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ABSTRACT A forest fire is a natural disaster that destroys forest resources, thus having a severe impact on
humans and on the animals and plants that depend on the forest environment. This paper presents a model for
predicting the scale of forest wildfires of Alberta, Canada. A fire’s scale is determined by the combination
of the fire’s duration and the size of the area it burns. Our prediction model enables fire rescuers to take
appropriate measures to minimize damage caused by a wildfire based on its predicted scale in the fire’s
early stages. The modeling data were collected from the Canada National Fire Database (CNFDB) published
by Natural Resources Canada, which includes wildfire and meteorological data for Alberta, Canada. The
size of the burned area and the fire’s duration were used to estimate the scale of a wildfire. After multi-
collinearity testing and feature normalization, the data were divided into training and testing sets. Taking
the meteorological factors as input values, a backpropagation neural network (BPNN), a recurrent neural
network (RNN), and long short-term memory (LSTM) were implemented to establish prediction models.
Of these classification methods, LSTM exhibited the highest accuracy, 90.9%. The results indicate that it
is feasible to predict the scale of a forest wildfire at the beginning of its occurrence using meteorological
information.

INDEX TERMS Forest wildfire, LSTM model, meteorological factors, prediction of wildfire scale.

I. INTRODUCTION
Forest resources are some of the most important natural
resources on Earth. Not only are they the main component
of the Earth’s ecosystem, they also provide many resources
for human life and production [1]. Forest fires are one of
the primary natural disasters that destroy forest resources.
The losses caused by forest fires are enormous [2] and the
challenges of fighting forest fires cannot be underestimated.
The causes of forest fires are complex. Whereas most forest
fires with human-based causes such as smoking, hunting, and
logging can be prevented or reduced by various interven-
tions [3], it is difficult to monitor or control forest wildfires
that occur naturally under certain meteorological conditions.
Wildfires are destructive and spread rapidly [4]. Based on
data from Canada’s National Forestry Database, over 8,000
forest fires each year burn an average of over 2.1 million ha.
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Forest wildfires are a key environmental issue. Therefore,
it is important to take effective preventive measures in forest
management to reduce the losses of human life and property
caused by forest fires. In this context, a wildfire scale predic-
tion model would be useful in guiding forest fire rescue work
and understanding their risk.

Because forest fires are a global problem, researchers in
various countries have long been committed to their study.
Recent years have seen numerous technical developments in
the field that are aimed at improving fire prediction system
design. Wotton et al. used Poisson regression analysis meth-
ods to predict the number of human-caused forest fires in
the forested area of Ontario, Canada, finding that the total
number of forest fires caused by human activities in Ontario
could increase by approximately 18% by 2020–2040 and
by 50% by the end of the 21st century [5]. Marchal et al.
collected all forest wildfire data for broad-leaved forests
in southern Quebec, Canada, from 2000 to 2010, analyzed
the relationship between weather conditions, road density,
land cover, and fire occurrence, and established a Poisson
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regression model to predict the occurrence of forest wildfires
in this area. Their results showed that road density exerted
the strongest influence on the frequency of human-caused
fires [6]. Plucinski et al. studied wildfires that occurred in ten
managed forest areas in Western Australia. They developed
a model using negative binomial regression with a dataset
covering three years and evaluated it using data from an
independent year. The methods they demonstrated can be
used to develop predictive tools for day-to-day fire planning
operations in other regions with suitable fire incident and
meteorological records [7].

The study of forest fire prediction has focused mainly on
the prediction of forest fire frequency, meaning that these
models simply predict how many fires will occur [8], [9].
Information about the scale of fires is not included. If the
scale of forest fires can be predicted in their early stages,
relevant rescue and firefighting plans can be made in time to
be most effective, thereby reducing the damage caused [10].
Therefore, the ability to predict the scale of forest fires is
crucial. Regression models have been widely used in wild-
fire probability modelling since the 1990s [11]. Traditional
models implemented for predicting forest fires include gen-
eralized linear models based on logistic, Poisson, and nega-
tive binomial distributions [12], [13]. However, these models
cannot process multi-dimensional big data, which restricts
their generalizability. Very recent comparative studies have
shown that traditional regression models fail to accurately
estimate the patterns of wildfire probabilities because they
assume a linear relationship between a fire’s occurrence and
its causative factors [14], [15] when, in fact, the drivers of
wildfires act nonlinearly within a broad range of spatiotempo-
ral scales. Therefore, nonlinear models are needed to handle
the complexities of the underlying processes.

