
Received October 30, 2019, accepted December 2, 2019, date of publication December 5, 2019,
date of current version December 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957942

A Construction of Optimal (r , δ)-Locally
Recoverable Codes
BOCONG CHEN AND JING HUANG
School of Mathematics, South China University of Technology, Guangzhou 510641, China

Corresponding author: Jing Huang (jhuangmath@foxmail.com)

The work of B. Chen was supported by the National Natural Science Foundation of China under Grant 11871025, Grant 11971175, and
Grant 11601158, and in part by the Science and Technology Program of Guangzhou under Grant 201804010102. The work of J. Huang
supported by China Postdoctoral Science Foundation under Grant 2019M662883.

ABSTRACT Locally recoverable codes (LRCs) play a significant role in distributed and cloud storage
systems. The key ingredient for constructing such optimal LRCs is to characterize the parity-check matrix
for LRCs. In this letter based on the parity-check matrix for generalized Reed-Solomon codes we mainly
present new constructions of optimal (r, δ)-locally recoverable codes with unbounded lengths in terms of
the properties of the Vandermonde matrices, of which the parameters contain the known ones.

INDEX TERMS Distributed storage systems, locally recoverable codes, singleton-type bound.

I. INTRODUCTION
In the application of distributed storage, locally recoverable
codes (LRCs for convenience) with locality r are used to
design specifically for the failed storage nodes, which was put
forward by Gopalan et al. [3]. Soon afterwards, for increasing
the chances of successful recover, Prakash et al. [4] proposed
the concept of locally recoverable codes with locality (r, δ),
which generalizes the notion of locally recoverable codes
with locality r (in this case δ = 2).
More precisely, throughout this letter suppose that Fq is

the finite field with q elements, where q is a prime power. Let
n ≥ 1 be an integer. For a vector u = (u1, u2, · · · , un) ∈ Fnq
and a subset I ⊆ {1, 2, · · · , n}, let uI be the projection of u
on I , i.e., uI = (ui)i∈I . Let C be an [n, k, d] linear code over
Fq. Write CI = {cI | c ∈ C}. If for any i ∈ {1, 2, · · · , n} there
is a subset Ii such that i ∈ Ii, |Ii| ≤ r + δ − 1 and d(CIi ) ≥ δ,
then C is called an [n, k, d] locally recoverable code with
locality (r, δ). An [n, k, d] locally recoverable code with
locality (r, δ) is abbreviated to an (r, δ)-LRCwith parameters
[n, k, d].When δ = 2, an (r, 2)-LRC is usually called an LRC
with locality r .
Like the classical Singleton bound of a linear code,

the parameters [n, k, d] of any (r, δ)-LRC over Fq satisfy

d ≤ n− k − (d
k
r
e − 1)(δ − 1)+ 1. (1)

The upper bound (1) for (r, δ)-LRCs with parameters
[n, k, d] is called Singleton-type bound due to Prakash et al.
[4]. An (r, δ)-LRC with parameters [n, k, d] is called optimal
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if its parameters meet the singleton-type bound (1) with
equality.

Recently, LRCs have become more and more important
and have received much attention. It is particularly appealing
and great challenging to determine and construct optimal
(r, δ)-LRCs. The studies on the constructions of optimal
(r, δ)-LRCs have many related works. The constructions of
optimal (r, 2)-LRCs can be found in [3]–[22] and the ref-
erences therein. Very recently, Chen et al. in [5] and [6]
constructed some new classes of optimal (r, δ)-LRCs (δ ≥ 2)
with lengths n ≤ q+ 1 via constacyclic MDS codes (include
cyclic MDS codes). In [1], Fang and Fu constructed four fam-
ilies of optimal (r, δ)-LRCs with unbounded lengths through
cyclic codes. In [2], Sun et al. utilized constacyclic MDS
codes to construct several families of optimal (r, δ)-LRCs
with unbounded lengths.

In this letter, motivated by the above works, we construct
a class of new optimal (r, δ)-LRCs with unbounded lengths
via generalized Reed-Solomon codes (GRS codes for short),
of which the parameters cover the known ones in [1] and [2].

