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ABSTRACT Due to serving several purposes simultaneously, running scientific workflows on dynamic
environments such as cloud computing, has become multi-objective scheduling. Among these purposes,
Cost and Makespan are probably the most two primitive objectives. Another critical factor in a large-scale
scientific workflow is tremendous amount of data during execution. Therefore, this work also includes
Data Movement as an additional objective as it has a major impact on network utilization and energy
consumption in network equipment in cloud data center. In considering these three objectives, this work
proposes a framework for scheduling solutions which combines a new nodes clustering technique inDirected
Acyclic Graph (DAG) model known as Multilevel Dependent Node Clustering (MDNC) and the multi-
objective optimization, Extreme Nondominated Sorting Genetic Algorithm-III (E-NSGA-III). E-NSGA-
III is the recent extension of Nondominated Sorting Genetic Algorithm (NSGA-III). Five well-known
scientific workflows, CyberShake, Epigenomics, LIGO, Montage, and SIPHT are selected as testbeds, while
the commonly known Hypervolume is chosen as the performance metric. In this work, MDNC is also
experimented with both NSGA-III. Comparison among three approaches, E-NSGA-III alone, E-NSGA-III
with Peer-to-Peer clustering and E-NSGA-III with MDNC are carried out. The superiority of the proposed
framework among them and its limitation are discussed.

INDEX TERMS Cloud computing, cost, data movement, directed acyclic graph (DAG), extreme non-
dominated sorting genetic algorithm-III (E-NSGA-III), makespan, multilevel dependent node clustering
(MDNC), multi-objective optimization, nondominated sorting genetic algorithm-III (NSGA-III), peer-to-
peer clustering, scientific workflows.

I. INTRODUCTION
In scientific research community, several scientific work-
flows such as astronomy, bioinformatics, and physics usually
are large-scale batch processing, they are also computation
and data-intensive applications [1], [2]. They generally com-
prise more than thousand tasks in the whole workflow. This
is usually carried out over distributed systems such as cluster,
grid and cloud computing. To enable execution chain and data
flow of multiple tasks, Directed Acyclic Graph (DAG) is the
common method where a node in the graph denotes a task,
and a directed edge symbolizes execution direction [1], [3].
With theDAGmodel, task schedulers can freely allocate tasks
to distributed computing machines, nevertheless maintaining
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correct execution must also be determined in order to maxi-
mize the execution efficiency.

Recently, the execution of scientific workflows is com-
monly carried out on Infrastructure-as-a-Service (IaaS) cloud
because it provides unlimited, self-manageable, scalable
computing resources with affordable price [4]. The most pop-
ular service of IaaS for running scientific workflows is prob-
ably by means of Virtual Machines (VMs) due to its various
type of cost, processing capacity, disk storage, and network
bandwidth. Users can select a proper VM type for a particular
task and they are usually charged by considering VM usage
time in a pay-per-use model. Basically, in running scientific
workflows, cloud users consider cost and makespan, which is
the total execution time to finish all tasks in a workflow, as the
first two priorities [4]. They prefer a scheduling plan offering
reasonable cost at acceptable time. Users can balance cost and
makespan objectives by allocating tasks to suitable VM type,
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and determining the start and stop time of eachVM.However,
another issue of real concern is data movement due to the
data-driven nature of scientific workflows. Apart from the
fact that these workflows usually produce tremendous data,
the data exchange among tasks also occurs during the execu-
tion. This could lead to major congestion of traffic in cloud
data center, which in turn, has a significant impact on network
usage and energy consumption by network equipment.

With respect to energy consumption in cloud data center,
the commonly believed factors which have direct influence,
are energy demands by power distribution, cooling system,
and network equipment [5], [6]. Data movement is a major
concern in network equipment as it uses tremendous amount
of energy. It has been reported that when computing resources
(e.g. servers) in cloud data center have 15% load and fully
generate energy proportionality, network equipment may
consume as much as 50% of the overall power consumption
[6]. Hence, reducing datamovement can benefit cloud service
providers in terms of energy cost. It must be borne in mind the
right balance must be struck between the quality of service
and efficient scheduling plan. This is where good solutions
which optimize the three objectives mentioned becomes a
challenging issue.

Dealing with data traffic in a cloud data center can be
done at the network and application layers. However, doing
so at the network layer is mostly concerned with transmission
control of data packet according to network architecture such
as network topology. Major concerns of such work lie in
reducing latency and failure rate, and maximizing network
utilization [7]. Moreover, eliminating traffic at the network
layer cannot minimize cost and makespan for cloud users
directly. Hence, this work adopts the approach of removing
data transfer at the application layer by putting consecutive
dependent tasks at the samemachine. Scheduler which adopts
the conventional DAGmodel does not allow unnecessary data
transfer among tasks in workflows to be detected. This work
takes advantage of Peer-to-Peer clustering [8] by grouping
dependent tasks and allocating them to the same VM in order
to decrease data movement. The work in [9] introduced a use-
ful measure called ‘Data Locality Ratio’ where a portion of
VM locality can be measured against other localities. Peer-to-
Peer clustering can also improve VM locality as higher por-
tion is preferable when running applications over distributed
virtual environments. While Peer-to-Peer clustering manages
to improve the efficiency in reducing datamovement, it is lim-
ited to only three scenarios of connection dependent nodes as
described in [8]. Also, the approach does not allow dependent
nodes which are not direct parent to be packed together.

To overcome the limitation of Peer-to-Peer clustering, this
work proposes a new clustering technique,Multilevel Depen-
dent Node Clustering (MDNC). This technique packs sev-
eral dependent nodes in different levels of DAG workflows.
Besides, grouping two nodes with parent and child relation-
ship together, MDNC also packs two nodes which may have
some node(s) in between where Peer-to-Peer does not allow.
This extends the ability to create more clusters of tasks in

DAGworkflows as data movement cannot occur among tasks
in the same cluster. The number of clusters also implies
the ability to reduce data transfer. Furthermore, MDNC still
preserves the advantage of Peer-to-Peer clustering by main-
taining the parallelism capability of DAG workflows.

It is commonly known that scheduling over dynamic het-
erogeneous computing resources is anNP-hard problem. This
is well explained in [10], [11]. There exist several previ-
ous works where Evolutionary Algorithms (EAs) have been
applied in the execution of scientific workflows in cloud,
particularly in multi-objective scheduling optimization [4].
This work selects the recently EA, Extreme Nondominated
Sorting Genetic Algorithm-III (E-NSGA-III) [12], to gener-
ate scheduling solution. E-NSGA-III was shown superior to
NSGA-II [13] and NSGA-III [14], its original version, in task
scheduling. Nevertheless, E-NSGA-III has not been applied
with clustering techniques in a scheduling problem. For these
reasons, E-NSGA-III is chosen together with MDNC and
Peer-to-Peer clustering to solve the multi-objective workflow
scheduling, where Cost, Makespan, and Data Movement are
three objectives for optimization. NSGA-III is also selected
for the performance comparison as it performed well when
working with Peer-to-Peer clustering [8]. The performance of
MDNC is evaluated by comparing against the original DAG
and Peer-to-Peer clustering. Five well-known scientific work-
flows [15] from different fields are selected for evaluation
in this study, these are of CyberShake, Epigenomics, LIGO,
Montage, and SIPHT.

