
Received November 13, 2019, accepted December 2, 2019, date of publication December 5, 2019,
date of current version December 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957769

Radar Antenna Scan Pattern Intelligent
Recognition Using Visibility Graph
TAO WAN , XINYING FU , KAILI JIANG , YUAN ZHAO , AND BIN TANG
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding authors: Tao Wan (taowan.uestc0939@foxmail.com) and Kaili Jiang (jiangkelly@foxmail.com)

This work was supported by the University of Electronic Science and Technology of China (UESTC).

ABSTRACT Radar antenna scan pattern (RASP) reconnaissance is a major problem in electronic war-
fare (EW). The RASP exerts a considerable influence on target identification, jamming decision making,
and electronic support measures and thus plays a critical role in modern electronic warfare. A visibility
graph (VG) is a tool for converting a time series into complex graphs with excellent noise immunity. This
paper proposes a novel method for the intelligent recognition of the RASP based on the VG, including the
circular, sector, helical, raster, conical, phased array, phased array azimuth and circular elevation scans. The
changes in the signal amplitude received from the EW receiver are determined.Moreover, the related features
are extracted from the VG and utilized to classify the RASPs. The comparison experiments performed with
different classifiers, such as machine learning, neural network, and deep learning, confirm that the proposed
method can improve the robustness of the recognition rate to the noise and recognition accuracy.

INDEX TERMS Radar antenna scan pattern, visibility graph, feature extraction, deep learning, machine
learning, neural network.

I. INTRODUCTION
The antenna scan type (AST) is a dominant parameter in
the discrimination and solution of the ambiguities for the
classification of radar threats. The antenna acts as a radiation
device for radar electromagnetic energy, and its characteris-
tics directly reflect the performance of the radar. To find the
target, the radar antenna beam needs to search for the spec-
ified airspace in a certain manner, which corresponds to the
scan of the antenna beam. The purpose and working state of
radars are different, leading to different antenna beam shapes
and antenna scan patterns (ASPs). The scan characteristics
of an antenna can be used to locate the fixed pulse radar.
More importantly, the accurate recognition of the ASP of the
enemy radar is critical for the threat assessment. Furthermore,
the ASP is key to identify the type and working state of the
radar. Therefore, in modern electronic warfare, the recogni-
tion, in particular, the intelligent recognition of the radar ASP
is an interesting yet challenging aspect. The research on the
ASP can help in the analysis and identification of the threat
target signals in complex electromagnetic environments in the
future, thereby further strengthening themilitary. Such intelli-
gent technology can improve the quality of workmanagement
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and realize full automation management, and it has a more
reliable and comprehensive advantage over manual means.

As a part of radar reconnaissance, the scan pattern of tradi-
tional mechanical scan radars has been addressed in [3]–[8];
however, the counterpart for a phased array radar (PAR) has
only begun to be explored. More specifically, a PAR has
many advantages such as a fast scan beam, flexible beam
shape, the ability of signal power synthesis in space, and
easy formation of multiple beams [32]. Therefore, a PAR
can achieve a low interception probability in the context of
the beam pattern. However, this aspect is unfavorable for
electronic reconnaissance. Therefore, accurately detecting
and classifying the radar antenna scan pattern (RASP) is
especially significant for future electronic warfare (EW).

In [3], the antenna scan pattern simulator (ASPS) was used
to establish the signal graph of the time of arrival (TOA)
versus that for the pulse amplitude (PA) for five scan patterns,
including a circular scan, sector scan, helical scan, raster
scan, and conical scan. Next, the authors extracted the signal
features of the peaks, the number of main beams, amplitude
variation of the main beams, and time differences between
the main beams. Finally, the pattern classification of the
RASP was performed using the naive Bayes (NB) algorithm,
decision tree (DT), artificial neural network (ANN), and
support vector machine (SVM). When the SNR was 20 dB,
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the recognition probability was approximately 75%. In [4],
the authors added the main beam flatness ratio as an extra
feature. The recognition probability of the decision tree (DT),
as a classification method to recognize seven scanning types,
namely, conical, helical, spiral, circular, raster, sector, and
electronic scans, has been considerably improved. Neverthe-
less, when the SNR is lower than 15 dB, the recognition
probability decreases, and certain limitations pertaining to the
PAR signal reconnaissance are encountered.

Moreover, a brief introduction of the radar signal model,
including various scan patterns, was provided in [5], which
reported on a mathematical model for the scan pattern and
the parameters determining the power variation. The authors
first determined the arrival time of the radar signal from the
pulse repetition interval (PRI) of the RASP. Subsequently,
they calculated the received signal strength and introduced
several distortion factors. This approach exhibits a certain
practicality; however, the model has limited types and thus
cannot deal with the battlefield environment in real-time.
A method to reduce the false identification was proposed
in [7], in which the authors introduced a decision category
based on the variance of the difference in the peak to peak
intervals. The received signal amplitude was modeled for
the RASP, and the position of the ES receiver and effect of
the movement on the recognition accuracy were determined
to analyze the trend of the misidentification. The average
false identifications were approximately 82%, and the iden-
tification method for only the mechanical scan, and not the
electronic scan, was considered.

