
Received November 11, 2019, accepted November 30, 2019, date of publication December 5, 2019,
date of current version December 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957765

Application-Oriented Network Scheduling
With Metaflow
YANG SHI , JIAWEI FEI , MEI WEN , AND CHUNYUAN ZHANG
National University of Defense Technology, Changsha 410073 , China

Corresponding author: Mei Wen (meiwen@nudt.edu.cn)

This work was supported in part by the National Key Research and Development program under Grant 2016YFB1000400, and in part by
the National Nature Science Foundation of China through NSFC under Grant 61502509 and Grant 61402504.

ABSTRACT Distributed applications usually feature a set of correlated flows between two consecutive
computation stages. The scheduling of these flows has a crucial influence on job completion time. Coflow
improves performance by optimizing the finish time of the entire set of flows. However, the flows and
computing tasks in one application have more complex relationships that exceed the coflow’s barrier
assumption. In this context, scheduling via coflow abstraction may hurt application performance. Accord-
ingly, we propose metaflow, a traffic abstraction derived from the computation graph of the application.
Metaflow reveals the detailed flow requirements of the application and makes it easier to reduce the job
completion time. Based on themetaflow,we first develop amathematical model and formulate the scheduling
problem as an integer linear programming (ILP) problem. We further prove that it has an equivalent
linear programming (LP) problem through rigorous theoretical analysis in order to solve this ILP problem
efficiently. To demonstrate the effectiveness of scheduling with metaflow, we have conducted extensive
simulations with both synthetic single jobs and production traces containing multiple jobs. The simulation
results verify that our new scheduler adapts well to different jobs and can achieve a significant increase in
an average speed of 2.87× on a real-life workload, compared to the state-of-the-art coflow scheduler.

INDEX TERMS Datacenter networking, distributed applications, network scheduling.

I. INTRODUCTION
Datacenter networks are critical to the performance of dis-
tributed applications. It is reported that, at times, 50% of
the time taken to complete a job is spent on transferring
data across the networks [1]. Network administrators need
to schedule traffic to improve network efficiency and hence
speed up distributed applications. Over the past decade,
an increasing number of network scheduling techniques have
been proposed to meet this goal. These techniques leverage
traffic abstractions at different levels.

Traditional scheduling algorithms focus on reducing flow
completion time (FCT) [3]–[6] or improving per-flow fairn-
ess [7], [8]. However, since they are based on the abstraction
of flows, they cannot capture the semantics of communication
in a distributed application; therefore, the optimization of
flow-level objectives can be at odds with application-level
goals. The coflow abstraction [9] represents a major leap
forward for application-aware network scheduling. In many

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

distributed computing frameworks, a job consists of a
sequence of processing stages. A coflow is defined as the
collection of all flows between two consecutive stages. The
coflow completion time (CCT) is the completion time of
the slowest inner flow. Coflow assumes that a job cannot
begin to process the next stage until all flows within the
coflow have finished; that is to say, a barrier exists between
two consecutive stages. Under this condition, minimizing the
average CCT usually aligns application-level performance,
thereby actually decreasing job completion time (JCT).
However, the coflow abstraction is insufficient to reveal the
dependencies between computation and communication in
today’s sophisticated and diversified applications.

Many applications, such as distributed training of deep
learning [11], [12] and web searching [13], involve a complex
interplay of communication and computation at the partici-
pating machines within a stage. The stage usually consists
of multiple tasks that are distributed across machines. Differ-
ent from the barrier assumption, the computing tasks in the
next stage do not have to wait until all flows in the coflow
are transferred. For example, in the distributed training of

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 175531

https://orcid.org/0000-0001-5786-3171
https://orcid.org/0000-0001-9325-0516
https://orcid.org/0000-0002-5875-3297
https://orcid.org/0000-0002-0944-2708
https://orcid.org/0000-0001-7214-6568

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

FIGURE 1. A motivation example.

deep learning, the newly updated parameters are dispersed
to workers by parameter servers [14]. These parameters are
consumed at different times by each worker depending on
the training model. A similar situation arises in web search-
ing [13]. Results with higher ranks can be returned to the
user more quickly to improve the user’s experience. Hence,
the application performance can be improved by taking both
computation and communication into account.

Consider the scheduling problem presented in Fig. 1. Here,
there are two jobs, J1 and J2, each with a coflow (CF1 and
CF2). CF1 contains one flow (J1-F1) transferring 3 units
of data from M2 to M1, while CF2 includes two flows
(J2-F1 and J2-F2) transferring 3 and 1 units of data from
M1 andM2 to M3. Additionally, the subsequent computation
of J1 (J1-C1) and J2 (J2-C1 and J2-C2) is performed on
M1 and M3 respectively, which require 7, 3 and 3 units
of time to finish. The dependencies between flows and
computing tasks are described in Fig. 1(b) (here flows are
denoted with rectangles while computing tasks with circles).
To minimize the average CCT, the optimal schedule is shown
in Fig. 1(c); the average CCT is just 3+4

2 = 3.5 units of time.
Moreover, the average JCT can also be calculated, which is
10+10

2 = 10 units of time.
As a comparison, Fig. 1(d) shows a different type of

scheduling. Obviously, this type introduces more overlaps
between communication and computation. Thus, the average
JCT is reduced to 11+7

2 = 9 units, while the CCT (4+42 = 4)
is higher. This example demonstrates that the JCTwill benefit
when the flows are transmitted according to their promotion
to the computation tasks in the next stage. However, coflow
can not convey these application semantics to the network
controller.

To address this problem, in this paper we propose
metaflow, a new application-oriented traffic abstraction that
leverages the computation dependency graph to guide the
network transfer. In more detail, the major contributions of
this paper to the field are as follows:

• We propose an expressive traffic abstraction metaflow
based on the dependency graph between flows and com-
putations. Metaflow can reveal an application’s essential
network requirements by dividing flows into different
levels (§III).

• We propose an algorithm to calculate the metaflow
completion time (MCT) and successfully formulate the

metaflow scheduling problem (MSP) expressed as an
integer linear programming (ILP) model with optimal
solutions. (§IV).

• We transform the objective function in ILP model into
a separable convex function and exploit the total uni-
modularity structure of the solution space in order to
reformulate MSP as an equivalent linear programming
(LP) problem, which can be efficiently and optimally
solved by means of mathematical solvers (§V).