The rest of this letter is arranged in the following manner.
Preliminary facts about GRS codes are introduced in the
following section. We present a new and explicit construction
of optimal (r, δ)-LRCs via GRS codes in Section III. We
then give several corollaries of our main results in order to
compare the parameters of our results with the previously
known ones in the literature in Section IV. Lastly, Section V
concludes this letter.

II. PRELIMINARIES
In this letter we apply GRS codes to obtain new constructions
of optimal (r, δ)-LRCs with unbounded lengths. For this
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purpose, we state some known results about GRS codes in
this section. For detailed information about GRS codes the
reader may refer to [23] or [24].

As before, let Fq be the finite field with q elements,
where q is a prime power. Let n be an integer satisfying
1 < n ≤ q. Suppose that a = (a1, a2, · · · , an) ∈ Fnq and
v = (v1, v2, · · · , vn) ∈ Fnq , where a1, a2, · · · , an are distinct
in Fq and vi 6= 0 for all 1 ≤ i ≤ n. Let k be an integer
with 1 ≤ k ≤ n, and Pk [x] is described by the following set:
{f (x) ∈ Fq[x]| deg(f (x)) ≤ k − 1}. Then for k ≤ n, the GRS
code is defined to be

GRSk (a, v) = {(v1f (a1), v2f (a2), · · · , vnf (an)) | f ∈ Pk [x]}.

We summarize some results on GRS codes in the following
Propositon 1.
Proposition 1: Let notation be as above. Then
(1) [24, Theorem 9.1.4] GRSk (a, v) is an MDS code with

parameters [n, k, n− k + 1].
(2) [24, Theorem 9.1.6] There exists an n-tuple w =

(w1,w2, · · · ,wn) of nonzero elements of Fq such that
GRSk (a, v)⊥ = GRSn−k (a,w) for 1 ≤ k ≤ n − 1.
In addition, the vector w belongs to the 1-dimensional code
GRSn−1(a, v)⊥ and has no zero components.

(3) [24, Corollary 9.1.7] A parity-check matrix for
GRSk (a, v) has the following form

H =


w1 w2 · · · wn
w1a1 w2a2 · · · wnan
...

...
. . .

...

w1a
n−k−1
1 w2a

n−k−1
2 · · · wnan−k−1n

.

III. CONSTRUCTIONS
In this letter we rely principally on the parity-check matrix
for a q-ary GRS code with length r + δ − 1 in order to give
the constructions of optimal (r, δ)-LRCs with unbounded
lengths, where both r and δ are two positive integers. LetD be
a GRS code and let the followingmatrix A be the parity-check
matrix for D:

A =


w1 w2 · · · wr+δ−1
w1a1 w2a2 · · · wr+δ−1ar+δ−1
...

...
. . .

...

w1a
δ−2
1 w2a

δ−2
2 · · · wr+δ−1a

δ−2
r+δ−1

.
Thus D is an [r + δ − 1, r, δ] GRS code. Our first goal is
to construct an optimal (r, δ)-LRC of which the length n is
unbounded and the minimum distance d is equal to δ.
Lemma 1: Let r ≥ 2 be a positive integer. Define H1 as

the following block diagonal matrix over Fq:

H1 =


A

A
. . .

A

,
where there arem blocksA lying along the diagonal ofH1. Let
C1 be a linear code over Fq with parity-check matrix H1 as

follows. ThenC1 is an optimal (r, δ)-LRC and the parameters
of C1 is given by

n = m(r + δ − 1), k = n− m(δ − 1), d = δ,

where r + δ − 1 ≤ q.
Proof: Obviously, the length ofC1 is n = m(r+δ−1). It

is easy to see that the rank R(H1) of the matrixH1 ismR(A) =
m(δ − 1), so k = n−m(δ − 1). By the Singleton-type bound
routine computation shows that

d ≤ n− k −
(
d
k
r
e − 1

)(
δ − 1

)
+ 1

= m(δ − 1)− (m− 1)(δ − 1)+ 1

= δ.

To show that C1 is optimal, it suffices to prove that d ≥ δ. To
this end, we claim that any δ − 1 column vectors of H1 are
linearly independent.