Graph signal processing, which is widely used in image
processing, pattern recognition, natural language process-
ing, automatic control, and even electronic reconnaissance
has been one of the most popular research topics in recent
years. Among recent research [9], a method for converting
a time series into a visibility graph (VG) was proposed.
The algorithm maps a time series into a complex network.
The main idea is to convert a time series into a complex
network and perform the related processing on the network
to feedback the information regarding the time series. In [10],
a method of using the VG for bearing fault diagnosis was
proposed. The authors extracted fifteen VG features from
the VG matrix using network analysis and image processing
methods. The authors identify the extracted features using
the k-nearest neighbor (kNN), Lagrangian support vector
machine (LSVM), and multilayer perception (MLP), and the
accuracy of fault diagnosis was greater than 90%. In [11] ,
the VG was applied to the field of predictions. In the pro-
posed method, the historical data were first converted into
a VG matrix, and the link prediction strategy was subse-
quently used to predict future data. Finally, the future data
were modified based on fuzzy logic. The results indicated
that the use of fuzzy logic could improve the accuracy. The
above research demonstrated that the use of the VG algorithm
could improve the performance in the relevant field. Thus,
we consider the introduction of the VG method in the field of
radar reconnaissance.

To this end, this paper proposes a method combining the
VG with machine learning, to be applied for RASP recogni-
tion. First, the mechanical scan and electronic scan equations
are formulated. Second, the time series are converted into
the contribution degree of the visibility graph. Subsequently,
the feature extraction is performed by using the support vector
machine, back propagation (BP) neural network, naive Bayes
algorithm, MLP and deep belief network (DBN) [26]–[31].
The simulation results verify the feasibility of the proposed
algorithm.

The novelty of this paper is that it presents, for the first
time, a model expression for the various RASP types in a
relatively complete manner. Moreover, we propose a method
of combining the VG approach with machine learning and
apply this combined technique for RASP recognition. Based
on the idea of converting the time series into a complex
network, we convert the modeling of the radar RASP into a
VG network and perform the feature extraction of the gen-
erated network. The extracted features are recognized using
classifiers. In summary, this paper aims to complement the
effective recognition of the RASP in a complex electromag-
netic environment to complement the reconnaissance of the
RASP under low SNRs.

The remaining paper is structured as follows. Section II
provides an overview of the VG and introduces the VGmatrix
representations for the scan patterns. Section III describes
the RASP feature extraction based on the visibility graph.
Section IV presents the validation of the proposed algorithm
including the simulation experiment setup, results, and dis-
cussion. Section V concludes the paper and presents the
potential future research directions.

II. SIGNAL MODEL
In this section, we first provide an overview of the proposed
VG theory, present the four types of well-studied radar scan-
ning patterns and derive the three radar scanning patterns that
are rarely discussed in the electronic reconnaissance domain.

A. OVERVIEW OF VISIBILITY GRAPH
Assume that the coordinates for any three instants in a RASP
are (tα,Aα), (tβ ,Aβ ), (tγ ,Aγ ). If the visibility for points α
and β is available, the points can be connected to the two
nodes of the associated graph. If the point γ is between the
two points, the following condition [9] is satisfied:

Aγ < Aα + (Aα − Aβ )
Aβ − Aγ
Aβ − Aα

(1)

To illustrate this aspect, a sample connection diagram for
the conversion of the time series to a VG is shown in Fig. 1(a).
The horizontal axis represents the time series, and the vertical
axis represents the signal amplitude corresponding to the
current time instant. l in the figure exhibits three properties,
namely, connectivity (each node connects at least the near-
est neighbors), undirected attributes (the VG is built with-
out direction), and invariance under affine transformations
(the connection properties remain unchanged when rescaling
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FIGURE 1. An illustration of N=16 instants versus signal amplitude between 0.5-1 for visibility graph algorithm. (a) Each node is connected to the line
data; (b) A simplified diagram of the connection line corresponding points.

the horizontal and vertical coordinate axes or increasing or
decreasing the signal amplitude).

The contour diagram corresponding to Fig. 1(a) is shown
in Fig. 1(b) based on equation (1). Each time instant corre-
sponds to a connection point, which can be directly connected
with other points if a connection exists. In summary, there
exists a straight line that connects the series data, provided
that this ’visibility line’ does not intersect any intermediate
data heights [20].

The VG matrix of N ∗ N is defined as the degree dis-
tribution, which is the number of vertex connections in
the visibility graph. Assuming that a connecting line exists
between points α and β, the values of the αth column and
βth row of the VG matrix are 1; otherwise, the values are 0.
Following this rule, the VG matrix corresponding to Fig. 1 is
constructed, as shown in Table 1. It can be noted that the
degree distribution matrix has four distinct sets of data fea-
tures corresponding to Fig. 1(b), and each set of data has no
connection with that of other instants. These findings suggest

TABLE 1. The degree distribution matrix of VG graph.

that the VG matrices are generally different for different time
series.
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FIGURE 2. (a) Circular scan analysis diagram of PA versus time, (b)VG
matrix converted by VG theory.

B. VG MATRIX REPRESENTATIONS FOR SCAN PATTERNS
Without loss of generality, we assume that the RASP can
be varied, while the EW receiver is omnidirectional [34].
In addition, the signal observed by the EW receiver is contam-
inated by the additive random noise [13]–[15]. It was noted
that for different RASPs, the VG matrix is also different, and
thus the image corresponding to each RASP can be clearly
distinguished.