The organization of the paper is as follows. It begins with
description of related works in Section 2. The formulation
of workflow scheduling problem is discussed in Section 3.
Section 4 presents the description of MDNC. E-NSGA-III is
described in Section 5 and Section 6 elaborates the multi-
objective scheduling by using E-NSGA-III with MDNC.
Section 7 presents characteristics of the five scientific work-
flows. This is followed by Section 8 and Section 9 where
the results and the discussions of this study are presented
respectively. The paper is concluded in Section 10 where
the contributions are summarized and future direction are
suggested.

II. RELATED WORK
It is widely known that optimizing workflow scheduling in
a heterogeneous distributed environment is an NP-hard prob-
lem [10], [11]. Hence, plentiful researches have carried out on
various aspects over the last two decades. Running multiple
tasks in a workflow over distributed systems requires suitable
tools for defining the precedence of task relationship and data
dependency, therefore the DAGmodel is widely used for this.
Recently, large and complex scientific workflows are often
executed on IaaS cloud providing heterogeneous VMs with
different cost and performance. To allocate multiple tasks to
dynamic machines (e.g. VM), several scheduling objectives
have been studied from different perspectives such as cloud
user and service provider perspectives. Related works in this
section are divided into two groups. The first group discusses
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previous works where DAGmodel is involved and the second
is those which involve scheduling of workflow in cloud.

A. DAG MODEL
DAG workflow has been used in various types of parallel
and distributed systems over several decades. For a multi-
processor machine having more than one central processing
units, computation and communication time are major parts
which impact the performance. Reducing communication
time while limiting process time was challenging in multipro-
cessor systems. Linear clustering scheme [16] and Dominant
Sequence Clustering (DSC) [17] had been proposed for this.
Both works used computation and communication time of
tasks in a workflow to determine a cluster of tasks. They
packed two or more tasks together. Grouping did not increase
the computation time of workflow. However, the determina-
tion of clusters requires both computation and communica-
tion time. This led to some drawbacks as if both of these two
times of tasks were changed, clusters had to be revised.

Another common approach in DAGworkflow is horizontal
clustering where type and level of tasks are considered whilst
clustering [18]. In this approach, at each level of workflow,
tasks having the same type were packed to the same cluster.
The approach was able to increase the utilization of VMs.
Similarly, Bag of Tasks [19], enhanced the VM utilization by
grouping all types of tasks at the same level. Nevertheless,
due to aiming to improve the utilization of VMs, both hori-
zontal clustering and BoT did not consider with parallelism
of workflow where grouping several dependent tasks at the
same level might degrade the performance of workflow.

Peer-to-Peer clustering [8] is the recent technique for
grouping tasks of DAG workflows. It has been proposed
for reducing data movement and increasing VM utilization.
Unlike works in [16] and [17], Peer-to-Peer used only the
DAG structure without computation and communication time
to determine clusters. It also preserved the workflow par-
allelization while eliminating data transfer. The limitation
of Peer-to-Peer was that it was applicable to only in three
scenarios of DAG, these were of a cluster of consecutive
Peer-to-Peer nodes, a cluster of Peer-to-Peer nodes at the start
node, and a cluster of Peer-to-Peer nodes at the end node. This
limitation did not allow the Peer-to-Peer technique to apply
DAG workflows where all three scenarios did not exist such
as CyberShake and SIPHT.

Due to the importance of communication task in cloud
applications such as cloud gaming, cloud storage, cloud
backup and online office, the communication-aware model
of cloud applications, called CA-DAG [20], presented com-
munication task as another type of node in DAG instead
of using edge. In CA-DAG, circular node stood for com-
putation task while square node typified communication
task. This allowed making separate resource allocation deci-
sions, assigning VMs to handle computing jobs and network
resources for information transmissions.

As data transferring has a significant impact to processing
of workflows over distributed systems, this work aims to

eliminate unnecessary datamovement at the application level.
To date, there has not been any previous works on the use of
DAG in aiding scheduler. Also, Peer-to-Peer clustering had
been limited to three scenarios as discussed above. This work
attempts to improve Peer-to-Peer clustering further, which
also uses DAG as a basis, in reduction of data movement and
in enhancing VM utilization.

B. WORKFLOW SCHEDULING
Due to its NP-hard nature, the problem of workflow schedul-
ing in cloud is still active in both areas of optimization
and cloud computing. Several previous works have proposed
algorithms to deal with this problem as listed in Table 1.
These algorithms are presented with an aim to allocate mul-
tiple tasks to heterogeneous VMs according to their objec-
tives. They can be divided into two categories, heuristic
algorithm, and metaheuristic based on EAs. Most of the
heuristic algorithms [19], [21]–[26] limit their problems to
single-objective optimization under some constraints while
the second category [27]–[34] may have up to three objec-
tives. Referring to Table 1, cost and time-based measurement
(e.g. makespan, and execution time) are common objectives.
Similarly, the work in [4] has been reported that most priority
objectives of cloud users are cost and makespan. Moreover,
Table 1 reaffirms that CyberShake, Epigenomics, LIGO,
Montage, and SIPHT are the most widely used scientific
workflows in the problem of workflow scheduling in cloud.

This paper focuses on the tools based on EAs as they
have intensively used in solving multi-objective optimization
problems. It has been reported that Multi-Objective Genetic
Algorithm (MOGA), Ant Colony Optimization (ACO) and
Particle Swarm Optimization (PSO) and are some of the
popular algorithms for this task [4]. Referring to Table 1,
there are five algorithms based on the genetic algorithm
includingMulti-objective Strategies based on NSGA-II (MS-
NSGA-II) [27], Evolutionary Multi-objective Optimization
based on NSGA-II (EMO-NSGA-II) [29], Cost Effective
Genetic Algorithm (CEGA) [30], Security and Cost-Aware
algorithm based on Genetic Algorithm (SCA-GA) [31],
and Fluctuation-Aware and Predictive Scheduling based on
Genetic Algorithm (FAP-GA) [34]. While MS-NSGA-II and
EMO-NSGA-II considered cost and makespan (i.e. execution
time) as scheduling objectives, the rest of them were con-
cerned with minimizing execution cost while satisfying the
deadline constraints.

One of the challenges of using the genetic algorithm is a
chromosome representation which can be converted to a solu-
tion to the problem. MS-NSGA-II used two chromosomes
presenting the solution where the first chromosome referred
to the association of tasks and VM nodes and the second
one denoted task ordering. Besides cost and execution time,
MS-NSGA-II was also concerned with the communication
overhead. Hence, this overhead was used in calculating exe-
cution time. Unlike MS-NSGA-II, EMO-NSGA-II imple-
mented three-row chromosome s for solution representation
where the first row denoted task order, the second row
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TABLE 1. Algorithms of workflow scheduling in cloud.

typified VM ID, and the last one presented VM type. This
proprietary representation required specific implementation
for genetic operators where population initialization, order
crossover, task-to-instance crossover, and order mutation
of EMO-NSGA-II also were proposed for generating and
manipulating a chromosome. Similarly, CECA and FAP-GA
used the same approach as EMO-NSGA-II for chromosome
representation, however, while EMO-NSGA-II dealt with
minimizing cost and makespan, CECA and FAP-GA con-
sidered makespan as the deadline constraint where obtained
solutions ought to have makespan value lower than the pre-
defined deadline.