• Using workload traces from real datacenters, we show
that the distributed applications can be boosted signifi-
cantly through network scheduling with metaflow, com-
pared with the state-of-the-art coflow scheduler (§VI).

This work is mainly extended from our previous work [15].
Compared with our previous work, this work focuses on
finding the optimal solution for MSP. Firstly, we successfully
model the MSP problem as an LP problem which can provide
the optimal solution and solve it efficiently by transform-
ing the LP into an equivalent ILP. Therefore, the heuristic
proposed in [15] is abandoned. Secondly, additional exper-
iments, numerical statistics, and analyses are also provided.
We verify the performance of metaflow scheduler with other
three schedulers in extensive experiments.

II. RELATED WORK
Existing work about application-oriented network scheduling
can be roughly divided into two categories: optimizing the
coflow scheduler and finding new situations.

A. OPTIMIZING COFLOW SCHEDULER
Many previous works have focused on application-oriented
network scheduling using the coflow abstraction, includ-
ing both centralized [1], [16], [17] and distributed mecha-
nisms [18], [19]. Recently, scheduling in situations where
the characteristics of coflows are unknown has also been
exploited [20], [21]. Different from traditional off-line
scheduling, on-line coflow scheduling has also been inves-
tigated [22], [23]. Moreover, some researchers have investi-
gated the possibility of combining the scheduling and routing
of coflows together to obtain better performance [22]–[24].
In [25], the problem of coflow-aware packet scheduling for
input-queued switches is investigated. There are also some
papers about scheduling coflows among datacenters [26] or in
the multi-resource environment [27]. These work adopt the

175532 VOLUME 7, 2019

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

FIGURE 2. Metaflow definition.

coflow abstraction for scheduling, thus they still can not
capture the network requirements in modern applications.

B. FINDING NEW SITUATIONS
From an another angle, the flaws of coflowhave also been dis-
cussed recently. In [28], the problem of scheduling weighted
coflows is addressed, where weights are used to express the
importances of different coflows. Tian et al. argue that there
are dependencies among coflows in the context of multi-
stage jobs and propose an approximation algorithm [29].
Im et al. seek to maximize the partial throughput of
coflows, since partially processed coflows could still be use-
ful [13]. [30] explores how to improve the performance of
coflow scheduling where both deadline coflows and non-
deadline coflows coexist. The proposed Macroflow, which
refers to all flows belonging to a single reducer within
a coflow, seeks the opportunity to accelerate application
through uncoupled reducers [31]. Compared to these works,
however, metaflow is a more elegant definition that com-
bines application information and flow together sufficiently.
Metaflow subdivides coflow according to an application’s
network requirements and offers the opportunity to take com-
putation into account for network scheduling.

III. METAFLOW
In this section, we first describe the network model in this
paper, then present our metaflow abstraction.

A. NETWORK MODEL
As in many previous network scheduler designs [13], [16],
[29], [31], we abstract out the whole datacenter fabric
into a non-blocking giant switch, as shown in Fig. 1(a).
All machines are identical with a fixed computing power
and two network ports, one ingress port and one egress port
respectively. Noting that even we adopt a homogeneous net-
work, it is straightforward to adapt to heterogeneous network
environments. We can simply set various bandwidths to dif-
ferent machines.

B. METAFLOW DEFINITION
A distributed computing job contains several communication
and computing tasks. Dependencies between these tasks are

defined by a directed acyclic graph (DAG). We assume that
we can acquire these DAGs before scheduling. This assump-
tion is practical since many computing frameworks already
use DAGs to store the jobs. For those applications that cannot
provide DAGs, we will leave them to future work.

Each computing task can only start after all its preceding
tasks are finished; moreover, the job is completed when all its
computing and communication tasks are finished. Jobs run in
a data-parallel manner, which is to say that a task in the DAG
can have multiple instances located on different machines.
As an example, in Fig. 2, the computing task C1 of the job
executes on both M5 and M6. The communication tasks also
have multiple replicates, just like the C1 on each machine
depends on a different blue flow.

In this paper, we propose a new abstraction, namely
metaflow, that resides in the middle of the two extreme points
of flows and coflows. Each metaflow is a collection of flows
consumed by the same computing task in the DAG of one job.
Since one computing taskmay havemultiple instances on dif-
ferent receiver machines, flows in one metaflow can have dif-
ferent sender and receiver machines. Flows in a metaflow are
independent of one other; no one flow takes precedence. The
completion time of the latest flow is regarded as themetaflow
completion time (MCT). Given this definition, a coflow is
a collection of metaflows, each associated with a distinct
computing task.

Consider the example in Fig. 2: the job involves four
sender machines (M1 - M4) and two receiver machines
(M5 and M6), while the DAG includes five computing tasks
(C1 - C5). If we abstract traffic into coflows, all these flows
would be classified into one coflow. Meanwhile, following
the definition of metaflow, these flows can be divided into
four metaflows (MF1 - MF4 in different colors in Fig. 2).
Each metaflow is connected to an exclusive computing task
in the DAG. As shown in Fig. 2(a), the metaflow MF1 (in
blue) includes two flows from M4 to M5 and M4 to M6 that
are connected to the C1 task.

Regarding the DAG, a metaflow is the smallest unit capa-
ble of forwarding the computation progress on all receiver
machines, representing the entire job. A metaflow is equal
to a coflow only in the special case when there is only one
computing task (barrier exists) in the DAG.

VOLUME 7, 2019 175533

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

IV. METAFLOW SCHEDULING PROBLEM
In this section, we present an estimation algorithm to calcu-
late the optimal MCT and formulate the MSP with a math-
ematical model, which tries to satisfy the optimal MCT of
more metaflows.