1) CIRCULAR SCAN
In terms of electronic countermeasures, a circular scan is a
classical RASP, which has azimuth and distance information
but does not provide elevation information. The circular scan
period may vary between 5 and 30 s [1], [4]. The amplitude
of the pulse can be expressed as [6]

Api = Ap ∗ F(θi) ∗ | sin(
π

Tc
t)| ∗ Ci (2)

where i represents the ith pulse, and the range of i is within
a received signal pulse width; Ap is the signal amplitude;
F(θi) is the horizontal beam gain as a function of the detected
circular scan beam; Tc is the circular scan period; and Ci is
the system amplitude stability coefficient of the intercepted
circular scan pulse. Fig. 2(a) shows an analysis diagram

FIGURE 3. (a) Sector scan analysis diagram of PA versus time, (b)VG
matrix converted by VG theory.

corresponding to the RASP in the circular scan pattern.
Fig. 2(b) shows the VG matrix of the circular scan signal
converted by the VG algorithm, which is represented as a two
dimensional image.

2) SECTOR SCAN
A sector scan is similar to a circular scan, except that the
sector scan pattern corresponds to a scan within only a certain
angular interval. Such a scan pattern can increase the proba-
bility of intercepting short term signals [16]. The amplitude
of the pulse can be expressed as [6]

Api = Ap ∗ F(θi) ∗ [| sin
π

Tsf
t| + | sin

π

Tsf
(t − Ta)|] ∗ Ci (3)

where Ap is the signal amplitude, F(θi) is the horizontal
beam gain function of the detected sector scan beam, Tsf is
the sector scan period, Ta is the retrace interval of the fan
sweep beam reaching the limit position and Ci is the system
amplitude stability coefficient of the intercepted sector scan
pulse. The sector scan analysis is shown in Fig. 3(a) when
the intercepted receiver is in the middle of the scan angle
interval. Fig. 3(b) is the VG matrix of the sector scan signal
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converted using the VG algorithm, which is represented as a
two dimensional image.

3) CONICAL SCAN
The conical scan pattern is generally used for target track-
ing [4], and the amplitude of the signal received is strongly
related to the position of the EW receiver [2]. When the radar
scans in a conical manner and the EW receiver is on the
cone, the amplitude of the signal received is similar to that
of the circular scan, which is a sinusoidal waveform with the
largest amplitude. If the EW receiver is located within the
cone except for at the center of the cone, the amplitude is also
a sinusoidal waveform, and the signal amplitude is limited by
the radius. If the EW receiver is located at the center of the
cone, the distance from the radar to the EW receiver is fixed;
therefore, the signal amplitude is fixed [3]. The amplitude of
the pulse can be expressed as [6]

Api = A0 ∗ F(θh) ∗ | sin(
π

Tsb
∗ t)| ∗ Ch (4)

where F(θh) is the horizontal beam gain function value of the
detected conical scan beam, Tsb is the conical scan period on
the beam tilt axis, A0 is the standard value of the pulse ampli-
tude at the conical scan beam intercept point and Ch is the
system amplitude stability factor of the intercepted cone scan
pulse. It is interesting to observe that the conical scan pattern
is basically similar to the circular scan pattern. Fig. 4(a)
shows an analysis diagram corresponding to the RASP in the
conical scan pattern. Fig. 4(b) shows the VG matrix of the
conical scan signal converted using the VG algorithm, which
is represented as a two dimensional image.

4) HELICAL SCAN
A helical scan is normally used in search states. The helical
scan azimuth is omnidirectional, and the elevation angle is
changed after each scan [18]. Therefore, the helical scan pat-
tern includes not only the azimuth orientation information but
also the elevation information. A higher scan frequency can
be used during the helical scan to decrease the gap generated
in the searching. When the detection distance for the EW
receiver is Rr , the received power for the radar of interest can
be expressed as [4]

Pr =
PtGtrGrλ2

(4π )2Rr 2
(5)

where Pt is the radiated power from the radar of interest,
Gtr is the gain of the transmission antenna in the direction
of the reconnaissance receiver, Gr is the antenna gain of the
EW receiver, and λ is the signal wavelength, respectively.
When the EW receiver position and the radar position are
determined, the four variables are the determined values, and
the EW received power Pr is inversely proportional to R2r .
When the radar scans in the helical manner, Rr can be

expressed as
√
(x ′2 + y′2 + z′2). By Substituting the x ′, y′, z′

coordinates by r sin(θ ), r cos(θ ), r tan(ϕ), respectively,

FIGURE 4. (a) Conical scan analysis diagram of PA versus time, (b)VG
matrix converted by VG theory.

we can obtain

Rr 2 = 2r2 − 2r2 cos(θ )+ r2 tan(ϕ) (6)

Further, the signal power received by the EW receiver can be
rewritten as

Pr =
PtGtrGrλ2

(4π )2(2r2 − 2r2 cos(θ )+ r2 tan(ϕ))
(7)

where θ is the angle between the radar beam and the Y axis, ϕ
is the angle between the radar beam and the XOY plane, and
r is the distance between the radar radiation source and the
EW receiver. Subsequently, the problem can be transformed
into the relationship between the angle of θ , ϕ and the helical
scan period. Fig. 5(a) shows the helical scan analysis for the
case in which the intercepted receiver is in the middle of the
scan angle interval. Fig. 5(b) shows the VG matrix of the
helical scan signal converted using the VG algorithm, which
is represented as a two dimensional image.