Besides the deadline, SCA-GA also included the secu-
rity level as an additional constraint. To represent a specific
concern, SCA-GA used a group of slots referring to a task.
For example, using four slots represented the task where
the first, second, third, and fourth slots referred to task ID,
VM ID, VM type, and security level respectively. Therefore,
if there were five tasks in a workflow, the length of the
chromosome of SCA-GA was equal to 20 slots. Also, SCA-
CA used overhead models of security level as a part for
computing makespan where each security level reflected the
overhead time for data encryption and decryption when data
was exchanged among VMs.

Instead of using the genetic algorithm, Deadline Based
Resource Provisioning and Scheduling (DBRPS) [28],
Greedy-Ant [32], and Hybrid Bio-inspired Metaheuristic
for Multi-objective Optimization (HBMMO) [33] had been

implemented based on PSO, ACO, and Symbiotic Organisms
Search (SOS) [35] respectively. To represent a solution in
DBRPS, the length of the particle of PSO was equal to the
number of tasks in a workflow where the value of each
slot was a real number used for mapping VM instances.
Once the algorithm terminated, the values in the particle
were converted to be a scheduling plan. Due to the con-
sideration of resource provisioning, DBRPS considered the
start and shutdown time for calculating makespan when a
VM was launched and terminated. Greedy-Ant extended
the ACO-based workflow scheduling techniques where two
main contributions of Greedy-Ant were introducing two-
phase operations and presenting new heuristic information.
In each iteration, Greedy-Ant mainly operated two phases
where, in the first phase, an ant colony was employed to
search task sequences and then the allocation of VMs by a
greedy policy was performed in the second phase. Moreover,
Greedy-Ant applied task dependency in a workflow as new
heuristic information for updating the pheromone of ants.

While DBPS and Greedy-Ant focused on single-objective
optimization, HBMMO dealt with multi-objective workflow
scheduling where cost, makespan and load balance of VMs
were considered. HBMMO was implemented by using a
hybrid approach. It combined SOS and the heuristic algo-
rithm, called Predict Earliest Finish Time (PEFT) [36].
HBMMO used organisms of the ecosystem for presenting
population. Each organism referred to a valid feasible sched-
ule of a workflow and the length of the organism equaled
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TABLE 2. Notations and their descriptions.

the number of tasks where the position of each slot in the
organism denoted the task and the value presented VM ID.
HBMMO generated the initial organisms of the ecosystem by
PEFT for determining task priority and allocating each task
to suitable VMs according to its priority.

In the multi-objective optimization of the workflow
scheduling problem, most of the previous works had focused
on the most common objectives, Cost and Makespan as they
are the two most common for user requirements. Neverthe-
less, in execution of large and complex scientific workflows,
an end user may make a request for scheduling plan from
cloud providers who are in charge of cloud data center and
infrastructure in offering cloud services. They may also be
concerned with additional objectives in order to gain higher
revenue and reduce operation cost. Therefore, this research
includes DataMovement as another important objective since
it has a significant impact on both network utilization and
energy consumption. In order to achieve this, this work pro-
poses a novel clustering technique, MDNC, fulfilling the
gap of Peer-to-Peer clustering. The description of MDNC is
presented in Section IV.

III. WORKFLOW-SCHEDULING PROBLEM FORMULATION
In this section, models for workflow and cloud system are
presented. Definition and problem formulation of three objec-
tive functions are also elaborated. For ease of description,
important notations and their definitions used throughout this
paper are listed in Table 2.

A. WORKFLOW MODEL
DAG is a common representation of a workflow, its tasks
and dependencies. While a node in the graph represents a
task in the workflow, a directed edge typifies dependency
between two connected tasks. Let a workflow W is a set of
(T,E) where T = {T1,T2,T3, . . . ,Tn} is the set of tasks having
n different tasks and E = {Eij | (1 ≤ i ≤ n,1 ≤ j ≤ n,
i 6= j)} is the set of dependency edges between two tasks.
An edge Eij denotes that task Ti is the parent of task Tj so
that Tj cannot be executed until Ti is finished. In scientific
workflows, the output of the parent task is usually used as the
input data of the child task. This leads to data transferring if
the parent and the child task are not in the same computing
machine.

In order to create a workflow scheduling, this work
assumes that each task Tj has its reference processing time,
denote by RPTj. This processing time is used for computing
the estimated runtime of Tj, denoted by ETj, after Tj is allo-
cated to a specific VM. In addition, each edge Eij has a weight
representing the data size sent from task Ti to task Tj, denoted
by DSij. To calculate data transfer time, the data transfer rate
(e.g. 1 Gbps) is represented as the speed of network, and
DTRij is the data transfer rate between Ti and Tj. In case of
Tj having multiple inputs from its parents, the assumption is
that transferring of multiple input files is sequential and the
communication time of Tj, denoted by CTj, is the total time
spent in receiving all input files.

B. CLOUD SYSTEM MODEL
The target system in this work is IaaS cloud which offers
various types of VM at different costs, as well as processing,
memory, and storage capacities. From user point of view,
commercial IaaS providers, (such as Amazon Web Service
(AWS), Google Cloud Engine, and Window Azure), provide
unlimited VM instances where users can create and launch an
infinite number of VMs. Formally, suppose that an infinite set
VM = {VM1,VM2,VM3, . . . } is all VM instances in an IaaS
system. After a scheduling plan for a workflow execution is
proposed, the number of VMs is also determined. If k is the
number of all VM instances used for running a workflow,
VMm denotes VM in the m index where VMm ∈ VM and 1
≤ m ≤ k.

This work adopts the same VM types as in [28] which
is based on Amazon EC2, the VM model of AWS provider.
EachVM type consists of virtual processor, processing capac-
ity, cost, and slowdown ratio as shown in Table 3. A virtual
processor is represented by the processor unit of Amazon
EC2, while processing capacity is typified in MFLOPS (Mil-
lion Floating Point Operations Per Second). Slowdown ratio
is the ratio of performance degradation comparing to the
fastest VM, which is m3.doubleXlarge, in terms ofMFLOPS.
Therefore, the slowdown ratio of each VM Type is the
MFLOPS value of the fastest VM type to its MFLOPS value.
In most cases, the VM cost is charged per hour interval and
each partial VM hour consumed is billed as a full hour.
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TABLE 3. List of VM types based on Amazon EC2 [28].

To execute a scientific workflow in IaaS, the following
common practice is assumed.

1) The workflow is executed in a single cloud data center.
2) The scientific workflow is batch processing, and a

scheduling plan is off-line mode which means that the
scheduling plan is done before the workflow execution
starts.