A. NOTATIONS
As described in §III-A, the datacenter network interconnects
M machines, which are denoted by M = {1, 2, . . . ,M}.
We consider the time in a slot-based way: T = {1, 2, . . . ,T }.
In each time slot t ∈ T, each machine can transmit C
units of data through both its egress and ingress links. N
metaflows from submitted jobs are generated to go through
the network, N = {1, 2, . . . ,N }. The k th flow from machine
i to machine j in metaflow n is denoted as f ni,j,k , and each flow
is associated with its size V n

i,j,k and start time Sni,j,k . For the
sake of convenience, the total number of flows from machine
i to machine j in metaflow n is denoted as Ui,j,n, and the total
number of flows in metaflow n is denoted as Ln.
The scheduling strategies are represented using xn,ti,j,k ,

which is the number of bandwidth units allocated to flow f ni,j,k
in time slot t . Since the scheduling unit can not be any size in
real life, we assume that each unit of bandwidth is 1 in this
paper; thus that all decision variables xn,ti,j,k are integers:

xn,ti,j,k ∈ Z+, ∀i, j ∈M, ∀k ∈ Ui,j,n, ∀n ∈ N, ∀t ∈ T (1)

It should be noted that xn,ti,j,k = 0 means that the flow f ni,j,k
does not occupy any units of bandwidth (as it either does not
exist or is waiting for transmission).

B. OPTIMAL MCT ESTIMATION
As illustrated in metaflow’s definition, a metaflow can for-
ward the computation progress of the entire job; thus, MCT
can directly influence the JCT. From JCT’s perspective,
we propose a heuristic-based algorithm (see Algorithm 1) to
estimate theMCT that takes both the DAG and network status
into consideration.

We use the job in Fig. 2(b) with 5 metaflows as an example
to illustrate the calculation process. We use one single job
here since the process for multiple jobs is same. Assume that
the computational load of the five computing tasks (C1-C5)
is 1, 2, 1, 2, 1 respectively.

In more detail, Algorithm 1 uses three sets to store
metaflows: DoneSet (for metaflows that have been calcu-
lated), ReadySet (for metaflows that will be calculated), and
TodoSet (for those that will be considered later). For each
metaflow p, metaflow q is called a dependent metaflow of
p if there is a path from the computing task q connected to
the computing task p connected. All dependent transfers of
p form a set, denoted as Deps(p). For example, in Fig. 2(b),
Deps(MF1) = ∅ and Deps(MF4) = {MF1,MF2,MF3}.
In the beginning, all metaflows are placed into TodoSet ,

while the other two sets are empty. The algorithm ends
only once all metaflows are moved into DoneSet . The
first step in each iteration is selecting all ready metaflows;

Algorithm 1 MCT Estimation Algorithm
Input: DoneSet , ReadySet = ∅, TodoSet = {all

metaflows}
Output: MCT of all metaflows

1 while (TodoSet 6= ∅ or ReadySet 6= ∅) do
2 foreach metaflow p in TodoSet do
3 if for all q ∈ Deps(p), q ∈ DoneSet then
4 move p from TodoSet to ReadySet
5 end
6 end
7 foreach metaflow p in ReadySet do
8 MCT(p) = maxq∈Deps(p)(MCT(q) +

tq,pc + Tnet (p))
9 move p from ReadySet to DoneSet

10 end
11 end

a metaflow is considered ready when all of its dependent
metaflows have finished their MCT calculations, namely in
the DoneSet . These ready metaflows will be moved into
ReadySet (Line 2-6). Essentially, the order of calculation
metaflows the topological order of metaflows. For the exam-
ple job, this order is MF1, MF2, MF3, and MF4.

In the second step (Line 7-10), we compute the MCT for
each metaflow in the ReadySet , which is calculated as in
Line 8. For any dependent metaflow q of the current metaflow
p, it defines a lower bound of the MCT of p: the summation
of MCT (q), the computation time needed to transfer q to
p (tq,pc) and the estimated transmission time of metaflow p
Tnet (p). t

q,p
c is the summation of the time required to finish

the computing tasks, from the one connected with metaflow q
to that connected with metaflow p. For example, in Fig. 2(b),
we have tMF2,MF4c = load(C2) + load(C4) = 1 + 2 = 3.
Following the estimation of coflow transmission time in [16],
the metaflow transmission time is calculated as follows:

Tnet (p) = max(max
i

∑
j V

p
i,j,k

Rem(Pini)
,max

j

∑
i V

p
i,j,k

Rem(Poutj)
) (2)

where Rem(.) denotes the remaining bandwidth of an
ingress or egress port of a machine. Metaflow pmust transfer∑

j V
p
i,j,k amount of data through each ingress port i (Pini)

and
∑

i V
p
i,j,k through each egress port j (Poutj). The former

argument of Equation 2 represents the minimum time to
transfer

∑
i,j V

p
i,j,k (which is just the total size of metaflow

p) amount of data through the input ports, and the latter is for
the output ports.

Together, Line 8 provides the optimal MCT, which may be
too small to satisfy. Therefore, we add a relaxation factor α
to obtain a more reliable estimation of MCT (denoted as Dp):

Dp = α ∗MCT (p) (3)

where α is set to 1.1 by our experiences for the best perfor-
mance and the influence of α is discussed in details in §VI.

175534 VOLUME 7, 2019

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

C. PROBLEM FORMULATION
Leveraging the estimated MCT (Dn), we can formulate the
MSP as follows (P1):

(O) minmax
n∈N

∑
i,j∈M,k∈Ui,j,n,t∈T

(V n
i,j,k −

∑
xn,ti,j,k) (4)

s.t.
∑

k∈Ui,j,n

∑
j∈M

∑
n∈N

xn,ti,j,k ≤ C, ∀i ∈M, ∀t ∈ T (5)

∑
k∈Ui,j,n

∑
i∈M

∑
n∈N

xn,ti,j,k ≤ C,∀j ∈M, ∀t ∈ T (6)

Dn∑
t=Sni,j,k

xn,ti,j,k ≤ V
n
ijk , ∀f

n
ijk ∈ metaflow n (7)

xn,ti,j,k = 0, ∀f ni,j,k ∈ metaflow n,

t ∈ [0, Sni,j,k] ∪ [D
n,T] (8)

In P1, the objective function (4) is intended to minimize the
maximum size of untransmitted data among all metaflows.
Ideally, if all metaflows finish their transfer before Dn, this
objective function achieves theminimal value of 0. To achieve
this objective, there are four constraints that must be satisfied.
Equations (5) and (6) indicate that the total bandwidth usage
on all egress and ingress ports cannot exceed the bandwidth
limit C . Moreover, Equation (7) implies that all data in
flow f ni,j,k should be transmitted between the start time Sni,j,k
and given MCT Dn. This constraint guarantees the perfor-
mance of scheduled jobs by meeting the MCT requirements.
The final constraint, Equation (8), works to limit the flow
so that it can only be transmitted between its start time
and MCT. If a flow can not finish its transmission in one
schedule, it will be rescheduled in the next time until it is
transmitted.