Let hi1 , hi2 , · · · , hiδ−1 be any δ − 1 column vectors of H1,
where i1, i2, · · · , iδ−1 are δ−1 positive integers. Suppose that

x1hi1 + x2hi2 + · · · + xδ−1hiδ−1 = 0

with x1, x2, · · · , xδ−1 being elements of Fq.
Let v be a positive integer with 1 ≤ v ≤ m. In general,

we suppose that there exist v positive integers t1, t2, · · · , tv
such that

1 ≤ i1, i2, · · · , it1 ≤ r + δ − 1;

r + δ ≤ it1+1, it1+2, · · · , it1+t2
≤ 2(r + δ − 1); · · · ;

(v− 1)(r + δ − 1)+ 1 ≤ it1+···+tv−1+1, · · · , it1+···+tv
≤ v(r + δ − 1),

where t1 + t2 + · · · + tv = δ − 1.
Denote αi by the i-th column vector of A for i =

1, 2, · · · , r + δ − 1. Then

A = (α1,α2, · · · ,αrCδ−1).

Set

A1 = (αi1 ,αi2 , · · · ,αit1 ),

Aj = (αit1C···Ctj−1C1−j(rCδ−1), · · · ,αit1C···Ctj−j(rCδ−1)),

for all j = 2, 3, · · · , v;

x1 = (x1, x2, · · · , xt1 ) ∈ F
t1
q ,

xj = (xt1+···+tj−1+1, · · · , xt1+···+tj−1+tj ) ∈ F
tj
q , j = 2, · · · , v.

It follows that

AjxTj = 0, j = 1, 2, · · · , v.

Since A is the parity-check matrix for the above GRS codeD,
any tj(1 ≤ tj ≤ δ − 1, j = 1, 2, · · · , v) column vectors of
A are linearly independent, then the column vectors of Aj are
linearly independent. Hence

xTj = 0, j = 1, 2, · · · , v.
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This forces all of the x1, x2, · · · , xδ−1 are zeros. Therefore the
columns hi1 , hi2 , · · · , hiδ−1 are linearly independent. It fol-
lows that d = δ. In conclusion, C1 is an optimal [n =
m(r + δ − 1), k = n − m(δ − 1), d = δ]-LRC with locality
(r, δ) over Fq.

Lemma 1 is helpful in finding optimal (r, δ)-LRCs of
unbounded lengths with d > δ. Indeed, our strategy is to add
suitable rows to the bottom of the matrix H1; if one suitable
row (say β) has been added in the bottom of H1, we have a
new code C2 whose parity-check matrix can be described by( H1
β

)
and the dimension of C1 is equal to the dimension of C2

plus one. This says that the right-hand side of the Singleton-
type bound (1) has increased by one. However, we want to
ensure that C2 is optimal, which requires that the Hamming
distance of C2 must also increase by one. Continuing this
strategy λ times, we get the result as follows. We assume that
λ is a positive integer with 1 ≤ λ < r and let B be the matrix

B =


w1a

δ−1
1 w2a

δ−1
2 · · · wr+δ−1a

δ−1
r+δ−1

w1aδ1 w2aδ2 · · · wr+δ−1aδr+δ−1
...

...
. . .

...

w1a
δ−2+λ
1 w2a

δ−2+λ
2 · · · wr+δ−1a

δ−2+λ
r+δ−1

.
Theorem 1: Let r ≥ 2 be a positive integer. Define the

following matrix H2 over Fq:

H2 =



A
A

. . .

A
−− −− −− −−

B B · · · B


,

where there are m blocks A in H2. Let C2 be the linear code
over Fq with parity-check matrix H2. Then C2 is an optimal-
LRC with locality (r, δ) over Fq, and has parameters

n = m(r + δ − 1), k = n− m(δ − 1)− λ, d = λ+ δ,

where r, δ, λ satisfy r + δ − 1 ≤ q, 1 ≤ λ < r and λ ≤ δ.
Proof: Clearly, C2 has code length n = m(r + δ − 1).