3) The task scheduling is considered as non-preemptive
scheduling which implies that a running task cannot
be interrupted in the middle of the execution until its
execution is finished.

4) The minimum number of VMs executing a workflow is
one machine, while the maximum case is equal to the
number of tasks because it is possible that all tasks in
a workflow are assigned to a single VM or each task is
allocated to an individual VM.

5) Each task can only be allocated to a single VM.
6) Each VM can run several tasks, but it can process only

one task at a time.
7) Once a scheduling plan is proposed, the list and the exe-

cution order of tasks in each VM are also determined.
8) There is no transfer time for the tasks at the same VM.
9) The data transfer rate among VMs is assumed to be the

same.
10) The per-pay-use model is applied in per hour period,

and a partial running hour of VM is charged as one full
period.

C. MULTI-OBJECTIVE SCHEDULING
Workflow scheduling in this work can be considered as
multi-objective optimization where more than one conflicting
objectives must be optimized simultaneously. Therefore, a set
of solutions has to satisfy all different objectives. The multi-
objective optimization can be modeled formally as:

minimize F = (f1(x), f2(x), f3(x), . . . , fo(x))

subject to x ∈ X (1)

where X is the decision space and f(x) comprises o objective
functions. In a single optimization problem, the best single
solution can be found. This is in contrast to a multi-objective
problem where multiple solutions are accepted due to the
difficulty in finding the optimum for all conflicting objec-
tives. To compare the performance among possible solutions,
a common measurement, Pareto Dominance, is used where

in the minimization problem, solution a is said to dominate
solution b if and only if,

∀i ∈ {1, . . . , o} : fi(a) ≤ fi(b) ∧

∃j = {1, . . . , o} : fj(a) < fj(b) (2)

where a, b ∈ X. A solution that is not dominated by others
is called Nondominated or Pareto solution and the set of all
Pareto optimal solutions is commonly known as Pareto Front.
For an optimal solution in this front, the improvement in the
value of any objective function usually implies decreasing in
some of the other objective values.

In this work, as the multi-objective scheduling for scien-
tific workflow in cloud is to minimize Cost, Makespan and
Data Movement, therefore, the problem can be formulated as
follows:

minimize F = (Cost,MS,DM ) (3)

where Cost is the function of cost objective, MS denotes the
makespan objective function, and DM is the data movement
objective function. The description of three objective func-
tions is provided in the following subsections.

1) COST
The cost of all VMs running a workflow can be determined
by the following equations:

Cost =
k∑

m=1

BHm × CHm (4)

BHm = CVMm − SVMm (5)

CVMm = maxv∈tasks(VMm)(Cv) (6)

SVMm = minv∈tasks(VMm)(Sv). (7)

Referring to (4),BHm denotes the billed hour ofVMm while
CHm is the unit cost per hour of VMm and depends on the type
of VMm as listed in Table 3. Both BHm and CHm are used
in determination of the Cost. Note that BHm is the different
time between the start time (SVMm) and the completion time
(CVMm) of VMm. SVMm is the minimum start time of all tasks
executed on VMm and CVMm is the maximum completion
time of all tasks on VMm. In order to compute these two
values, all tasks executed on VMm have to be determined
where they can be retrieved by using tasks(VMm) function.

2) MAKESPAN
Makespan is often used interchangeably to mean maximum
completion time [4], [37]–[42]. It represents the finish time
of the last task in the workflow and can be determined by the
following equations:

MS = maxj∈T (Cj) (8)

Cj = Sj + CTj + ETj (9)

Sj = max(PreCj,ParCj) (10)

PreCj = maxp∈previous(Tj)(Cp) (11)

ParCj = maxq∈parents(Tj)(Cq) (12)
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CTj =
∑

i∈parents(Tj)

DSij × DTRij (13)

ETj = RPTj × SLDmj. (14)

Equation (9) indicates three components used for com-
puting the completion time of Tj, these are of Sj, CTj, and
ETj. In order to determine Sj, the maximum value between
PreCj and ParCj is selected where PreCj is the maximum
completion time of the previous tasks of Tj and ParCj is the
maximum completion time of the parent tasks of Tj. PreCj
ensures that a VM processes one task at a time, while ParCj
guarantees that a child task starts once all its parents finished
their execution. Referring to Tj, its previous tasks on the same
VM and its parent tasks can be retrieved by previous(Tj)
and parents(Tj) function respectively. Moreover, CTj is the
summation of the communication time of Tj receiving all
data files from its parent and ETj is RPTj multiplied by the
slowdown ratio of VMm that runs Tj (SLDmj). This ratio is
given in Table 3.

3) DATA MOVEMENT
In this work, data movement refers to the number of data
transfer during the workflow execution. It can be formulated
by (15) and (16) as below:

DM =
n∑
i=1

n∑
j=1,j 6=i

Moveij (15)

Moveij =

{
1, if Eij exists and VMmi 6= VMmj

0, otherwise
(16)

The determination of of data movement between task Ti
and task Tj is defined asMoveij in (16).Moveij is equal to 1 if
there isEij andVMmi is not the same asVMmj, otherwise it is 0.

IV. MULTILEVEL DEPENDENT NODE CLUSTERING
For the reduction of data movement of workflow, this paper
proposes the task clustering technique,Multilevel Dependent
Node Clustering (MDNC), in order to avoid unnecessary
movement at the application level. As mentioned earlier,
DAG represents the execution order of tasks in a workflow
and data flow between tasks. Usually, parent tasks supply
outputs to their children as input data, which consequently
cause data movement. In a single machine, this circumstance
can be omitted due to all tasks taken place together. In dis-
tributed systems, however, tasks are allocated and processed
across different machines (e.g. VMs) in order to take advan-
tage of parallel processing. Data movement can be apparent
when two dependent tasks, having a parent-child relationship,
are assigned to different VMs. Once data movement occurs,
the penalty time of transferring data depends on a ration of
data locality appearing among VM locality, Host locality,
Rack locality, and Off-rack locality as discussed in [9] where
among these models, VM locality is most preferred due to
prevention of data movement. Off-rack locality ought to be
avoided as much as possible because of having the largest

FIGURE 1. The difference between Peer-to-Peer clustering and MDNC
outcomes.

penalty time. The challenge of the allocation of tasks over dis-
tributed systems lies in balancing between parallel processing
and data movement.