5) RASTER SCAN
The raster scan pattern scans a sector using a set of parallel
lines, and it is commonly used for the interception scan

175632 VOLUME 7, 2019



T. Wan et al.: Radar Antenna Scan Pattern Intelligent Recognition Using Visibility Graph

FIGURE 5. (a) Helical scan analysis diagram of PA versus time, (b)VG
matrix converted by VG theory.

of airborne fire control radars. In a raster scan, the over-
lay volume is scanned line by line or column by column,
and thus the raster scans also include azimuth and elevation
information.

When the EW receiver receives the radar radiation source
scan pattern as a raster scan, assuming that the azimuth angle
between the EW receiver and the radar main beam is θ and
the elevation angle is ϕ, the signal power detected is the same
as that defined in equation (7). We assume that the grating
azimuth angle is switched, that is, W = 0. In this paper,
the attribute θ ∈ (0, 90◦), ϕ ∈ (0, 60◦) is set. At this time,
the changes in θ and ϕ can be written as

L = 2πr
θ

360

θ =
vt
r
∗

360◦
2π , ϕ = 0◦, when0 ≤ vt ≤ L

θ =
vt
r
∗

360◦
2π − 90◦, ϕ = 20◦, whenL < vt ≤ 2L

θ =
vt
r
∗

360◦
2π −180

◦, ϕ=40◦, when2L < vt≤3L

θ =
vt
r
∗

360◦
2π − 270◦, ϕ = 60◦, when3L < vt ≤ 4L

(8)

FIGURE 6. (a) Raster scan analysis diagram of PA versus time, (b)VG
matrix converted by VG theory.

where v is the raster scan rate, L is the length of the raster
scan column, and r is the distance between the radar beam
and the EW receiver. The raster scan pattern analysis is
shown in Fig. 6(a), and Fig. 6(b) shows the VG matrix of the
helical scan signal converted using VG algorithm, which is
represented as a two dimensional image.

6) PHASED ARRAY SCAN
The advantage of a phased array radar (PAR) is that the
PA is a constant and not a function of time, as in the case
of a mechanical scan radar. However, the PAR scan pattern
is generally electronically scanned, and it can be randomly
changed from one direction to the other via phase control.
In this case, the EW receiver cannot obtain the PA versus
time information. The PARs can realize time tracking and
searching (TAS) in a specific area, and the target searching is
performed according to the regularity. A target is illuminated
for a limited time interval that is periodically repeated accord-
ing to the number of targets. The illumination time interval is
determined by the beam dwell time of the electronic scan,
which occupies one or more coherent processing intervals
of the PAR. The PAR shown in Fig. 7(a) corresponds to the
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FIGURE 7. (a)Phased array radar scan analysis diagram of PA versus time,
(b)VG matrix converted by VG theory.

case when the intercepted receiver is in the middle of the scan
angle interval. Fig. 7(b) shows the VG matrix of the PAR sig-
nal converted using the VG algorithm, which is represented
as a two dimensional image.

7) PHASED ARRAY AZIMUTH SCAN AND
CIRCULAR ELEVATION SCAN
The PAR consisting of a line array only has a 2D scan, and
the 3D scanning needs to expand the array. However, as a
compromise, the PAR azimuth scan and circular elevation
scan can be used to implement a three coordinate search. The
combination of the phased array azimuth scan and circular
elevation scan is generally used for a target search, tracking
and measurement mission. In this paper, we assume that the
circular scan of the azimuth is a threat antenna, and the phased
array of the elevation angle can control the angle arbitrarily.
In this case, the beam irradiation time can be obtained by
the beam dwell time, although the beam amplitude is still
random.

From the EW side, the scan pattern in the azimuth direction
is a circular scan, and it can be recognized by observing

FIGURE 8. (a)Phased array azimuth scan and circular elevation scan
analysis diagram of PA versus time, (b)VG matrix converted by VG theory.

the number of pulses, repetition scan period and possible
number of discrete beam positions. Since the coordinates of
Rr in the stereo coordinate system are the same as those
of the previous scan, as shown in Fig. 8, the signal power
of the EW receiver is the same as that obtained using
equation (7). Fig. 8(b) is the VG matrix of the phased
array azimuth scan and circular elevation scan signal con-
verted using the VG algorithm, which is represented as a
two dimensional image. Nevertheless, the elevation angle ϕ
changes randomly at this time, and the azimuth θ changes
uniformly.