In recent years, artificial intelligence (AI) methods have
proven to be very effective for predicting natural haz-
ards [16], [17]. Furthermore, AI methods have frequently
been used in the context of wildfire modeling and have
outperformed conventional statistical methods in many
cases [14], [18]–[20]. In our study, which used time series
data to predict forest wildfires, we implemented a long short-
term memory (LSTM) model to predict the scale of forest
wildfires. The LSTM model is a special type of recurrent
neural network (RNN) that preserves historical information
in data using a selective internal memory unit [21]. LSTM
has shown to be more effective for analyzing time series
prediction problems than other AI methods [22]–[24]. Since
fire occurrences have obvious rules and trends and LSTM has
advantages in predicting occurrence trends, an LSTM model
was employed to predict the scale of wildfires.

The main objectives of this study are (1) to propose a new
definition of wildfire scale that defined by the combination
of a fire’s duration and the size of the area it burns, (2) to
investigate the capability of three neural networkmodels (i.e.,
backpropagation neural network (BPNN), RNN, and LSTM
models) to predict the scale of wildfires in forests using
meteorological data, and (3) to provide an efficient estimate

FIGURE 1. Location of the study area, Alberta, Canada.

of future wildfires’ scales. The application of these models is
underpinned by real-world data from a fire-prone landscape
in Alberta, Canada. Our model predicts the scale of forest
wildfires in their early stages; our findings can provide new
insights to guide authorities in taking effective and prompt
fire management measures with a high level of accuracy in
reasonable computation time.

II. STUDY AREA AND METHODOLOGY
A. STUDY AREA
The study region, Alberta, located in western Canada, is illus-
trated in Fig. 1. Alberta has a humid continental climate with
warm summers and cold winters. Regional average tempera-
tures range from −15◦C in winter to 24.5◦C in summer and
the annual average temperature is 2.5◦C. Average seasonal
precipitation ranges from 200 mm to 325 mm in winter and
from 150 mm to 275 mm in summer and the annual precip-
itation is 300 mm to 600 mm. Alberta is a sunny province.
Annual bright sunshine totals range between 1,900 h and
2,600 h per year. Most of the northern half of the province is
boreal forest and the RockyMountains along its southwestern
border are largely forested [25].

B. DATA PREPARATION
The fire occurrence records available for the study area were
obtained from the Canada National Fire Database (CNFDB).
This database contains the coordinates of the locations and
the ignition dates of all fires that occurred in the Alberta
region between 1990 and 2018, inclusive. The database also
records specific information about the forest fires, including
their latitude and longitude, date of ignition, date of extinc-
tion, burned area, and cause. We also retrieved weather data
from the CNFDB for the period 1990 to 2018; these were
collected from 6,970 weather stations. The data contained
11 meteorological elements: maximum temperature (◦C),
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minimum temperature (◦C), mean temperature (◦C), heat-
ing degree days, cooling degree days, total rain (mm), total
snow (mm), total precipitation (mm), snow on ground (cm),
direction of maximum wind gust (tens of degrees), and speed
of maximum wind gust (km/h). Because of the large quantity
of meteorological data and the difficulty of obtaining them
from web pages, web crawler technology was used to extract
the meteorological data.

C. DATA PRETREATMENT
1) DATA FILTERING AND MATCHING
A total of 377,719 fire data records were obtained. However,
the data records did not cover all 11 meteorological elements;
therefore, we eliminated the records that were lacking any
specific information relevant to the forest fire. Then, using
the forest fire type, human-caused fires (such as those caused
by smoking or hunting) were deleted. The remaining wild-
fire data consisted of 35,685 records available for modeling.
Next, using their latitude and longitude, we matched the
ignition points with the weather stations that had recorded
meteorological data for the date of each wildfire. In all,
394,366 meteorological data records were selected for the
years 1990 to 2018.

A full record for modeling needed to include information
about the wildfire and corresponding meteorological infor-
mation. Therefore, the fire data records were matched with
the meteorological data records using the latitude and longi-
tude of the ignition points. The final dataset for modelling
consisted of 24,108 full records (or samples). In subsequent
experiments, we used these records as samples for model
training.

2) MULTI-COLLINEARITY TEST
Multi-collinearity refers to strong correlations in the rela-
tionships among the explanatory variables in the regression
model, which distort the estimations made by the model and
can cause deviations from the ground truth [26]. To avoid
having variables with significant collinearity affect the accu-
racy of our forest wildfire scale prediction model, we calcu-
lated the variance inflation factor (VIF) [27] to evaluate the
collinearity between variables. It is generally believed that a
variable whose VIF is greater than 10 should be eliminated
because such a values indicates that significant collinearity
between independent variables exists [28].