Similar to Peer-to-Peer clustering, MDNC is concerned
with the parallelism of a workflow. It does not pack
independent tasks in the same cluster in order to allow them
to be simultaneous execution. However, MDNC focuses not
only on consecutive dependent tasks as Peer-to-Peer does
but also on dependent tasks having an indirect connection in
different levels. The level of each task can be determined in
DAG, as shown in Fig. 1(a), where starting tasks are at the
first level and their children are in the second level and so
on. In case of a child task having several parents in multiple
levels, its level is the one after the highest level of its parents.
Fig. 1(b) and Fig. 1(c) reveal the difference between the
result of Peer-to-Peer clustering and that of MDNC in the
same original DAG. Peer-to-Peer clustering groups Peer-to-
Peer tasks having a direct connection in consecutive levels
only as shown in Fig. 1(b), while MDNC makes possible for
dependent nodes which do not connect directly to be in the
same cluster (i.e.Cluster 2) as shown in Fig. 1(c). This feature
does not violate the parallel processing capacity of DAG and
it also aids formation of more clusters. Moreover, in order
to manage the critical path of DAG (i.e. the longest path),
MDNC searches and packs all tasks in the critical path as the
first cluster of DAG as in Cluster 1 in Fig. 1(c).
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The process of constructing theMDNC cluster is presented
as in Fig. 2(a) to Fig. 2(e). Fig. 2(a) shows an example of
the DAG workflow having eight tasks. The initial process
is to determine a topological order of the DAG workflow
as depicted in Fig. 2(b). The common algorithms for topo-
logical sorting (e.g. Kahn’s algorithm [43]) have linear time
complexity which is O(T + E) where T denotes the number
of tasks in DAG and E is that of edges [44]. For ease of
constructing a cluster, all tasks are represented by a matrix
in the conventional sense as shown in Fig. 2(c). The next
step is computing a distance matrix as depicted in Fig. 2(d)
which denotes the distance among tasks in the workflow. The
distance value of the matrix element represents the longest
path traveling between two tasks. Referring to Fig. 2(a), there
are two paths from task T1 to task T8; the shortest path via
task T6 having three hops and the longest path via task T5
having four hops. In this case, the distance value from T1
to T8 is equal to four. Fig. 3 describes the pseudocode for
computing the distance matrix. The algorithm processes over
the connected matrix in the row-major approach where each
row is iterated and then its columns are repeatedly accessed.
The basic idea is finding the accumulated hops of each task to
its dependent tasks. In the topological order, it guarantees that
a parent task always has a lower index of its children. Hence,
the two inner loops (line 4 and line 6) take this advantage

FIGURE 2. Steps in MDNC clustering.

by iterating only tasks having a higher index than the current
parent index.

Once the distance matrix is constructed, theMDNC cluster
is determined by using the algorithm depicted in Fig. 4.
As mentioned above, the first MDNC cluster is a group
of tasks in the longest path of DAG. Referring to Fig. 4,
the maximum hop in the distance matrix is used as the first
target of the algorithm (line 6). The maximum hop is decre-
mented each round and the algorithm terminates when the
maximum hop becomes zero (line 5). In each iteration of
the target hop, each row of the distance matrix is iterated for
assessment whether it holds the target hop (line 9). To reduce
time processing, the second outer while loop uses the variable
minRow for skipping tasks in the row index already done and
continuingly processing the rest of other tasks (line 8 –11).
In case of the current row having the target hop, its association
task is used for initial MDNC cluster (line 13 –14), otherwise,
its task is skipped. Referring to Fig. 2(d), T1 at the first row
is used for creating the first MDNC cluster due to its row
containing themaximumhop (which is four hops in this case).
In some DAG workflows, it may be possible to have more
than one end tasks at the end of the workflow, the algorithm
marks the first end task appearing in the topological order
as the destination of current path (line 16) and the last task
being added to a cluster (line 34). Hence, the next step is
finding the intermediary tasks from the initial task to the
destination task. In this example, T1 is the start task while
T8 is the target task. In order to acquire in-between tasks to
the cluster, the algorithm starts from the nearest available task
to the most further one (line 18 –33). Fortunately, each row of
the distance matrix is managed by topological order, so that
the distance is already sorted from the smallest distance to
the largest. In the case of T1, task T4 will be added as the
task in the nearest hop. In some cases, it is possible that
there are more than one tasks having the same hop for the
initial task (e.g. T5 and T6 in case of T1). To make sure of
finding the right path, the algorithm selects the task that has
the total hop from the initial task to the destination task equal
to the maximum hop (line 22). For determining the second
intermediary task of T1, T5 will be added to cluster because
the distance from T1 to T5 is two hops, the distance from T5

FIGURE 3. Algorithm for converting a connected matrix to distance
matrix.
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FIGURE 4. Algorithm for constructing MDNC clustering.

to T8 is two hops and in total, the number of accumulated
hops is equal to the maximum hop which is four. Once
an intermediary task is put into the cluster, its value in all
rows will be set to be zero (line 24) for marking that it is
not available for other clusters (i.e. they have already been
clustered). For the same reason, all rows of a destination task,
which are represented by matrix.column(dest).allRows, will
change to zero (line 35). Also, when the algorithm finishes
processing of each row in the matrix, all column values of
the current row, denoted by matrix.row(i).allColumns, will
be zero marking that the row is already processed (line 36).
Finally, an MDNC cluster is stored in a list (line 37).

Apart from the fact that MDNC reduces data movement
during the execution of DAG workflow, it also decreases
problem complexity and the search space due to scheduler
dealing with clusters of tasks instead of an individual
single task. The next two sections describe the repre-
sentation of genetic algorithm and illustrate the use of
MDNC in the multi-objective scheduling in cloud using
E-NSGA-III.

FIGURE 5. Reference points of NSGA-III in three-objective problems.

V. E-NSGA-III
In order to address multi-objective scheduling in cloud, this
work adopts E-NSGA-III, the improvement of NSGA-III.
E-NSGA-III proposed to include extreme solutions at the ini-
tial population for improving the diversity of solutions. Both
NSGA-III and E-NSGA-III use nondominated solutions with
elitism approach in acquiring the convergence of solutions.
The nondominated solutions, also called Pareto solutions,
refer to solutions having at least one objective better than
all other solutions and elitism typifies the selection approach
that allows nondominated parent population surviving for the
next generation. NSGA-III employed a set of well-distributed
reference points to maintain the uniform distribution among
solutions.

Fig. 5 shows 15 reference points of NSGA-III in a three-
objective problem where each objective is divided into four
parts. The number and locations of the reference points are
determined by Normal-Boundary Intersection (NBI) [45].
The position of each reference point indicates normalized
objective values ranging from 0 to 1 and each reference point
has a reference line which is a logical line laid down from
an ideal point to the reference point. The closest solution
of each reference line will be associated with the reference
point of that line as depicted in Fig. 5. Before solutions
are associated with reference points, however, each objective
value of a solution is normalized where a solution holding
the lowest value is mapped to be 0 and located in the lower
bound of each objective, while a solution carrying the highest
value is mapped to 1. This can lead to the limitation of
NSGA-III because if the lowest value of each objective was
considerably high which, in fact, did not reflect the possible
realistically solution. This may result in a situation where
diversity of solutions may not be well distribution covering
possible search spaces.

In E-NSGA-III, the best solution of the single objective
should be one of the Pareto solutions when that objective
is combined with other objectives as multi-objective prob-
lems. This can speed up the discovery of solutions in the
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FIGURE 6. Illustration the coverage area of extreme solutions.

search space, E-NSGA-III puts the best solution of a specific
objective in the first generation as an extreme solution. For
simplicity and efficiency, extreme solutions can be common
cases usually suggested without the expensive and exhausted
computation and the number of these solutions is often equal
to the number of objectives [12].