The above discussion indicates that there exists a strong
correlation between the various scanning methods, and it is
difficult to distinguish them from each other. In addition,
we found that for the RASP, the influencing factors include
mainly two aspects: 1: the length of the time series, i.e., the
number of signal points, and 2: the noise, that is, a larger
signal noise corresponds to a larger recognition error. The
VG can transform the time series into a complex network.
The existing literature indicates that it is considerably easier
to extract the network features and later identify them.
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III. RASP FEATURE EXTRACTION BASED
ON VISIBILITY GRAPH
A. FEATURES OF VISIBILITY GRAPH
The relevant theory of the VG has been introduced in
the previous section. The VG has been applied in various
fields [10]–[13]. The signal of the EW receiver received
from the RASP exhibits a time series distribution, and thus
the VG method can be applied to the RASP research. This
section introduces several types of features of the related
VG algorithms [19].

1) AVERAGE DEGREE
Table 1 indicated that different RASPs have different degree
distribution matrices. The average degree is the most intuitive
feature that reflects the complexity of a VG map, and it can
be expressed as

d =
1
N

N∑
i=1

di (9)

The concept of the average degree reflects the connection of
each node of the time series. It is known from the graph theory
that the average degree is proportional to the stability of the
system.

2) AVERAGE CLUSTERING COEFFICIENT
The concept of the average clustering coefficients was first
proposed in [21]. The definition of average clustering coeffi-
cients can be expressed as

Ci =
(A3)ii

(A2)ii[(A2)ii − 1]
, C =

1
N

N∑
i=1

Ci (10)

In the RASP, the average clustering coefficient reflects the
clustering of the VG matrix. Equation (15) shows that C is in
the 0−1 interval, and the clustering situation is positively cor-
related with the size of C . Therefore, we choose the average
clustering coefficient as the second feature.

3) NEWMAN COORDINATION COEFFICIENT
Literature [22] proposes a hybrid network model, which is
defined as a network in which a cooperative mix of the nodes
with many connections in the network tends to connect to
other nodes with many connections. In the context of the
RASP, this aspect reflects the penetration and robustness of
the different scan patterns. In the simplest case, a network
is represented by an undirected graph of N vertices and M ,
which can be represented as

r =

M−1
∑
eij∈ε

didj −

[
M−1

∑
eij∈ε

1
2 (di + dj)

]2

M−1
∑
eij∈ε

1
2 (di

2
+ dj2)−

[
M−1

∑
eij∈ε

1
2 (di + dj)

]2′ (11)

where di, dj are the degrees of the vertices at the ends of the ith
edge, with i = 1; ...;M . Obviously, the range of r is -1 to 1.

When r ≤ 0, it is completely uncoordinated. When r > 0,
the network is fully coordinated. The fully coordinated net-
works are more easily penetrated, and they are more robust
to the removal of their highest vertices. The uncoordinated
networks are less penetrated and more vulnerable to attacks.
Therefore, we use the Newman coordination coefficient as
the third feature.

4) NORMALIZED NETWORK STRUCTURE ENTROPY
From the information theory [23], we know that

E = −
∑
i

Ii ∗ ln Ii (12)

This aspect is known as the network structure entropy [24].
Here, Ii represents the probability of the occurrence of event i,
where i ranges from 1 to the VG network maximum. When
the network connection has N connection points, the network
complexity is the highest. In this case, nts in the network
structure are N , the network complexity is the largest. Then
Emax = −

∑
i

1
N ∗ ln

1
N = lnN . When all the connection

points in the network structure are only connected to a cer-
tain point in the middle, we assume that all the nodes are
connected to the first node, that is, k1 = N − 1, kj =
1(j 6= 1). In this case, the network is the most uneven, and the
network structure entropy is the smallest. When I1 = 1

2 , Ij =
1

2(N−1) (j 6= 1), and j = 1, a network, cannot be formulated.
Therefore, by considering j = 2, we can obtain the following
expression:

Emin = −

N∑
j=2

Ij ∗ ln Ij = −
N∑
j=2

1
2(N − 1)

∗ ln
1

2(N − 1)

= −(N−1)
1

2(N−1)
ln

1
2(N−1)

=
ln 2(N−1)

2
(13)

To eliminate the influence of the number of vertices on the
entropy of the network structure, we introduce the concept
of the normalized network structure entropy, which can be
written as

Enorm =
E − Emin

Emax−Emin
=

−2
N∑
i=1

Ii ∗ ln Ii−ln 2(N−1)

2 lnN − ln 2(N − 1)
(14)

We use the normalized network structure entropy as the fourth
feature.

5) VG COMPLEXITY
The eigenvalues of all the neighbor matrices of the VG graph
are real numbers, and the largest one is recorded as rmax.
Hence, 2 cos(π/(N + 1)) ≤ rmax ≤ N − 1, and the VG com-
plexity can be defined as [24]

Cr = 4cr (1− cr ), cr =
rmax − 2 cos π

N+1

N − 1− 2 cos π
N+1

(15)

Cr satisfies the inequality 0 ≤ Cr ≤ 1, and it has been
proved that theVG complexity depends largely on the number
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of edges. The use of the VG complexity has been used to
distinguish between electroencephalograms (EEGs) [25] and
perform error diagnoses [10]. Therefore, this paper uses the
VG complexity as the fifth feature to study the RASP.

6) VG DENSITY
The VG density can directly reflect the size of the graph, and
the VG density can be represented by a VG neighbor matrix.
This density can be expressed as [10]

Gd =

∑
i,j
mi,j

N (N − 1)
(16)

where G denotes the VG obtained from the signal received
from the EW receiver, and the range of values of i and j is from
1 to the maximum value of the VG network. As for RASP,
the density Gd of G is defined as the ratio of the number of
edges in the graph to the number of possible edges, and d
represents the neighboring matrix of the visibility graph. This
paper selects the VG density as the sixth feature.