We can easily check that this problem P1 is an integer
linear programming (ILP) problem, which has a unique chal-
lenge that makes it difficult to solve this problem because that
this problem is NP-hard in general [32]. However, we make
a surprising observation that this ILP can be transformed
into an equivalent linear programming (LP) problem which
returns the same optimal solution to the ILP, as we will show
in the following section.

V. ANALYSIS OF PROBLEM MODEL P1
Generally, an ILP can be transformed into an LP if two
conditions are met: namely, a separable convex objective
function and a totally unimodular constraint matrix [33].
After taking an in-depth of the structure of P1, we find
that P1 exactly has such property. Therefore we firstly con-
struct an equivalent nonlinear programming problem P3
which clearly meets these two conditions; then we use
the λ-representation technique to transform P3 into an LP
problem P4.

A. TRANSFORMATION INTO A NONLINEAR
PROGRAMMING PROBLEM
1) SEPARABLE CONVEX OBJECTIVE
A function can be referred to as ‘separable convex’ if it can be
represented as a summation ofmultiple convex functions with
a single variable. Accordingly, to reconstruct our objective
into a separable convex function, we adopt the lexicographi-
cal order and lexicographical minimization defined in [34]:
Definition 1: For a vector v with K elements, let Ev represent

the sorted v with non-increasing order, implying Ev1 ≥ Ev2 ≥
· · · ≥ EvK .
Definition 2: For any p ∈ ZK and q ∈ ZK , if Ep1 <

Eq1 or ∃k ∈ {2, 3, · · · ,K } such that Epk < Eqk and Epi = Eqi,
∀i ∈ {1, 2, · · · , k − 1}, then p is lexicographically smaller
than q, represented as p ≺ q. Similarly, if Epk = Eqk , ∀k ∈
{1, 2, · · · ,K } or Ep ≺ Eq, then p is lexicographically no greater
than q, represented as p � q.
Definition 3: lexmin

x
f (x) represents the lexicographical

minimization of the vector f ∈ RK , which consists of K
objective functions of x. More specifically, the optimal solu-
tion x∗ ∈ RK achieves the optimal f ∗, in the sense that
f ∗ = f (x∗) � f (x),∀x ∈ RK .
Using these definitions, our previous formulation can be

transformed into the new model, P2, employing a lexico-
graphical minimization objective:

(O) lexmin
x

δ = (δ1, δ2, . . . , δn−1, δn) (9)

Constraints (5), (6), (7) and (8).
where δn =

∑
(V n

i,j,k −
∑
xn,ti,j,k),∀i, j ∈ M,∀k ∈

Ui,j,n,∀t ∈ T, which represents the total untransmitted data
of metaflow n.
It can therefore be seen that δ is a vector with a length |δ|

which is equal to N . Our initial objective is to minimize the
maximum size of untransmitted data among all metaflows,
which effectively just means minimizing the element in δ.
Thus, the optimal solution of P1 can be obtained by solving
this new P2 of δ.

To solve this lexicographical minimization problem, con-
sider the function g(δ), which has the following form:

g(δ) =
|δ|∑
u=1

|δ|
Eδu =

N∑
u=1

N Eδu (10)

where Eδu is the uth-largest element in the vector δ. We then
have two theorems.
Theorem 2: g(δ) is a convex function.
Proof of Theorem 2: We can clearly see that g(δ) is the

summation of N Eδu , each element of which is an exponential
function, also referred to as convex; therefore, this new objec-
tive function g(δ) is also convex. �
Theorem 3: For p, q ∈ Z|δ|, p � q⇔ g(p) ≤ g(q).
Proof of Theorem 3:We assume that the index of the first

non-zero element of Eq−Ep is r , which means that Eqr ≥ Eqr +1
and Eqi = Epi, ∀i < r .

VOLUME 7, 2019 175535

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

We first prove that p � q⇒ g(p) ≤ g(q). Thus, we have

g(q)− g(p) = g(Eq)− g(Ep)

=

|δ|∑
i=1

|δ|Eqi −

|δ|∑
i=1

|δ|Epi

=

|δ|∑
i=r

|δ|Eqi −

|δ|∑
i=r

|δ|Epi

≥ |δ|Eqr − (|δ| − r + 1)|δ|Epr

≥ |δ|Eqr − |δ|Epr+1

≥ 0 (11)

We then prove g(p) ≤ g(q) ⇒ p � q by proving its
contrapositive: q(p � q) ⇒q(g(p) ≤ g(q)), which equals
p � q ⇒ g(p) > g(q). The transformed formula can
be easily proven by exchanging the notations of p and q in
Equation (11). Hereto the theorem is proved. �

Based on the above theorems, we now formulate the fol-
lowing problem P3, which is equivalent to the problem P2:

(O) min
x

g(δ) (12)

Constraints (5), (6), (7) and (8).

2) TOTALLY UNIMODULAR CONSTRAINT MATRIX
Let us now check the second condition: namely, whether
the coefficients matrix of P3 can form a totally unimodular
matrix. The total unimodularity property of linear constraints
defines a feasible solution polyhedron that has integral
extreme points, meaning that the LP would have only an
integral optimum if it had any at all.
Theorem 4: The coefficients of the constraints (5), (6), (7)

and (8) form a totally unimodular matrix.
Proof of Theorem 4:An l×nmatrix A is totally unimodular

if and only if A has all its elements selected in {−1, 0, 1} and
every subset of the row indexes (i.e., I ⊆ {1, 2, . . . , l}) can be
divided into two disjoint sets, I1 and I2, such that |

∑
i∈I1 aij−∑

i∈I2 aij| ≤ 1, ∀j ∈ {1, 2, . . . , n}. It is straightforward to
determine that all elements in our matrix of coefficients are
0 or 1; accordingly, it meets the first condition.