Extreme solutions are put in order to support the algorithm
in two aspects. Each extreme solution could be the lowest
value of its associated objective and consequently, it reveals
the possible lower space of the problem. Fig. 6(a) and
Fig. 6(b) demonstrate coverage areas of random solutions and
extreme solutions where the grey area is search space covered
by the random solutions while the yellow one is coverage
area of the extreme solutions. The first population is usually
generated randomly so that they are often unpredictable and
are rarely close to the possible lowest value. Adding extreme
solutions is a short cut to reach the minimum value as shown
in Fig. 6(a). Another aspect is the fact that extreme solutions
can share their ability and characteristic to their offsprings
with the intention that these children can fill the gap between
the extreme solutions and the rest of the solutions where is
the yellow areas in Fig. 6(a) and Fig. 6(b). Introduction of
extreme solutions can also improve the diversity of solutions.

Fig. 7 presents the overview steps of E-NSGA-III where
the green box is the extra step differing from the original
NSGA-III. Extreme solutions which are the same size as the
problem objectives (M) are produced in the initial population
and then the rest of the solutions are randomly generated in
order to fulfill the required population size (N). Crossover
and mutation operations are performed for generating
offsprings of the parent population. The number of offsprings
is also the same number of N. Both parent and children
generations are combined and each individual is assessed
by objective functions. The objective values are used for
population ranking by nondominated sorting where the first

FIGURE 7. Steps of E-NSGA-III.

rank refers to an individual which is not dominated by others,
and the second rank is individual dominated by onlymembers
in the first rank and so on. In the selection process, if the
members in the first rank are equal to N, all of them will
be selected. Otherwise, Niche-Preserving Operation [14] is
performed. It is an iterative procedure for mapping the closest
population to the reference points. However, it is possible
that some reference points could not be associated with any
individual. In each case, an individual is randomly selected
in order to fill the missing reference point until the size of
the selected population is equal to N. Once the termination
criterion is completed (for example the number of generations
is reached), the Pareto solutions are finally determined.

The performance of E-NSGA-III in a multi-objective
scheduling problem has been studied in [12]. The results
revealed that E-NSGA-III outperforms NSGA-II and
NSGA-III in terms of Hypervolume and Pareto front. This
work is the first attempt to combine E-NSGA-III with the
MDNC technique in order to improve the quality of solution
in the multi-objective workflow scheduling in cloud. The
detail of applying E-NSGA-III with the MDNC technique
is elaborated in the next section.

VI. MULTI-OBJECTIVE WORKFLOW SCHEDULING USING
E-NSGA-III WITH MDNC
The genetic algorithm is classified as a metaheuristic algo-
rithm which refers to a method providing an upper-level tem-
plate and operation. Users need to customize running steps
and data representation of a problem matching a template
of the algorithm when applying in real-world problems [46].
This section elaborates on the application of E-NSGA-III
with MDNC for workflow scheduling problems. Fig. 8
presents the overview steps of transforming a DAG work-
flow to a chromosome in E-NSGA-III and converting a
solution to a scheduling plan. In the initial step, tasks in
the DAG workflow are clustered by the MDNC technique
as depicted in Fig. 8(b). Consequently, the length of a
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FIGURE 8. An example of a DAG workflow, chromosome representation
and solution.

chromosome is equal to the number of clusters plus the num-
ber of unable clustered tasks. Once the algorithm terminates,
tasks in a chromosome are unfolded to full length to represent
a scheduling plan.

The detail of chromosome representation and scheduling
decoding are described in the following subsections. For
ease of description, the scenario is assumed that the DAG
workflow consists of eight tasks (T1,T2, . . . ,T8) configured
as in Fig. 8(a) and there are six VM types as stated in Table 3.

A. DATA REPRESENTATION
This work adopts the representation of task scheduling in
NSGA-III that was proposed in [47]. However, the slight dif-
ference is that the length of a chromosome is determined after
a DAG workflow is clustered by MDNC. Hence, the order
in a chromosome indicates a topological order of clusters
and unclustered tasks in the workflow. The integer value in
the chromosome denotes VM specifications including ID and

type. As this work allows each cluster or each task to be
executed in any available VM type, the possible values are
equal to the length of the chromosome multiply the number
of VM types. In this scenario, there ought to be 18 possible
values ranging from 0 to 17 used for representing VM id for
a particular cluster and task. To determine VM type, VM id
is interpreted by the modulo operation (MOD) (i.e. VM id
MOD no. of VM types) where 0 refers to the m1.small type
and 1 denotes the m1.medium type and so on. Referring to
Fig. 8(c), for instance, the first value in the chromosome is
‘3’, indicating that the m1.xLarge type ought to be assigned
to execute all tasks in Cluster C1 (i.e. ‘3 MOD 6’ is ‘3’ which
corresponds to the m1.xLarge type in Table 3). Similarly,
as the second value in the chromosome is ‘16’, indicating that
the m3.xLarge type ought to be assigned to execute task T2
and T6 in Cluster C2.

B. SCHEDULING DECODING ALGORITHM
As a possible scheduling solution is encoded in a chromo-
some, a decoding process is required in order to obtain a
scheduling plan. Prior to converting a solution to be a schedul-
ing plan, a short chromosome in MDNC length ought to be
unfolded to a chromosome in full length which is equal to the
number of tasks in the DAG workflow as shown in Fig. 8(d).

To interpret a scheduling plan, this work adopts a decoding
algorithm in [47] as shown in Fig. 9. Referring to Fig. 8(e),
the example of a scheduling Gantt chart, task T2 and T6
are allocated at the same VM id, which is ‘37’, having the
m3.xLarge type. T2 is executed at time slot 1. Even though
time slot 2 of VM id ‘37’ is free, T6 cannot be assigned to
that slot because its parent, task T4, is executed at time slot
2. Instead, T6 is shifted to be processed at time slot 3. In the
algorithm depicted in Fig. 9, a two-dimensional array is used
for representing a scheduling plan where the number of rows
reflects that of unique VM id in a solution and the number of
columns denotes that of tasks plus one where the first column
of each row indicates VM id and other rest columns refer to
task id in each time slot.

C. EXTREME SOLUTIONS IN WORKFLOW SCHEDULING
Due to the requirement of E-NSGA-III, extreme solutions for
the workflow scheduling problem have to be created in the
first generation. As cost, makespan, and data movement are
considered as the scheduling objectives, this work adopts the
same strategy as proposed in [12] for creating the extreme
solutions of these three objectives.

1) Cost Solution: The common solution of this case is all
tasks are assigned to VM id ‘0’ having the m1.small
type which is the cheapest one.

2) Makespan Solution: The best solution of this case is
scheduling all of the tasks to the m3.doubleXlarge type
which is the highest processing capacity.

3) Data Movement Solution: The best case of this objec-
tive is executing all of the tasks in the sameVM in order
to avoid data movement.
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FIGURE 9. Decoding algorithm [12].