B. CLASSIFIER
The sensitivity of the EW receiver is higher than that of
the radar warning receiver (RWR). Nevertheless, the signal
range of interest is different for different RASPs, and thus the
EW receiver may need to process many parameters. For the
LPI radar signal, the intercepted signal has a low SNR and
features low sidelobes and frequency hopping [33]. There-
fore, the study reported in this paper is similar to that in
the previous article [3], [4], assuming that the EW receiver
receives the radar main lobe and assumes that the required
preprocessing has been completed. The six features intro-
duced in the previous section are used for the classification
training involving the BP neural network, NB, SVM, MLP,
and DBN.

1) BP NEURAL NETWORK
The BP neural network [26] is a multilayer feedforward
network trained through error back propagation. The corre-
sponding algorithm is called the BP algorithm, and the main
concept is that of the gradient descent method. The gradient
search technology is used to finally fulfill the actual output
value of the network. The mean square error of the expected
output value is minimal.

2) NB
The NB algorithm [27] assumes that the features are inde-
pendent of each other. This assumption makes the naive
Bayesian algorithm simple but sometimes sacrifices certain
classification accuracy. The NB criterion algorithm flow as
shown in Algorithm 1.

3) SVM
The purpose of the SVM [28] is to find a hyperplane to
segment the sample. The principle of segmentation is to
maximize the interval and finally transform it into a convex

Algorithm 1 Overview of NB Algorithm
Require:

Set the training set is j samples, n dimensions T =
(x1, y1), (x2, y2), . . . , (xj, yj), k is feature output cate-
gories, y ∈ {c1, c2, . . . , ck}, respectively

Ensure:
Instance X(test)

1: Calculate the K prior probabilities of Y : P (Y = ck)
2: Calculate the conditional probability distribution
P (X = x|Y = ck) =

∏n
j=1 P

(
X (j)
= x(j)|Y = ck

)
3: Calculate the posterior probability according to the

Bayesian principle
P (Y = ck |X = x) = P(X=x|Y=ck )P(Y=ck )∑

k P(X=x|Y=ck )P(Y=ck )
4: Bring in
P (X = x|Y = ck) =

∏n
j=1 P

(
X (j)
= x(j)|Y = ck

)
,

the above formula can be converted to
P (Y = ck |X = x)
=
∏n

j=1 P
(
X (j)
= x(j)|Y = ck

)
P (Y = ck)

5: return Calculate X(test) category y(test) =
argmaxck

∏n
j=1 P

(
X (j)
= x(j)(test)|Y = ck

)
P (Y = ck)

quadratic programming problem. The SVM includes the fol-
lowing models. When the training samples are linearly sep-
arable, a linear separable support vector machine is learned
by maximizing the hard interval. When the training samples
are approximately linearly separable, a linear support vector
is learned by maximizing the soft interval. When the training
samples are linearly inseparable, a nonlinear support vector
machine is learned by using the kernel techniques and soft
interval maximization.

4) MLP
The MLP is a forward structured artificial neural network
that maps a set of input vectors to a set of output vectors.
The MLP can be thought of as a directed graph consisting of
multiple node layers, with each layer connected to the next
layer. In addition to the input nodes, each node is a neuron
(or processing unit) with a nonlinear activation function.
A supervised learning method called the backpropagation
algorithm is normally used to train the MLP. The MLP is
a generalization of perceptrons; consequently, this approach
overcomes the limitation of the perceptrons being unable to
achieve linear indivisible data recognition.

5) DBN
The deep belief network is proposed to simplify the logis-
tic trusted network [31]. This network can model the data
probability distribution or directly classify the data. The
DBN consists of undirected and directed parts. As shown
in Fig. 9, the upper part is an undirected graph, which consti-
tutes an associative memory network and is also a restricted
Boltzmann machine. The remaining part is a directed graph.
The top-down recognition weight is only used to infer, and it
does not form a part of the model.
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FIGURE 9. Deep belief network structure.

In Fig. 9, we can see the visible vector v and the implicit
vector hk = (hk,1, hk,2, . . . , hk,n), k = 1, 2, . . . , r from the
bottom to top. The generated weight between the visible layer
and the first hidden layer is represented by G1, and the iden-
tification weight is represented by W 1. The weights for the
other layers are represented in a similar manner. y represents
the label vector, and the label layer and the r th hidden layer
are also undirected connections. Thus, the joint probability
distribution of the DBN can be expressed as [31]

p(v, y, h1, h2, . . . , hr |θ )⊕

= p(v|h)p(h1|h2) · · · p(hr−2|hr−1)p((y, hr−1), hr ) (17)

where θ is the parameter set, p((y, hr−1), hr ) is treated as a
visible vector with (y, hr−1), and we consider a constrained
Boltzmann machine with hr as the implied vector. The
DBN learning process can be divided into two phases. The
first phase is the unsupervised pretraining of the restricted
Boltzmann machine, and the second phase is tuned using
the wake-sleep algorithm. The unsupervised training phase
mainly estimates the conditional probability corresponding
to the restricted Boltzmann machine, and it later estimates
the conditional probability of each layer of the DBN. The
wake-up algorithm is divided into two parts: waking up
and sleeping. The waking up part is a bottom-up process,
whose aim is to repeatedly use the recognition weight and
the recognition offset to estimate the generatedweight and the
generated offset. This process is in contrast to that involving
the constant iteration of updating the weights and offsets.