We will now focus on the second condition. In our for-
mulation, constraints (5) and (6) both contain MT inequa-
tions. Meanwhile, constraints (7) and (8) have

∑N
n=1 L

n and
(
∑N

n=1 L
n)(T − 1 + Sni,j,k − D

n) equations separately. Thus,
Al×n is denoted as the coefficient of all formulas in the
constraints, such that we have l = 2MT +

∑N
n=1 L

n
+

(
∑N

n=1 L
n)(T − 1 + Sni,j,k − Dn) and n = (

∑N
n=1 L

n)MMT .
For the second condition, we can divide any subset I ⊆
{1, 2, . . . , l} into two sets, where all the rows belonging to
{1, 2, . . . , 2MT } are denoted as I1 and all the rest are denoted
as I2. It is easy to check that the summation of all the rows
of I1 in any column is 2; for I2, the result is similarly 1.
Hence, we have

∑
i∈I1 aij = 2 and

∑
i∈I2 aij = 1, which just

satisfies the second condition |
∑

i∈I1 aij −
∑

i∈I2 aij| ≤ 1,
∀j ∈ {1, 2, . . . , n}. This theorem is accordingly proven. �

Thus far, we successfully prove that P3 meets the two
conditions.

B. TRANSFORMING THE NONLINEAR PROGRAMMING
PROBLEM INTO AN LP
Finally, we use the λ-representation technique [33] to locate
the equivalent LP of our initial ILP formulation. For a single
integer variable x ∈ [0,C] ∩ Z, an integer convex function
f : [0,C] ∩ Z → R can be linearized using the following
λ-representation:

f (x) =
∑
s∈P

f (s)λs (13)∑
s∈P

sλs = x (14)∑
s∈P

λs = 1 (15)

λs ∈ R+, ∀s ∈ P (16)

where P is the integer set of all legal values of x, and in
our case, P = [0,C] ∩ Z. It is evident that this introduces
|P| positive real number variables λh and defines a convex
combination set for x using these newly defined variables.
We apply this λ-representation to each convex function

δn in Equation (10). As a result, the formulation P3 can be
rewritten as the following LP model P4:

(O) min
λ,x

∑
n∈N

∑
s∈P

N sλns

s.t.
∑
s∈P

λns = 1, ∀n ∈ N,P = [0,C] ∩ Z∑
s∈P

sλns = δ
n
=

∑
(V n

i,j,k −
∑

xn,ti,j,k),

∀i, j ∈M, ∀k ∈ Ui,j,n, ∀t ∈ T
λns ∈ R+, ∀i, j ∈M, ∀t ∈ T, ∀s ∈ P (17)

Constraints (5), (6), (7) and (8).
Theorem 5: An optimal solution to P4 is an optimal solu-

tion to P1.
Proof of Theorem 5: The property of total unimodularity

ensures that an optimal solution to the relaxed LP problem P4
will have integer values of δn, which represents an optimal
solution to P3. Moreover, we have proven that P3 shares
the same optimal solution with P2 via Theorem 1 and 2.
Furthermore, P2 and P1 are equivalent forms, completing the
proof. �
Efficient LP solvers (e.g., Gurobi [35]) can be applied to

solve P4. In the interests of convenience, we refer to the
scheduler based on a solver for this LP as our metaflow
scheduler.

VI. EXPERIMENTAL EVALUATION
In this section, we elaborate on the experimental details and
evaluate the performance of proposed scheduler with both
single job and multiple jobs.

175536 VOLUME 7, 2019

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

FIGURE 3. Impact of topology.

A. METHODOLOGY
1) SIMULATION SETUP
We simulate a datacenter network with 150 machines [16],
[17], [29]. The bandwidths of the ingress/egress ports are
uniformly set to 1Gbps, which is a common setting in pro-
duction datacenters [6]. The processing ability of machines
for computing tasks is normalized to 1, and the computational
load of computing tasks is represented in required time units.
The machine we use for simulation has an Intel Core i7-6700
4 cores CPU running at 3.40 GHz and 32 GB RAM.

2) TRACES
We verify the performance of our scheduler in two aspects:
for single jobs with different characteristics and for multiple
jobs using production traces. We find two features of the job
have distinct influences on the performance of scheduling
with metaflow: one is the DAG topology, while the other
is the Communication to Computation Ratio (CCR) [36].
We evaluate both in our experiments to validate the adapt-
ability of our scheduler. For multiple jobs, we use collected
Facebook logs for our simulations, which are widely accepted
as a benchmark in both systems and theoretical works [16],
[17], [29]. Once a new job arrives, evaluated schedulers take
the flows within this new jobs into consideration and remake
scheduling decisions.

3) COMPARISON SCHEDULERS
We compare the following network scheduling schemes with
Metaflow scheduler in our experiments:
• Sincronia [17]: This is a scheduling algorithm based on
coflow abstraction. Sincronia proves that if the ‘‘right’’
order of coflows is provided, it can be guaranteed that the
average coflow completion time will be no more than
4× of the optimal solution, regardless of how the rate
of each flow is assigned. It uses a greedy mechanism to
periodically order all unfinished coflows.

• Macroflow [31]: Macroflow is defined as a col-
lection of flows between a single receiver machine
and all sender machines. Given this definition,
a coflow is a collection of macroflows. [31] propose a

SAMF (Smallest-Average-Macroflow-First) heuristic
that greedily schedules all macroflows of a coflow
together, based on the average remaining size of its’
macroflows.

• CadentFlow [37]: CandentFlow is also proposed to deal
with intra-coflow relationships. The proposed heuris-
tic in [37] calculates the transmission order of flows
using the underlying computational DAG. Unlike our
metaflow scheduling which makes scheduling strat-
egy dynamically, CadentFlow assigns strict priorities to
flows statically only based on the DAG of a job.

We choose the Sincronia scheduler as the baseline, and the
comparison metric we use is the speedup of JCT, which can
be calculated as follows:

speedup =
JCTSincronia
JCTscheduler

(18)

where JCTSincronia and JCTscheduler are the average JCT of
a job achieved by Sincronia and the compared scheduler
respectively.

B. EVALUATION OF SYNTHETIC SINGLE JOBS
1) IMPACT OF TOPOLOGY
In this part, we investigate the relationship between the struc-
ture of a DAG and our scheduler’s scheduling effect. We use
the number of topological sorts to represent the structure of a
DAG. A DAG has at least one topological sort, which repre-
sents one legal execution order of computing tasks. Fig. 3(a)
shows four DAGswith different numbers of topological sorts.
Notably, the DAG with 4! = 24 possible sorts represents
the application with a barrier. The four tasks can be seen
as one task with a computational load four times that of a
single one. Obviously, for a DAG with fewer topological
sorts, the scheduling of flows has a more significant effect;
this is because poor scheduling may not bring any overlap
between communication and computation in this case.