Although in the application of E-NSGA-III with the
MDNC technique, the data representation, the scheduling
decoding, and the extreme solutions can be applied together
with E-NSGA-III both with and without clustering technique.
In case of using E-NSGA-III alone, the steps in Fig. 8(b) and
Fig. 8(c) can be omitted. This work evaluatesMDNC by com-
paring its performance against the two scenarios including
E-NSGA-III without clustering technique and with Peer-to-
Peer clustering. The comparison is based on five scientific
workflows where their details are discussed in the following
sections.

VII. SCIENTIFIC WORKFLOW CHARACTERISTICS
This study selects five well-known and often referred to
scientificworkflows for the performance evaluation. They are
of CyberShake, Epigenomics, LIGO, Montage, and SIPHT.
Their descriptions, examples, and portion of clustered nodes
are discussed in the two following subsections.

A. DAG STRUCTURE OF FIVE SCIENTIFIC WORKFLOWS
This subsection presents a DAG structure of five scientific
workflows. As a DAG model is used for typifying node
dependencies, levels of all nodes in the workflow can be
determined in conventional waywhere a starting node is in the
first level and children of the starting node are in the second
level and so on. In case of a child node having parents from
multiple levels, its level is the next level to its highest parent
level.

The examples of the multilevel DAG with MDNC of all
workflows are illustrated in Fig. 10(a) to Fig. 10(e). In each
Figure, a dashed line shows tasks that are clustered by the
MDNC technique.

1) CyberShake: It is a seismology application that calcu-
lates probabilistic seismic hazard curves for geographic
sites in the Southern California region [15], [48].
CyberShake comprises five types of tasks in four differ-
ent levels. Most of all tasks can be grouped by MDNC
except for task ZS type as depicted in Fig. 10(a).

2) Epigenomics: It is developed by the USC Epigenome
Center [49] and the Pegasus research team [50], and
is used to automate various operations in genome
sequence processing [15]. Eight types of tasks are
managed in eight different levels and four of them are
singleton-task type as depicted in Fig. 10(b). Note that
all tasks in Epigenomics can be packed by MDNC.

3) LIGO: Laser Interferometer GravitationalWave Obser-
vatory (LIGO) workflow is used to search for gravita-
tional wave signatures in data collected by large-scale
interferometers [15], [51]. Recently, its results are used
for generating the first image of a black hole. LIGO
comprises four types of tasks in six different levels as
depicted in Fig. 10(c). All tasks in LIGO can also be
packed by MDNC.

4) Montage: It is an astronomy application workflow cre-
ated by NASA/IPAC. Montage is used to construct
large image mosaics of the sky [15], [52]. It comprises
nine types of tasks in nine different levels where six
types are singleton-task type as depicted in Fig. 10(d).
In this workflow, some tasks in the second level cannot
be grouped by MDNC.

5) SIPHT: The sRNA Identification Protocol using
High-throughput Technology (SIPHT) program is an
automation workflow searching for sRNA encoding-
genes in the National Center for Biotechnology Infor-
mation (NCBI) database [15], [53]. It comprises
13 types of tasks in five levels where 12 types are
singleton-task type as depicted in Fig. 10(e). In the first
level of SIPHT, most of the tasks cannot be packed by
MDNC.

B. PERCENTAGE OF CLUSTERED NODES
The complexity of workflow scheduling problem mainly
depends on the number of tasks in a workflow. In order
to improve the efficiency, grouping multiple tasks together
benefits directly, particularly in this work to both reducing
the search space of the problem and decreasing data move-
ment. Hereafter, the proportion of nodes that can be grouped
together is referred to as ‘percentage of clustered nodes’.

Fig. 11 depicts the percentage of clustered nodes of both
MDNC and Peer-to-Peer clustering techniques, red bars are
the portion ofMDNC,while blue ones are that of Peer-to-Peer
clustering. Each workflow comprises five task sizes ranging
from 50, 100, 500, 800 to 1,000. Note that CyberShake
and SIPHT workflows cannot be clustered by Peer-to-Peer
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FIGURE 10. DAG structure of MDNC of five scientific workflows.

FIGURE 11. Percentage of clustered nodes in Peer-to-Peer and MDNC
techniques.

technique since their structures are not suitable for the prede-
fined scenarios of Peer-to-Peer. In Epigenomics and LIGO,
MNDCyields higher percentage of clustered nodes than Peer-
to-Peer in all sizes. It also manages to gain a significantly

higher percentile in Montage workflow. In case where Peer-
to-Peer clustering cannot be applied such as CyberShake and
SIPHT, MDNCmanages to cluster 99.32% and 44.80% of all
nodes (averages of five sizes) respectively.

VIII. PERFORMANCE EVALUATION
NSGA-III and E-NSGA-III are applied to original DAG,
DAG with Peer-to-Peer clustering, and DAG with MDNC.
For brevity, these three versions will be referred to as
‘O-DAG’, ‘P2P-DAG’, and ‘MDNC-DAG’ respectively. Five
scientific workflows are used as testbeds where each one
consists of five task sizes. The performance comparison is
conducted in terms of Hypervolume [54], which is the most
popularly used metric for multi-objective optimization prob-
lems [55].

A. EXPERIMENT SETUP
In this work, E-NSGA-III is implemented by extending
NSGA-III of jMetal tool [56] in Java version and the
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TABLE 4. Parameter of NSGA-III and E-NSGA-III.

Hypervolume indicator is also provided in jMetal.The
parameters of NSGA-III and E-NSGA-III are summarized
in Table 4. All parametric values used in this study fol-
lowed those proposed in [14], [57]. An experiment consists
of 30 runs, therefore, the average Hypervolume is presented
as the result.

B. HYPERVOLUME
Hypervolume represents the volume of the space between a
set of Pareto solutions and the inverted values of the refer-
ence solutions. The more distance of obtained solutions away
from the inverted reference points, the larger Hypervolume is
gained. Usually, optimal solutions of a problem are used as
the reference solutions and their inverted values are used for
computing the Hypervolume. However, in this work, optimal
solutions are not existed, therefore nondominated solutions
of all obtained solutions from all cases in the experiment
are archived as the reference solutions. Their values in each
objective are normalized ranging from ‘0’ to ‘1’ and then
the inverted values of their normalized values are used for
determining the Hypervolume.

Table 5 reveals the Hypervolume of O-DAG, P2P-DAG,
and MDNC-DAG of NSGA-III and E-NSGA-III. In this
work, the larger Hypervolume is preferred. Referring to
Table 5, the values in the bold font indicate the highest
Hypervolume in each size of each workflow, while those in
the italic font are the lowest value. The value ‘0’ typifies
that there is no obtained solution that dominates the inverted
reference solutions in all 30 runs.

C. COMPARISON AMONG CLUSTERING TECHNIQUES FOR
EACH OBJECTIVE
With respect to the obtained solutions, there are many possi-
ble presentations for each scientific workflow. In this work,
obtained solutions by E-NSGA-III are used for further inves-
tigation. For ease of comparison, solutions of workflows
having 1,000 tasks are selected for presentation as shown
in Fig. 12(a) to Fig. 12(e) due to their difficulty in generating
Pareto solutions. The objective values of obtained solutions
are normalized by comparing with the normalized values of
the reference solutions used for calculating Hypervolume.