IV. EXPERIMENTAL RESULTS
The section describes the performance of the VG algo-
rithm for the RASP. The properties of the VG algorithm are
analyzed using a set of Monte Carlo simulations, and the
VG algorithm is combined with the classification algorithms
for different SNRs. The experimental results suggest that
this method exhibits not only a satisfactory classification
performance but also excellent robustness to noise.

Algorithm 2 Overview of RASP Recognition Algorithm
Require:

EW receiver detects radar signal amplitude signal
Set EW receiver model parameters and detection param-
eters

Ensure:
1: Construct the visibility graph model
2: Send the EW receiver detection model to the visibility

graph and build the complex network
3: Feature extraction of the constructed complex network
4: Classification and identification of features by each clas-

sifier
5: return model parameters and detection parameters

A. SIMULATION EXPERIMENT SETUP
We recall that the EW receiver observes the signal amplitude,
knows the time series, and constructs the matrix VG degree
distribution. This subsection provides a detailed description
of the implementation and evaluation process of the proposed
RASP recognition algorithm. We briefly introduce the exper-
imental setup, performance metrics and employed datasets.

1) PERFORMANCE METRICS
The experiments were conducted on a Windows system.
All the experiments were run on the same machine with an
Intel(R) Core (TM) i7, CPU 3.60 GHz, and 16 GB RAM.
The implementation of the proposed approach encompasses
the SVM, BP neural network, NB, MLP, and DBN, which
were realized using a simulation experiment. The simulation
parameters used in this paper are listed in Table 2.

In this paper, we use the following suite of statistical met-
rics for the performance evaluation of the RASP recognition:

1) Successful recognition probability (SRP): This metric
defines the proportion of the recognition cases that were
correctly predicted relative to the predicted size of the RASP
class. The metric can be expressed as SRP = TR

TR+FR , where
TR and FR denote true and false recognitions, respectively.

2) Computational time (CT): This metric describes how
long a particular algorithm spends on the model for a com-
plete dataset.

2) DATASET
In this subsection, we introduce the RASP used in the pro-
posed classifier. Although the RASP in the proposed recog-
nition technology is based on the RASP400 (i.e., the RASP
with input images sized 400 ∗ 400 pixels), certain modifica-
tions are made to the RASP400 to make it fit the proposed
RASP. Taking DBN as an example, the first modification is
that the data of the original training set are converted from
400 ∗ 400 ∗ 7 to 3360 ∗ 5, and then, the data of the test set
are converted to 672 ∗ 5, ensuring that the test set is 20% of
the training set. Simultaneously, to speed up the classification
while maintaining accuracy, we attempt to reduce the number
of network parameters.
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TABLE 2. Simulation parameters for the intercepted radar signal.

FIGURE 10. Related features of RASP on visibility graphs. (a)VGD, (b) ACC.

After the received RASP signal is converted to the
visibility graphs, the (1) average degree; (2) average clus-
tering coefficient (ACC); (3) Newman coordination coeffi-
cient; (4) normalized network structure entropy (5) visibility
graph complexity, and (6) visibility graph density (VGD)
are selected to perform the RASP recognition. The circu-
lar scan (CS), sector scan (SS), conical scan (COS), heli-
cal scan (HS), raster scan (RS), phased array scan (PAS),
phased array azimuth scan and circular elevation scan (PAAS)
are performed for the feature extraction. The ACC and
VGD are taken as examples to depict the various RASPs
after feature extraction, as shown in Fig. 10. In the figure,

FIGURE 11. Performance of each classifier under different SNR.

we can see that the different RASPs have a large degree
of discrimination, and the other features are similar. The
VGD can be noted to be the most notable of the six feature
extraction algorithms, and the ACC is the most confusing,
although it still exhibits a clear distinction. Therefore, we can
conclude that the VG after feature extraction can distinguish
each kind of RASP.

B. EXPERIMENTAL RESULTS AND DISCUSSION
This subsection presents a comparison of the implemented
approach and the state of the art methods. According to
the VG features described in Chapter 4, a classifier was
used to classify and identify the VG features. The features
were classified in the experiment using the five classifiers
described above. We compared the performance of the pro-
posed VG algorithm with the recent algorithms [3], [7] and
performed several Monte Carlo simulation experiments.

The first experiment involved the direct comparison of
each classifier, namely, the SVM, BP neural network, NB,
MLP, DBN, which were classified by the features that can be
extracted by the visibility graph. In this experiment, we varied
the SNR from 0-10 dB, and the performance of each classifier
is as shown in Fig. 11.

Fig. 11 shows that the performance of the MLP and DBN
classifiers is better than that of the SVM and BP neural net-
work. The performance of the NB exhibits a high steady state.
The average successful recognition probabilities correspond-
ing to different signal-to-noise ratios are listed in Table 3. The
average performance of each classifier is presented in Table 4.
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TABLE 3. Average recognition probability under different SNR.