The tested job has four sender and two receiver machines,
and thus 2 × 4 = 8 flows in total. Each receiver collects
10 Gb of data from four flows of the same size. The DAG
has four computing tasks, each of which is connected to one

VOLUME 7, 2019 175537

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

FIGURE 4. Impact of CCR.

flow. CCR is set to 1, which guarantees that the computational
and communication loads are comparable.

Fig. 3(b) shows the JCTs of four evaluated schedulers with
different DAGs. We can see that when the barrier exists,
Sincronia and the metaflow scheduler achieve the same JCT.
This is because the barrier forces the computing tasks to start
only when all flows are received; hence, no overlap is possi-
ble. When this restriction disappears, however, the metaflow
scheduler visibly outperforms Sincronia apparently with a
speedup around 1.62. As a comparison, Macroflow scheduler
can not reduce the JCT since it is determined by the slowest
reducer; thus finishing all reducers together or one by one
have no difference. Even not as significant as Metaflow,
CadentFlow can also speed up the job. The reason lies in
that CadentFlow does not consider the resource competition
between different machines, it only sends the flow according
to strict priorities.

Themetaflow scheduler exhibits stable accelerating perfor-
mance regardless of changes in the structures of DAGs. Since
applications in real-life feature different DAGs, evaluation
results confirm the feasibility of our metaflow scheduler for
production environments.

2) IMPACT OF CCR
The CCR is the ratio of the sum of communication cost to the
sum of computation cost, which is an important feature of
distributed applications [36]. In this test, the DAG structure
is the same as the aforementioned one with a full order
(in Fig. 3(a)). This job has eight sender and four receiver
machines respectively, and each receiver collects 10Gb of
data from eight flows of equal size. As in previous work [36],
the value set of CCR is {0.1, 0.5, 0.8, 1, 5, 10}.

The JCTs with different CCRs are presented in Fig. 4(a).
From this figure, we can observe that the metaflow and
CadentFlow schedulers achieve better JCT than Sincronia
with all CCRs. However, speedups of metaflow are all obvi-
ously higher than that of CadentFlow. Moreover, in situations
where the communication and computational load are com-
parable, the metaflow scheduler yields much higher speedups
(1.72, 1.78 for CCR = 0.8, 1). Even in situations where

the two loads are imbalanced, the metaflow scheduler still
finishes the job more quickly than Sincronia (speedup =
1.12 both for CCR = 0.1, 10). Network scheduling has lit-
tle effect on boosting applications in these situations since
the ability of ingress/egress ports or machines becomes the
bottleneck.

For comparison from another angle, Fig. 4(b) shows
the working status of four receiver machines (CCR = 1)
with Sincronia and metaflow schedulers. From this figure,
we can observe that the metaflow scheduler can start com-
putation on all these machines much earlier than Sincronia
(1.2s compared to 9.8s). Consequently, network transfer for
left metaflows is overlapped with computation and JCT is
decreased from 19.5s to 11.0s.

C. EVALUATION OF PRODUCTION TRACES WITH
MULTIPLE JOBS
We also test the metaflow scheduler with the Facebook trace,
which contains 526 jobs. However, the information about
metaflows in Facebook logs is incomplete. The logs contain
only the sender machines, receiver machines, transmitted
bytes and the submit time for each coflow; the information
about DAGs is lacking. Hence we need to assign the DAG
to each job. The structure and CCR of each job’s DAG is
selected randomly. The start time of flows are set equal to
the corresponding job’s submit time.

1) IMPACT OF RATIO OF WITH-BARRIER JOBS
We divide all jobs into two categories, i.e., with-barrier
and without-barrier jobs. For a job with n sender machines,
the DAG contains n computing tasks, which have an equal
number of flows on each receivermachine. The flows are con-
nected to the computing tasks randomly if this is a without-
barrier job. The CCR for a job is randomly selected from
(0.5, 1, 2). We test the trace with different proportions of
with-barrier jobs, from 10% to 90%. The simulation results
are shown in Fig. 5(a).

From Fig. 5(a), we can observe that the lower the
proportion of with-barrier jobs, the better overall results
the metaflow scheduler achieves (an increase in speedup

175538 VOLUME 7, 2019

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

FIGURE 5. Performance with production traces.

FIGURE 6. Computational overhead of the metaflow scheduler.

from 1.32 to 3.34). This is because more jobs without
barriers can provide more flexibility for the scheduling of
metaflows. Specially, for the situation where the with-barrier
jobs occupy 50%, the average speedup achieves 2.87. Cadent-
Flow scheduler also holds this trend, but the speedups are
much lower. As for the Macroflow scheduler, speedups are
always around 1, which does not show performance improve-
ment in this situation. These results verify that the metaflow
scheduler can outperform comparison schedulers signifi-
cantly in real-life, where workload is typically a mixture.

2) IMPACT OF α
We also investigate the influence of the relaxation factor α
in Fig. 5(b), where the ratio of with-barrier jobs is set to 50%
and other settings keep unchanged. From this figure, we can
observe the following: (1) a small α may not always result
in a better performance. This is because an α can be too
small so that the scheduler can not find legal solutions for all
metaflows, which will decrease the acceleration effect of the
metaflow scheduler (as for α = 1 and 1.05); (2) the speedup
decreases from 2.87 to 1.48 as α increases from 1.1 to 1.5.
The reason lies in that a larger α will relax constraints on the
desired MCT, as to the real finish time of metaflows may be
out of control. For the best performance, we hence choose
1.1 as the default value of α in our scheduler.

D. COMPUTATIONAL COST
Practicality was a primary concern when designing a network
scheduler, which means that the metaflow scheduler needs
to be efficient in terms of runtime. Therefore, we focus on
the computational cost of the metaflow scheduler in this part.
We use production traces in the previous subsection for this
part of experiments, with the ratio of with-barrier jobs equals
to 50%. Fig. 6 shows the simulation results.

