cesses may also generate a few erroneous bins containing
contigs originating from different species. However, in order
to discover novel and more complete viruses, it is neces-
sary to use assembly and binning. Second, because most
features of unbin-VFM are related to the computer-detected
gene(s) in contigs, the performance of unbin-VFM may be

worse for short contigs, such as contigs shorter than 1 kbp.
We also tested its performance for 1kbp simulated contigs.
Overall, the performance of unbin-VFM is comparable to
that of virFinder (Table 3). Although its recall is
slightly lower, the higher specificity compensates for that
shortcoming. Third, the pVOG [43] database released
in 2017 was created based on most of known viruses,
which may reduce the effect of novel virus prediction.
We believe that the variation of the difference of recall scores
between unbin-VFM and virFinder for the simulated and real
metagenomes may be attributed to this reason. It is hoped that
researchers will be able to solve these problems in the future.

V. CONCLUSION
In summary, the two versions of VFM developed for
classification of dsDNA phages and bacteria showed better
performance than all similar tools in their respective fields.
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TABLE 3. Performance of virFinder and unbin-VFM for shorter and longer simulated contigs.

The proposed tools may be helpful for researchers to
uncover more novel viruses in the form of contigs and bins
from rapidly growing metagenomes. Previously developed
tools can also be used in conjunction with bin-VFM and
unbin-VFM to exploit their own advantages. We believe that
the use of these tools by virology researchers may result in
the discovery of a great number of novel viral taxa and would
further have a marked impact on virus-related research, such
as human health and environmental problems.
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