3) FEATURE NORMALIZATION
Feature normalization independently normalizes each vari-
able to a given range by a selected normalization method.
In this study, the values of the input variables in the dataset
varied widely, which led the gradient descent process used
to find optimal solutions to be complex and time consum-
ing and, further, affected prediction accuracy. Therefore,
we introduced a feature normalization method to transform
the variables into a spatial category that gave the input
variables equal weight. The output variables with wildfire

information were also normalized. The Min-Max Scaling
algorithm [29] was used to quantify variables into the [0,1]
range. The formula for feature quantization is given by
Eq. (1):

z =
xi −min(x i)

max(x i)−min(x i)
, (1)

where z is the output value after feature normalization, xi is
the value of the variable, max(xi) is the maximum value of the
variable, and min(xi) is the minimum value of the variable.
Normalizing the area and duration of fire gave the two nor-
malization results equal weight when calculating the average
value, which was used as the final normalization result.

D. WILDFIRE SCALE PREDICTION MODELING
1) BACKPROPAGATION NEURAL NETWORK
A BPNN is a multilayer feed-forward neural network based
on backpropagation [30]. Typical BPNNs consist of one input
layer, one or more hidden layers, and one output layer. Each
layer consists of several neurons (nodes). The output value of
each node is determined by its input value, action function,
and threshold. The network’s learning process includes two
processes: forward propagation of information and backprop-
agation of error. In forward propagation, input information is
transmitted from the input layer to the output layer through
the hidden layer, which is obtained by operation of the action
function. If the output contains errors when compared with
the desired value, reverse propagation of the error signal
is conducted. Errors are reduced by modifying the weights
of each layer of neurons so that the output meets accuracy
requirements. By alternating the two processes, in the right
vector space execution error function gradient descent strat-
egy, dynamic iterative search weight vector, the network error
function is minimized, completing the process of information
extraction and memory. The topological structure of BPNN is
shown in Fig. 2.

2) RECURRENT NEURAL NETWORK
An RNN is a neural network model for time series data. The
special network structure of an RNN enables the output of a
neuron to act as input directly to itself at the succeeding time
point [31], [32]. The result of each hidden layer in the network
is determined by the output of the current input and the output
of the previous hidden layer; that is, an RNN can record
the results of previous calculations [33]. However, with an
RNN, the problems of gradient disappearance or explosion
can easily occur [34], [35]. As shown in Fig. 3, given the input
sequence (x1, x2, . . . , xt ) and the hidden layer state (h1, h2, . . . ,
ht ), at time t , RNN units are updated as shown in Eqs. (2)–(3).

ht = σ (Uxt +Wht−1 + b), (2)

ot = σ (Vht + b). (3)

3) LONG SHORT-TERM MEMORY
LSTM is a variant RNN; it can learn long-term dependency
information and avoid gradient disappearance [36], [37].
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FIGURE 2. Structure of BP neural network. Symbols: X, input gate; wi = weight between input layer and hidden
layer; wj = weight between hidden layer and output layer; b = bais; f(x) = transfer function.

FIGURE 3. Structure of recurrent neural network. Symbols: o = output
gate; h = hidden layer; x = input gate; t = time; W = weight matrix of
hidden layer; U = weight matrix of input layer to hidden layer; V = weight
matrix of hidden layer to output layer.

LSTM improves long-term dependencies by increasing input,
output, and ‘‘forget’’ gates in neurons. The structure of an
LSTM neuron is shown in Fig. 4.

Each LSTM neuron has three gates—the input, output, and
forget gates—to control the state of the cell. Given the input
sequence (x1, x2, . . . , xt) and hidden layer state (h1, h2, . . . , ht),
at time t , the LSTM cells are updated as shown in Eqs. (4)–(8)
[38].

ft = σ
(
Wo · [ht−1, xt ]+ bf

)
(4)

it = σ (Wi · [ht−1, xt ]+ bi) (5)

ot = σ (Wo · [ht−1, xt ]+ bo) (6)

ct = ft � ct−1 + it � tanh (Wc · [ht−1, xt ]+ bc) (7)

ht = ot � (tanh (ct)) (8)

where σ is the sigmoid activation function, f is the forget gate,
i is the input gate, o is the output gate, c is the cell, h is the
status of the hidden layers, W is the weight matrix, and b is
the deviation vector.

4) TRAINING THE MODELS
In our study, the objective function for wildfire scale predic-
tion modeling was the root mean square error (RMSE) mea-
suring the magnitude of the error between the observations
and predictions, which should be minimized:

e = t − y (9)

RMSE =
√
Mean(e2) (10)

Objectivefunction = min(RMSE) (11)

where t is the target data, y is a function of the input data
and the models whose values are optimized, and e is the error
function value to be minimized.