The computational cost of the metaflow scheduler depends
on two factors: the relaxation factor α and the total number
of flows. α has a direct impact on how many times a flow
would be scheduled, as presented in Fig. 6(a). From this
figure, we can see the calculate frequency decreases from
1.42 to 1.0 as α increases from 1.0 to 1.35. A larger α will
make the scheduling problem more easy to solve, thus reduce
the calculate frequency. We also note that with α = 1.1,
which achieves the highest speedup, the increase in calculate
frequency is insignificant (only 0.12).

In Fig. 6(b), we record the solving time of metaflow
scheduler. In the figure, the number of flows varies from
100 to 1500 and the solving times are averaged over multiple
runs. From this we can see that the linear program is rather
efficient: it takes about 0.4 seconds to solve a problem with
about 300 flows. Even when the number of jobs increases to
1200, the solving time is still less than 1 second, which is
acceptable in real-life situations. Our metaflow scheduler is

VOLUME 7, 2019 175539

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

scalable mainly for the successful transformation from an ILP
to an LP problem.

VII. CONCLUSION
Network researchers used to optimize network transfers while
ignoring the actual demands of applications, a situation that
may lead to worse JCT. In this paper, we propose metaflow,
a DAG-based application-oriented traffic abstraction that
expresses the applications’ requirements with great clarity.
We devise a heuristic to estimate the optimal MCT and then
form the MSP as an ILP model. To solve the ILP, we trans-
form it into an equivalent LP through rigorous analysis, which
can be solved efficiently by existing solvers. Simulation
results demonstrate that our metaflow-based scheduler can
reduce the JCT for a single job significantly, and achieve a
better speedup up to 2.87× for multi-jobs, which is a closer
situation to real-life environments.

REFERENCES
[1] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, ‘‘Managing

data transfers in computer clusters with orchestra,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, Aug. 2011.

[2] H. Yan, H. Wang, X. Li, Y. Wang, D. Li, Y. Zhang, Y. Xie, Z. Liu,
W. Cao, and F. Yu, ‘‘Cost-efficient consolidating service for Aliyun’s
cloud-scale computing,’’ IEEE Trans. Serv. Comput., vol. 12, no. 1,
pp. 117–130, Jan./Feb. 2019.

[3] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal,
and B. Khan, ‘‘Minimizing flow completion times in data centers,’’ inProc.
IEEE INFOCOM, Apr. 2013, pp. 2157–2165.

[4] H. Xu and B. Li, ‘‘RepFlow: Minimizing flow completion times with
replicated flows in data centers,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr./May 2014, pp. 1581–1589.

[5] C.-Y. Hong, M. Caesar, and P. Godfrey, ‘‘Finishing flows quickly
with preemptive scheduling,’’ in Proc. ACM SIGCOMM Conf.
Appl., Technol., Archit., Protocols Comput. Commun., 2012,
pp. 127–138.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
‘‘Hedera: Dynamic flow scheduling for data center networks,’’ in Proc.
NSDI, 2010, vol. 10, no. 8, pp. 89–92.

[7] Y. Chen, X. Wang, and L. Cai, ‘‘On achieving fair and throughput-
optimal scheduling for TCP flows in wireless networks,’’ IEEE
Trans. Wireless Commun., vol. 15, no. 12, pp. 7996–8008,
Dec. 2016.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A.
Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
‘‘CONGA: Distributed congestion-aware load balancing for datacenters,
’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 503–514,
2014.

[9] M. Chowdhury and I. Stoica, ‘‘Coflow: A networking abstraction for
cluster applications,’’ in Proc. 11th ACM Workshop Hot Topics Netw.,
2012, pp. 31–36.

[10] L. Gao, Y. Wang, D. Li, J. Song, and J. Song, ‘‘Real-time social media
retrieval with spatial, temporal and social constraints,’’ Neurocomputing,
vol. 253, pp. 77–88, Aug. 2017.

[11] M. Abadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’
in Proc. OSDI, vol. 16, 2016, pp. 265–283.

[12] A. Paszke, S. Gross, S. Chintala, and G. Chanan, ‘‘Pytorch,’’ Comput.
Softw. Version 0.3, Tech. Rep., 2017, vol. 1.

[13] S. Im, M. Shadloo, and Z. Zheng, ‘‘Online partial throughput maximiza-
tion for multidimensional coflow,’’ in Proc. IEEE Conf. Comput. Com-
mun. (INFOCOM), Apr. 2018, pp. 2042–2050.

[14] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ inProc. 11thUSENIX Symp. Oper. Syst. Design
Implement., 2014, pp. 583–598.

[15] Y. Shi, J. Fei, M. Wen, Q. Huang, and W. Nan, ‘‘Metaflow: A better
traffic abstraction for distributed applications,’’ in Proc. IEEE 21st Int.
Conf. High Perform. Comput. Commun., IEEE 17th Int. Conf. Smart City,
IEEE 5th Int. Conf. Data Sci. Syst. (HPCC/SmartCity/DSS), Aug. 2019,
pp. 1123–1130.

[16] M. Chowdhury, Y. Zhong, and I. Stoica, ‘‘Efficient coflow scheduling
with varys,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 4,
pp. 443–454, 2014.

[17] S. Agarwal, S. Rajakrishnan, A. Narayan, R. Agarwal, D. Shmoys, and
A. Vahdat, ‘‘Sincronia: Near-optimal network design for coflows,’’ inProc.
Conf. ACM Special Interest Group Data Commun., 2018, pp. 16–29.

[18] Z. Li, Y. Zhang, D. Li, K. Chen, and Y. Peng, ‘‘OPTAS: Decentralized flow
monitoring and scheduling for tiny tasks,’’ in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[19] S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li, ‘‘Towards practical and
near-optimal coflow scheduling for data center networks,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 11, pp. 3366–3380, Nov. 2016.

[20] M. Chowdhury and I. Stoica, ‘‘Efficient coflow scheduling without prior
knowledge,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 393–406, 2015.

[21] H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, and Y. Geng, ‘‘Coda:
Toward automatically identifying and scheduling coflows in the dark,’’ in
Proc. ACM SIGCOMM Conf., 2016, pp. 160–173.

[22] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. Lau,
‘‘Efficient online coflow routing and scheduling,’’ in Proc. 17th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput., 2016, pp. 161–170.

[23] H. Tan, S. H.-C. Jiang, Y. Li, X.-Y. Li, C. Zhang, Z. Han, and
F. C. M. Lau, ‘‘Joint online coflow routing and scheduling in data cen-
ter networks,’’ IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1771–1786,
Oct. 2019.