TABLE 4. Comprehensive performance of the classifier.

Under the experimental conditions considered in this
paper, the performance of each classifier is different. The
deep learning DBN algorithm generally requires a large
amount of data, which is limited by the amount of sample
data trained. The performance, as described by the experi-
mental results reported in this paper, is slightly lower than
that for the algorithm of machine learning. In the figure, for
the BP neural network and MLP, performance degradation
can be noted with the increase in the SNR. The reason is
likely that the input of all the nodes in the next layer of
the back propagation is related to the output of each node
in the previous layer, and it is iterated back and forth many
times. In this experiment, the number of training instances
is set as 200; however, in the process of iteration, it is easy
to fall into local convexity, thereby generating the above-
mentioned results. Table 3 presents the simulation result for
SNR = 10 dB, which is the same condition as that intro-
duced in [3], [7]. We observe that the proposed recognition
technology achieves outstanding performance in classifying
all the seven RASPs. Table 4 presents the confusion matrix
for SNR = 6 dB for the proposed recognition technology in
classifying the RASPs. The columns indicate the real RASPs,
whereas the rows express the classification results obtained
using the proposed recognition technology. The data in the
table corresponds to the BP neural network, SVM, DBN,
MLP and NB from left to right. Table 5 presents the simula-
tion result for SNR= 10 dB, andwe observe that the proposed
recognition technology achieves outstanding performance
in classifying all the seven RASPs with an average SRP
of 90%.

Table 6 shows the required computational time for the five
kinds of classifiers for SNR = 6 dB. It can be seen that the
CTs required for neural networks, machine learning, and deep
learning vary considerably. Among these classifiers, the SVM
takes the least time; however, it has a lower SRP. The DBN
of the deep learning algorithm is extremely time consuming.
However, relatively, the recognition rate is extremely high
and stable, and the SRP is more than 90%.

The second experiment involves a comparison with the
findings reported in the recent literature. The classifier meth-
ods NB, ANN and SVM are considered, and the experi-
mental conditions all correspond to the same environment.
Fig. 12 shows the results of a comparative experiment with
literature [3], which indicate the superiority of the proposed
algorithm and its robustness to noise.

FIGURE 12. Comparison of simulation performance with literature [3].
(a) NB (b) ANN (c) SVM.

Fig. 13 shows the comparison with the technique reported
in literature [7]; the experimental environment is the same,
and only the average performance of all the classifiers is
determined. The result of the proposedmethod is compared to
the result obtained in [7], and the proposed technique exhibits
considerable improvement, overall.

This significant improvement can be attributed to the fact
that the proposed method utilizes the visibility input that has
complex network information, and the input feature and the
set of the five classifier parameters are designed to maximize
the classification performance.
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TABLE 5. Confusion matrix for the proposed approach at SNR of 6dB.

TABLE 6. Computational time for the proposed approach at SNR of 6dB.

The overall results show significant improvements com-
pared with those for the two RASP recognition methods.
When the NB algorithm is applied in the case of SNR>30 dB,
the SRP of the proposed recognition technology is slightly
lower than that reported in literature [3]; however, this tech-
nique still exhibits considerable advantages overall, espe-
cially when compared to the ANN and SVM classifiers.
In the case of reference [7] , the SRP in this paper is based
on the overall recognition probability. It can be seen that
the proposed recognition technology also has a high SRP in
the case of low SNRs, and the performance improvement is
notable. As a result, the proposed recognition technology can
successfully classify all the seven RASPs considered in this
paper, namely, CS, SS, COS, HS, RS, PAS, and PAAS.

The research results in this paper are based on the detection
of the main lobe of the radar signal. For an LPI radar with a
low SNR, this paper discusses the identification of the phased
array RASP. In practice, if an EW receiver can detect the exact
RASP signal of the enemy, the proposed method provides a
favorable basis for the radar source identification. However,
the research in this paper has certain limitations. For example,
the radar side has multiple radars working simultaneously,
and the main lobe is not easy to detect; moreover, when the
tracking radar approaches the target, the signal transmission
power is reduced.

V. CONCLUSION
This paper proposes a technique to recognize the RASP by
using the VG method. First, the seven RASPs are modeled.
Subsequently, the time series of the RASP is converted into a
visibility graph, and the VG feature extraction is performed.
Finally, the extracted six types of features are sent to the clas-
sifier. The innovation of this paper lies in the first complete
introduction of the model expressions for various radar scan-
ning patterns. Furthermore, we combine these expressions
with the VG method to convert the model into a complex
network. Finally, we utilize the deep learning, machine learn-
ing, and neural network approaches to identify the signals.
The average recognition probability is generally greater than
90% when the SNR is greater than 4 dB. The classification

performance is excellent, and the simulation experiment
demonstrates the effectiveness of the algorithm.

This study presents an important advancement in the
domain of EW work and provides theoretical support for
future ELINT workers. However, due to the limitations of the
real conditions and the model capacities, several problems
remain to be solved. In the future, we will study side lobe
reception at a low SNR and in the presence of clutter. More-
over, studying the conformal phased array radar and multipo-
larized phased array radar are future research directions.
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