Therefore, it is possible to have a value higher than 1 in case
a solution has value higher than the maximum value of the
reference solutions, but less than 0 is not possible as this work
is concerned with minimization. The reference solutions are
a collection of solutions that has the lowest value. An outlier,
a solution having value either lower than the lower quartile
of box plot or higher than the upper quartile, is marked in the
red plus sign.

IX. DISCUSSIONS
In overall, referring to Table 5, solutions of E-NSGA-
III yield better Hypervolume than those of NSGA-III.
A set of solutions generated by NSGA-III cannot reach
the highest Hypervolume in all 25 cases. Also, most
of the lowest Hypervolume solutions appear in NSGA-
III. Especially, in Montage workflow, none of those
solutions can dominate the inverted reference points.
Therefore, it can be concluded that E-NSGA-III outper-
forms NSGA-III in five scientific workflows. For the
ease explanation, the rest of the discussion focuses on
the Hypervolume of E-NSGA-III in all three versions
of DAG.

Concerning the E-NSGA-III Hypervolume in Table 5,
the results can be concluded in two perspectives. MDNC-
DAG can help E-NSGA-III generate solutions with higher
Hypervolume than other DAG versions in most cases of
CyberShake, Epigenomics, and LIGO workflows (14 of
15 cases). On the other hand, in Montage and SIPHT work-
flows, the solutions of DAG without clustering yield better
Hypervolume than those of P2P-DAG and MDNC-DAG in
most cases (7 of 10 cases).

As shown in the results, MDNC-DAG reveals both advan-
tage and limitation for clustering DAG workflows. In Cyber-
Shake, Epigenomics, and LIGO where MDNC outperformed
in general, these workflows have higher clustered node
portion having more than 90%. By contrast, in Montage
and SIPHT having the percentage of clustered nodes lower
than 60%, MDNC yields poor performance. In general,
the higher the percentage of clustered nodes, the better it is
for applying E-NSGA-III with the MDNC technique. There-
fore, workflow with higher percentage of clustered nodes
is preferable.

Furthermore, with respect to DAG structures of five scien-
tific workflows, CyberShake, Epigenomics, and LIGO share
the same characteristic that they have more than one levels
having a high number of nodes. This characteristic shows a
balanced number of nodes in different levels, where nodes
can be easily grouped together. In general, MDNC may
take advantage of this type of structure as more clusters can
be generated.

In Montage and SIPHT workflows, on the other hand, they
have only one level having high numbers of nodes and that
level dominates other levels due to its nature of having more
nodes than the rest. The single dominated level obstructs
MDNC in grouping nodes in different levels because many
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TABLE 5. Hypervolume of original DAG, DAG with Peer-to-Peer, and DAG with MDNC.

nodes cannot be packed with other nodes in different levels.
Consequently, the single dominated level leads to a lower
percentage of the clusters in general.

Referring to Fig. 12(a) to Fig. 12(e), normalized val-
ues of cost and data movement reveal confliction with
makespan especially solutions of CyberShake, Montage,
and SIPHT workflows. Hence, striking a good balance in
minimizing cost, makespan, and data movement in these
three workflows are relatively difficult. Bearing in mind that
reducing data movement leads to the reuse of a VM for
processing tasks and consequently helps to decrease the
cost of VMs.

Therefore, in general, it can be concluded that a work-
flow having a balanced number of nodes in different levels
is suitable for the MDNC technique in creating high per-
centage of clustered nodes. Nevertheless, in case of using
E-NSGA-III, a workflow having the single dominated level
(e.g. Montage and SIPHT) may not be suitable for the appli-
cation of the MNDC technique. E-NSGA-III in itself ought
to be sufficient and an additional application of MNDC may
not be necessary.

X. CONTRIBUTIONS AND CONCLUSIONS
In conclusion, running scientific workflows in cloud usually
generates tremendous data and exchange that data among
tasks during the execution. Moving the numerous data within

cloud data center can lead to an increase in the usage of
network bandwidth and energy consumption consumed by
the network equipment. From cloud provider perspective,
the reduction of data movement is becoming more critical.
Meanwhile, cloud service providers have to maintain the
quality of service where cost and makespan are common
objectives for the cloud user perspective. This work probably
is the earlier work in multi-objective scheduling problem
that considers optimization from both cloud user and cloud
provider perspectives.

The contributions of this work can be divided into twomain
perspectives, theoretical and application. From the first per-
spective, this work proposes MDNC, the clustering technique
for reducing data movement, for a DAG workflow. MDNC
can help to alleviate the unnecessary movement of data at
the application level, without interrupting the parallelism of
a workflow. This contribution, together with E-NSGA-III,
the recent evolutionary algorithm, is able to provide solutions
for multi-objective workflow scheduling based on the DAG
model. Furthermore, this work considers that cloud system
model can provide unlimited resources (e.g. VM) where a
scheduler can freely determine the number and types of
VM for workflow execution. This model can corporate with
the cloud user perspective where cloud users can scale com-
puting resources up or down anytime without the considera-
tion of hardware shortage.
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FIGURE 12. Obtained solutions of E-NSGA-III in five workflows.

From the application perspective, this work demonstrates
MDNC with NSGA-III and E-NSGA-III for dealing with the
multi-objective workflow scheduling where Cost, Makespan,
and Data Movement are the objectives. It also presents the
working steps of applyingMDNC for the DAGworkflow and
those of using E-NSGA-III in task scheduling. In the genetic
algorithm, the data representation is designed to reflect the
number of MDNC clusters and then the scheduling plan
can be decoded from the obtained solutions. The work then

has illustrated and evaluated the applications of NSGA-III
and E-NSGA-III with MDNC on five well-known scientific
workflows in the DAG model.

To alleviate data movement, the conventional DAG model
is improved by implementing the MDNC technique for
grouping dependent tasks together. MDNC also enables
E-NSGA-III to enhance the quality of solutions by offering
a scheduling plan with minimizing all three objectives. The
reduction of data movement also helps to save the cost where
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both cloud service provider and user can benefit.With respect
to the results in this work, E-NSGA-III with MDNC demon-
strates its advantage in DAG workflows with the higher clus-
tered node portion. The work also identifies the limitation in
a situation of imbalance level.

Further studies can be extended in several facets. Similar
attempts can be done in green computing objective which
is the recent concern in the field of cloud computing. This
suggests inclusion of energy consumption, energy renewable
sources, and CO2 emissions in the multi-objective prob-
lems. From E-NSGA-III perspective, it can also be applied
to other areas of multi-optimization such as multi-objective
portfolio in finance field and multi-objective optimal design
in engineering and manufacturing fields. As the evolution-
ary algorithm in this work based on E-NSGA-III where
an improvement by noting the behavior of NSGA-II and
NSGA-III, E-NSGA-III merits further investigation, espe-
cially on the use of ‘crowding distance’ in NSGA-II and
‘reference points’ in NSGA-III. This may lead to an even
more efficient multi-objective based on evolutionary algo-
rithm than E-NSGA-III. Finally, the clustering technique
can be investigated to deal with a DAG workflow having
an imbalance structure where MDNC is still showing a
limitation.
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