[24] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang, D. Li, and
S. Wang, ‘‘Rapier: Integrating routing and scheduling for coflow-
aware data center networks,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr./May 2015, pp. 424–432.

[25] J. Xiao, K. L. Yeung, and S. Jamin, ‘‘CLF: An online coflow-aware
packet scheduling algorithm,’’ in Proc. IEEE 43rd Conf. Local Comput.
Netw. (LCN), Oct. 2018, pp. 648–656.

[26] T. Zhang, R. Shu, Z. Shan, and F. Ren, ‘‘Distributed bottleneck-aware
coflow scheduling in data centers,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 30, no. 7, pp. 1565–1579, Jul. 2019.

[27] J. Zhang, D. Guo, K. Li, H. Qi, X. Tao, and Y. Jin, ‘‘Coflow scheduling
in the multi-resource environment,’’ IEEE Trans. Netw. Service Manage.,
vol. 16, no. 2, pp. 783–796, Jun. 2019.

[28] Z. Wang, H. Zhang, X. Shi, X. Yin, Y. Li, H. Geng, Q. Wu, and J. Liu,
‘‘Efficient scheduling of weighted coflows in data centers,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 9, pp. 2003–2017, Sep. 2019.

[29] B. Tian, C. Tian, H. Dai, and B.Wang, ‘‘Scheduling coflows of multi-stage
jobs to minimize the total weighted job completion time,’’ in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Apr. 2018, pp. 864–872.

[30] R. Xu, W. Li, K. Li, and X. Zhou, ‘‘Shaping deadline coflows to accel-
erate non-deadline coflows,’’ in Proc. IEEE/ACM 26th Int. Symp. Qual.
Service (IWQoS), Jun. 2018, pp. 1–6.

[31] B. Tian, C. Tian, J. Sun, J. Yan, Y. Tang,W.Wang, H. Dai, N. Xia, G. Chen,
and W. Dou, ‘‘Using the macroflow abstraction to minimize machine slot-
time spent on networking in Hadoop,’’ in Proc. 2nd Asia–PacificWorkshop
Netw., 2018, pp. 36–42.

[32] J. K. Karlof, Integer Programming: Theory and Practice. Boca Raton, FL,
USA: CRC Press, 2005.

[33] R.Meyer, ‘‘A class of nonlinear integer programs solvable by a single linear
program,’’ SIAM J. Control Optim., vol. 15, no. 6, pp. 935–946, 1977.

[34] Z. Hu, B. Li, and J. Luo, ‘‘Flutter: Scheduling tasks closer to data across
geo-distributed datacenters,’’ in Proc. 35th Annu. IEEE Int. Conf. Comput.
Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[35] Gurobi. (2018). Gurobi Optimizer 7.5. Accessed: Nov. 7, 2018. [Online].
Available: http://www.gurobi.com

[36] H. Arabnejad and J. G. Barbosa, ‘‘List scheduling algorithm for heteroge-
neous systems by an optimistic cost table,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 3, pp. 682–694, Mar. 2014.

[37] S. A. Jyothi, S. H. Hashemi, R. Campbell, and B. Godfrey, ‘‘Towards an
intent-aware network interface for cloud applications,’’ Network, vol. 100,
p. f1.

175540 VOLUME 7, 2019

Y. Shi et al.: Application-Oriented Network Scheduling With Metaflow

YANG SHI received the B.S. degree from
Tsinghua University, in 2014, and the M.S. degree
from the National University of Defense Technol-
ogy, in 2016. He is currently pursuing the Ph.D.
degree with the College of Computer, National
University of Defense Technology, Changsha,
China. His research interests focus on distributed
and parallel computing, resource management,
and workload scheduling.

JIAWEI FEI received the B.S. and M.S. degrees
from the National University of Defense Tech-
nology, Changsha, China, in 2015 and 2017,
respectively, where he is currently pursuing the
Ph.D. degree with the College of Computer. His
research interests focus on distributed and parallel
computing, resource management, and workload
scheduling.

MEI WEN received the B.S., M.S., and Ph.D.
degrees in computer science and technology
from the National University of Defense Tech-
nology, in 1995, 1999, and 2006, respectively.
She is currently a Professor with the Computer
College National University of Defense Tech-
nology, China. Her research interests include
computer architecture, parallel programming, and
scientific computing.

CHUNYUAN ZHANG received the B.S., M.S.,
and Ph.D. degrees in computer science and tech-
nology from the National University of Defense
Technology, in 1985, 1990, and 1996, respectively.
He is currently a Professor with the Computer
College, National University of Defense Technol-
ogy, China. He is also the Director of a series of
research projects, including National Natural Sci-
ence Foundation projects of China. His research
interests include computer architecture, parallel

programming, embedded systems, and scientific computing.

VOLUME 7, 2019 175541

	INTRODUCTION
	RELATED WORK
	OPTIMIZING COFLOW SCHEDULER
	FINDING NEW SITUATIONS

	METAFLOW
	NETWORK MODEL
	METAFLOW DEFINITION

	METAFLOW SCHEDULING PROBLEM
	NOTATIONS
	OPTIMAL MCT ESTIMATION
	PROBLEM FORMULATION

	ANALYSIS OF PROBLEM MODEL P1
	TRANSFORMATION INTO A NONLINEAR PROGRAMMING PROBLEM
	SEPARABLE CONVEX OBJECTIVE
	TOTALLY UNIMODULAR CONSTRAINT MATRIX

	TRANSFORMING THE NONLINEAR PROGRAMMING PROBLEM INTO AN LP

	EXPERIMENTAL EVALUATION
	METHODOLOGY
	SIMULATION SETUP
	TRACES
	COMPARISON SCHEDULERS

	EVALUATION OF SYNTHETIC SINGLE JOBS
	IMPACT OF TOPOLOGY
	IMPACT OF CCR

	EVALUATION OF PRODUCTION TRACES WITH MULTIPLE JOBS
	IMPACT OF RATIO OF WITH-BARRIER JOBS
	IMPACT OF

	COMPUTATIONAL COST

	CONCLUSION
	REFERENCES
	Biographies
	YANG SHI
	JIAWEI FEI
	MEI WEN
	CHUNYUAN ZHANG