E. PERFORMANCE ASSESSMENT AND COMPARISON
In our study, forest wildfire scale was graded into five rat-
ings. In addition to calculating the prediction accuracy of the
BPNN, RNN, and LSTM models on each rating, the receiver
operating characteristic (ROC) was used to evaluate the over-
all performance of the models. The ROC of the training
dataset shows the model’s success rate and indicates how
well the modeling results fit the training dataset. In contrast,
the ROC of the test dataset yields the prediction rate of the
model and measures how well the model predicts the general
probability of fire scale across the study area.

F. SOFTWARE
Data collection and preprocessing, and the establishment of
the classification models, were developed and implemented
in the TensorFlow framework of the Anaconda 3 software
(Anaconda, Inc., Austin, TX).

III. RESULTS AND DISCUSSION
A. DATA PROCESSING
After filtering the original fire data, we obtained the ignition
points, corresponding to latitudes and longitudes in Alberta.
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FIGURE 4. Structure of LSTM cell. Symbols: c = cell; f = forget gate; h = hidden layer; i = input
gate; o = output gate; Sigmod = sigmoid activation function; t = time; x = input; W = weight
matrix; b = deviation vector.

TABLE 1. Wildfire data.

TABLE 2. Post-processed weather data.

The format of the fire data is shown in Table 1. These data
included the latitude and longitude of the ignition point,
the ignition and extinction dates of the fire, and the size
of the burned area. As the study focused on wildfires, fires
with human causes were eliminated; the types that remained
included crown fires, grass fires, ground fires, and forest
fires. Filtering for the meteorological data preserved those
meteorological records that contained all 11 variables; their
format is presented in Table 2.

B. MULTI-COLLINEARITY TEST AND DATA
FEATURE NORMALIZATION
A multi-collinearity test was used to test the collinearity
of the meteorological variables affecting forest fire occur-
rence. The VIFs of the meteorological variables are shown
in Table 3. The minimum temperature, mean temperature,
and total precipitation variables should be excluded as their
VIF values were greater than 10. After eliminating the
meteorological variables with multiple collinearities, the fire
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TABLE 3. The variance inflation factors (VIFs) of the meteorological variables.

TABLE 4. Statistics of the dataset for modelling.

TABLE 5. Variable values after feature normalization.

and meteorological data were matched based on the latitude
and longitude of the fire ignition points. Then, the modeling
dataset was prepared. Each sample in the dataset was con-
structed of eight meteorological variables and two wildfire
variables (i.e., the burned area and fire duration). The mete-
orological variables were the maximum temperature (MT),
cooling degree days (CDD), heating degree days (HDD), total
rain (TR), total snow (TS), snow on ground (SG), direction of
maximum wind gust (DMG), and speed of maximum wind
gust (SMG). The traditional method for rating wildfire scale
is based on the size of the burned area [39]. However, we pro-
pose a more meaningful definition of scale that encompasses
not only the size of the burned area but also the fire’s duration
[40]. The basic statistical descriptions of the dataset variables
are given in Table 4. Additionally, we implementedMin-Max
Scaling to normalize the variables into the [0,1] range. The
results of feature normalization are shown in Table 5.

C. CORRELATION BETWEEN FIRE SCALE AND
METEOROLOGICAL VARIABLES
After multi-collinearity testing and feature normalization, we
carried out correlation analysis of the meteorological factors
and fire scale. The results are shown in Table 6. MT, TR,
and SMG have the greatest impact on a fire’s scale. More-
over, MT, HDD, DMG, and SMG were significantly posi-
tively correlated with fire scale, whereas CDD, TR, SG, and
TS were significantly negatively correlated with fire scale.
Furthermore, the relative importance of meteorological fac-
tors to wildfire scale prediction is shown in Fig. 5.

D. FOREST WILDFIRE SCALE PREDICTION
1) WILDFIRE SCALE RATINGS
After feature normalization, we used the mean z of the nor-
malized duration of the fire and the normalized size of the
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TABLE 6. Correlation between fire scales and environmental factors.

TABLE 7. Results of dataset division by improved Kennard–Stone (K-S) method.

FIGURE 5. The relative importance of meteorological factors. MT:
Maximum Temperature (◦C), CDD: Cooling Degree Days, HDD: Heating
Degree Days, TR: Total Rain (mm), TS: Total Snow (mm), SG: Snow on
Ground (cm), DMG: Direction of Maximum Gust (tens of degrees), SMG:
Speed of Maximum Gust (km/h).

burned area to classify the wildfires by their scale. The wild-
fires were classified into five scale ratings according to their
z values: z values in the ranges of [0,0.2), [0.2,0.4), [0.4,0.6),
[0.6,0.8), and [0.8,1) were classified as Levels 1, 2, 3, 4, and
5, respectively. Level 5 represents a very large-scale wildfire,
whereas Level 1 indicates a wildfire that was very small in
scale [41].