We proceed the proof by showing the following two claims.
Claim 1: The rank R(H2) of the matrix H2 is m(δ− 1)+ λ.
Suppose that there exists a row vector

x0 = (x1, x2, · · · , xm(δ−1)+λ)

such that x0H2 = 0. Let

xi = (x(i−1)(δ−1)+1, x(i−1)(δ−1)+2, · · · , xi(δ−1))

for i = 1, 2, · · · ,m and

xm+1 = (xm(δ−1)+1, xm(δ−1)+2, · · · , xm(δ−1)+λ).

Clearly, x0 = (x1, x2, · · · , xm, xm+1). Thus from x0H2 = 0
we have that xiA+ xm+1B = 0, i = 1, 2, · · · ,m, i.e.,(

xi, xm+1
) (A

B

)
= 0, i = 1, 2, · · · ,m.

Note that the first δ − 1 + λ column vectors of
(
A
B

)
are the

following matrix
w1 w2 · · · wδ−1+λ
w1a1 w2a2 · · · wδ−1+λaδ−1+λ
...

...
. . .

...

w1a
δ−2+λ
1 w2a

δ−2+λ
2 · · · wδ−1+λa

δ−2+λ
δ−1+λ

,
whose determinant is

w1w2 · · ·wδ−1+λ det


1 1 · · · 1
a1 a2 · · · aδ−1+λ
...

...
. . .

...

aδ−2+λ1 aδ−2+λ2 · · · aδ−2+λδ−1+λ


= w1w2 · · ·wδ−1+λ

∏
1≤j<i≤δ−1+λ

(ai − aj) 6= 0.

It follows that
(
xi, xm+1

)
= 0, i = 1, 2, · · · ,m, which yields

x0 = 0. HenceR(H2) = m(δ−1)+λ. This shows thatClaim 1
is true. Therefore by Claim 1 we get that

k = n− r(H2) = n− m(δ − 1)− λ = mr − λ.

Now by the Singleton-type bound we obtain that

d ≤ n− k −
(
d
k
r
e − 1

)(
δ − 1

)
+ 1

= m(δ − 1)+ λ− (dm−
λ

r
e − 1)(δ − 1)+ 1

= m(δ − 1)+ λ− (m− 1)(δ − 1)+ 1

= δ + λ.

To get that C2 is optimal, it suffices to prove that d ≥ δ + λ.
To this end, we need to prove that
Claim 2: Any δ + λ− 1 column vectors of H2 are linearly

independent.
Let hi1 , hi2 , · · · , hiδ+λ−1 be any δ + λ − 1 column vectors

of H2, and there exists a row vector

x =
(
x1, x2, · · · , xδ+λ−1

)
such that

x1hi1 + x2hi2 + · · · + xδ+λ−1hiδ+λ−1 = 0.

Our goal is to show x = 0. Let u be a positive integer and
there exist two groups of positive integers: t1, t2, · · · , tu and
s1, s2, · · · , su such that

(t1 − 1)(r + δ − 1) ≤ i1, i2, · · · , is1 ≤ t1(r + δ − 1),

(t2 − 1)(r + δ − 1) ≤ is1+1, is1+2, · · · , is1+s2
≤ t2(r + δ − 1), · · · ,

(tu − 1)(r + δ − 1) ≤ is1+···+su−1+1, · · · , is1+···+su
≤ tu(r + δ − 1),

where 1 ≤ t1 < t2 < · · · < tu ≤ m and

s1 + s2 + · · · + su = λ+ δ − 1.

Now we proceed by analyzing the following three cases
separately.

VOLUME 7, 2019 180351
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Case 1: u = 1. In general, we assume that 4t1 = 41. By
x1hi1 + x2hi2 + · · · + xδ+λ−1hiδ+λ−1 = 0, we see that

wi1 · · · wiλ+δ−1
wi1ai1 · · · wiλ+δ−1aiλ+δ−1
...

. . .
...

wi1a
λ+δ−2
i1

· · · wiλ+δ−1a
λ+δ−2
iλ+δ−1

 xT = 0. (2)

Observe that the coefficientmatrix of the above homogeneous
system of linear equations becomes a Vandermonde matrix
when extracting wi1 ,wi2 , · · · ,wiλ+δ−1 from each of columns.
By the property of the Vandermonde determinant we know
the coefficient matrix is invertible, and therefore we have that
x = 0.
Case 2: u = 2. Without loss of generality, let 4t1 = 41

and 4t2 = 42. Set x1 = (x1, x2, · · · , xs1 ) and x2 =
(xs1+1, xs1+2, · · · , xλ+δ−1). In this case, assume that j1 =
is1+1− (r+δ−1), j2 = is1+2− (r+δ−1), · · · , js2 = is1+s2−
(r+δ−1). Note that s1+s2 = λ+δ−1 ≤ δ+(δ−1) = 2δ−1.
Then we need to consider the following two subcases.
Subcase 2.1: s1 ≤ δ − 1 and s2 ≤ δ − 1. Since

x1hi1 + x2hi2 + · · · + xδ+λ−1hiδ+λ−1 = 0,

we deduce that
wi1 wi2 · · · wis1
wi1ai1 wi2ai2 · · · wis1ais1
...

...
. . .

...

wi1a
s1−1
i1

wi2a
s1−1
i2

· · · wis1a
s1−1
is1

 xT1 = 0 (3)

and
wj1 wj2 · · · wjs2
wj1aj1 wj2aj2 · · · wjs2ajs2
...

...
. . .

...

wj1a
s2−1
j1

wj2a
s2−1
j2

· · · wjs2a
s2−1
js2

 xT2 = 0. (4)

Observe that A is the parity-check matrix for the GRS codeD
with minimum distance δ, which follows that any si(si ≤
δ−1, i = 1, 2) column vectors of A are linearly independent.
So we can obtain that xT1 = xT2 = 0, which yields x = 0.
Subcase 2.2: s1 > δ − 1, s2 ≤ δ − 1 or s1 ≤ δ − 1, s2 >

δ − 1. Since the proofs of two subcases are similar, we shall
only work with the latter. According to x1hi1 + x2hi2 + · · · +
xδ+λ−1hiδ+λ−1 = 0 again, we have that

wi1 wi2 · · · wis1
wi1ai1 wi2ai2 · · · wis1 ais1
...

...
. . .

...

wi1a
s1−1
i1

wi2a
s1−1
i2

· · · wis1a
s1−1
is1

 xT1 = 0, (5)

which follows that xT1 = 0. Note that s2 ≥ δ. Then we
construct the Vandermondematrix by taking the first s2−δ+1
rows from the matrix B, where 1 ≤ s2− δ+ 1 ≤ λ+ δ− 2−

δ + 1 = λ− 1 < λ. Thus
wj1 wj2 · · · wjs2
wj1aj1 wj2aj2 · · · wjs2ajs2
...

...
. . .

...

wj1a
s2−1
j1

wj2a
s2−1
j2

· · · wjs2a
s2−1
js2

 xT2 = 0. (6)

By the property of the Vandermonde matrix we immediately
obtain that xT2 = 0. Hence x = 0.
Case 3: u ≥ 3. In this case, note that s1 + s2 + · · · + su =

λ + δ − 1 ≤ 2δ − 1, which implies that there exists at most
one si (1 ≤ i ≤ u) such that si ≥ δ. If there is only one si
(1 ≤ i ≤ u) such that si ≥ δ, then this case is boiled down to
the Subcase 2.2. Otherwise, si ≤ δ−1 for all i = 1, 2, · · · , u.
In this case the proof is similar to that of Subcase 2.1.

This finishes the proof of Claim 2.
According to Claims 1 and 2, C2 is an optimal-LRC with

locality (r, δ) over Fq, and has parameters

n = m(r + δ − 1), k = n− m(δ − 1)− λ, d = λ+ δ,

where r, δ, λ satisfy r + δ − 1 ≤ q, 1 ≤ λ < r and λ ≤ δ.

IV. COROLLARIES AND CODE COMPARISONS
According to Theorem 1, we construct a family of new
optimal (r, δ)-LRC codes whose parameters are

n = m(r + δ − 1), k = n− m(δ − 1)− λ, d = λ+ δ,

where r + δ − 1 ≤ q, 0 ≤ λ < r and λ ≤ δ.
In the following we give some corollaries in order to com-

pare the parameters of our results with the previously known
ones in the literature.
• Take λ = 1, 2, δ in Theorem 1, then we have
Corollary 1:
(i) Let r, δ ≥ 2. Then there is an optimal (r, δ)-LRC

over Fq with parameters [n = m(r + δ − 1), k =
n− m(δ − 1)− 1, d = δ + 1].