2) ANALYSIS OF THE PREDICTIVE MODELS
The dataset for the establishment of the predictive models
included 24,108 samples, representing 24,108 occurrences

of wildfires between 1990 and 2018. To reveal the patterns
in forest wildfire scales more objectively, 48,216 random
samples of records without fire occurrences were selected
(twice the number of wildfire occurrence records). Thus,
the full dataset for wildfire prediction modeling contained
72,324 samples. The samples were divided into training and
testing sets in a ratio of 7:3; that is, 50,627 records were put
into the training set and 21,697 records were put into the
testing set [42]. To guarantee the applicability and stability
of the prediction model, we applied the improved Kennard–
Stone (K–S) method [43] to put the most diverse samples into
the training set. The number of records of each level placed
into the training set and the testing set are shown in Table 7.

Setting the eight meteorological variables as input and
wildfire scale rating z as output, the study used BPNN, RNN,
and LSTM models to analyze the relationship between mete-
orological factors and wildfire scale. A comparison of the
prediction accuracy of the BPNN, RNN, and LSTM on the
testing set is shown in Table 8. The LSTM model obtained
the best predictive performance of the three models, having
the highest average accuracy of 90.9%; that is, 19,721 of the
21,697 records in the testing set were predicted correctly.
Details of the prediction distribution obtained using LSTM
are presented in Table 9. For example, there were 531 records
with a rating of Level 5 in the testing set, of which the
LSTM predictive model discriminated 487 records to the
correct level; therefore, the accuracy of LSTM for Level 5was
91.7%.

As a further evaluation, Fig. 6 displays the ROC curves of
the test dataset and the full dataset using the LSTM model.
The diagonal of Table 9 shows training samples with correct
predictions and other cells show training samples with wrong
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TABLE 8. Comparison of results by prediction models using back propagation neural network (BPNN), recurrent neural network (RNN), and long
short-term memory (LSTM).

TABLE 9. Prediction results for the five levels of forest wildfire scales using LSTM.

FIGURE 6. Receiver operating characteristic (ROC) curves of LSTM model. (a) Test dataset; (b) full dataset.

predictions. The ROC curves of the training and test sets
are drawn according to the samples with correct training
and wrong training. The area under the ROC curve (AUC)
values reflect the accuracy of the model’s prediction. When
0.5 < AUC < 1, the larger the AUC value, the better the
model’s fit. (Some scholars have pointed out that AUC =
0.5 indicates that the regression equation has no meaning
for the interpretation of dependent variables; when AUC >
0.5, the independent variables are better able to explain the
dependent variables [44].) The AUC values of the test dataset
and the full dataset were 0.918 and 0.942, respectively.

The experimental results indicate that LSTM can predict
the scale of wildfires by using meteorological variables,
which can provide a scientific basis for forest wildfire scale
prediction in Alberta.

IV. CONCLUSION AND FUTURE WORK
This study revealed the relationship between meteo-
rological factors and wildfire scale in the forests of
Alberta, Canada. The main contribution of this work is
twofold:

(1) The study proposed a more meaningful definition of
wildfire scale that is estimated by the size of the burned area
and the duration of the fire. These scales are classified into
five levels.

(2) Of the three neural network models examined,
the LSTM model exhibited the best ability to predict the
scales of forest wildfires, with an overall predictive accuracy
of 90.9%. Additionally, the ROC curve indicated that the
LSTM model fit the data well (having an AUC of 0.942 for
the full dataset).
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The results of this study demonstrate that it is feasible to
predict the scale of forest wildfires usingmeteorological data,
which will be helpful in forest fire prevention and rescue,
especially for wildfires occurring in forests. Fire rescuers
and firefighters will be able to take effective and appropriate
measures in accordance with a fire’s scale as predicted at its
initial stages, thereby reducing the losses caused by forest
wildfires.

Because the data used for modeling came from a single
region, the types of forest and the topography throughout
the dataset were similar, and the predictive model has some
limitations. This study thus constitutes a step forward in the
domain of forest wildfire prediction by considering other
factors, including terrain topography, altitude, type of for-
est, population density, and the manual intervention in fire
extinguishing that, along with meteorological factors, may
influence the scale of forest wildfires. As more factors are
considered, the model will have the potential to predict the
scales of a greater range of wildfire occurrences.
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