(ii) Let r ≥ 3, δ ≥ 2. Then there is an optimal (r, δ)-
LRC over Fq with parameters [n = m(r + δ −
1), k = n− m(δ − 1)− 2, d = δ + 2].

(iii) Let r ≥ δ+1. Then there is an optimal (r, δ)-LRC
over Fq with parameters [n = m(r + δ − 1), k =
n− m(δ − 1)− δ, d = 2δ].

It is easy to see that the parameters of the codes listed
in Corollary 1 contain those given in [1, Theorem 1-3]
and [2, Theorem 2,4], respectively. We do not need the
constraints imposed in [1, Theorem 1-3] and [2, Theo-
rem 2,4], which are presented as follows.
(i) For d = δ + 1, it is under the conditions that

gcd(q, n) = 1, gcd(n, q− 1) ≡ 0 (mod r + δ − 1)
([1, Theorem 1]).

(ii) For d = δ + 2, it needs the conditions that
gcd(q, n) = 1, gcd(n, q− 1) ≡ 0 (mod r + δ− 1),
and gcd( n

r+δ−1 , r + δ − 1) divides δ ([1, Theo-
rem 2]), or gcd(n, q) = 1, gcd(n, q + 1) ≡ 0
(mod r + δ − 1), 2 | δ and gcd( n

r+δ−1 , r + δ − 1)

180352 VOLUME 7, 2019
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divides δ
2 ( [2, Theorem 2]); gcd(n, q) = 1,

gcd(n, q + 1) ≡ 0 (mod r + δ − 1), 2 | δ and
gcd( n

r+δ−1 , r + δ− 1) divides δ ( [2, Theorem 4]).
(iii) For d = 2δ, it is suffice under the conditions that

gcd(q, n) = 1, gcd(n, q− 1) ≡ 0 (mod r + δ− 1),
and gcd( n

r+δ−1 , r + δ − 1) = 1 ( [1, Theorem 3]).
• Take λ = δ = 3 in Theorem 1, then we get
Corollary 2: Let 5 < r + 2 ≤ q. Then there is a q-ary
optimal (r, 3)-LRC with d = 6.
In fact, these parameters of the code given in Corol-
lary 2 contain those in [1, Theorem 4]. We do not need
the constrains assumed in [1, Theorem 4]: n is odd,
gcd(n, q+1) ≡ 0 (mod r+2) and gcd( n

r+2 , r+2) = 1.
• When λ = 2ε, 1 ≤ ε ≤ δ

2 or λ = 2ε, 1 ≤ ε ≤ δ−1
2 in

Theorem 1, we get the result as follows, which extends
[2, Theorem 1,3] in the sense that the condition that
gcd(r + δ − 1, n

r+δ−1 ) = 1 is removed here.
Corollary 3: Suppose that r+δ−1 ≤ q and 0 ≤ λ < r .
Then there is an optimal (r, δ)-LRC with d = δ + 2ε.

• When δ = 2, λ = 1 and 2 in Theorem 1, we deduce
Corollary 4 as follows.
Corollary 4: Suppose that q is a prime power with q ≥
r + 1. Then
(i) there exists a q-ary optimal [m(r+1), n−m−1, 3]-

LRC with locality r ≥ 2.
(ii) there exists a q-ary optimal [m(r+1), n−m−2, 4]-

LRC with locality r ≥ 3.

From Corollary 4, it is easy to see that the constraints about
the paraments of the optimal LRC is much less than those
given in the main result of [17, Theorem 1]. More precisely,
we have removed the conditions (r + 1)| gcd(n, q − 1) and
gcd( n

r+1 , r + 1)|2. Note that Corollary 4 has appeared in [7].

V. CONCLUSION
In this work, we present a construction of optimal (r, δ)-
LRCs via GRS codes, which is different from the known ones.
Our parameters are new, mainly because we have removed
the constraints required in the known results. In addition,
it remains an open problem to studywhether there are families
of optimal LRCs in the case when λ ≥ δ + 1.
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