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ABSTRACT In this paper, impact of antenna directivity and bandwidth on the small scale fading statistics
have been analyzed for millimeter-wave (mmWave) radio channels. For this purpose, small-scale fading
measurements at the mmWave frequency band (58–62 GHz) are carried out using transmit and receive
antennas with different antenna directivities (emulated beamforming gains). Measurements emulate a non
line-of-sight scenario when the communication between transmit and receive antennas is possible only
through a single multipath cluster. In order to compare results, measurements in a line-of-sight scenario
with omni-directional antennas are also carried out for reference purpose. Considering two main mmWave
system features i.e., high antenna directivity and higher system bandwidth, we report the following results: 1)
Randomness/fading in the received signal magnitude vanishes with an increase in bandwidth. 2) The channel
impulse response h (t, τ ) does not remain a wide-sense stationary (WSS) random process in the slow–time
domain i.e., along t , where, the fast–time domain refers to the dimension along τ . 3) Measured channels
are WSS in the frequency domain and the coherence bandwidth increases when propagation channels are
illuminated with high gain antennas.

INDEX TERMS Small-scale fading, channel measurements, channel models, multipath clusters, beamform-
ing, ultra-wide band (UWB) channels, millimeter wave (mmWave) communications, MIMO, 5G.

I. INTRODUCTION
System assumptions such as bandwidth and beamforming
gain from antenna arrays play a vital role in defining the
channel modeling methodology. For example, 3GPP-LTE
systems [1] apply spatial pre– and post– processing to
narrowband channels (e.g., one subcarrier obtained after
orthogonal frequency division multiplexing (OFDM)). Since,
the antenna directivity in 3GPP-LTE systems is quite low,
standardized channel models for these systems such as 3GPP-
SCM [2], WINNER [3] and COST-2100 [4], are based
on the rich multipath scattering assumption in both line-
of-sight (LOS) and non-LOS (NLOS) scenarios. Conse-
quently, complex Gaussian random variable (RV) assumption
holds for each subcarrier and the resulting channels can be
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modeled as Rice and Rayleigh fading channels. These sub-
carriers are correlated up to the coherence bandwidth and
the propagation channels are wide-sense stationary (WSS) in
the frequency-domain. In the delay-domain, this corresponds
to uncorrelated scattering of delay resolvable multi-paths
components (MPCs) which are often denoted as multipath
clusters.1 Additionally in the models [2]–[4], due to the
complex Gaussian RV assumption per subcarrier, the number
of stochastic degrees-of-freedom (DOF) in the frequency-
domain increases linearly with bandwidth.

For LOS and NLOS scenarios in [2]–[4], an independent-
and-identically-distributed (i.i.d.) complex Gaussian chan-
nel impulse response (CIR) results in Rice and Rayleigh

1In this paper, a cluster is defined as a group of MPCs in the propagation
channel which depart and arrive in the same direction and nearly have same
arrival time (delay time) at the receiver.
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multipath channels, respectively.2 Consequently, similar to
Rayleigh–Rice models, both LOS and NLOS channels in
[2]–[4] are alsoWSS in slow-time within a local area. In such
a case, the receive signal magnitude—square root of the total
power3—also becomes a WSS random process within a local
area. From a system design perspective, large variations in the
received signal magnitude lead to an increased level crossing
rate and higher outage probabilities [5]. These quantities have
implications on the beam handover protocols and frame struc-
ture design, which are required to maintain a communication
link.

Similar to the models [2]–[4], multipath modeling method-
ology in the state-of-the-art (SOTA) mmWave channel mod-
els [6]–[13] is also based on the WSS assumption; both in the
frequency-domain and in the slow-time domain. In general,
it is quite plausible that a multipath channel is WSS in the
frequency domain but the CIR violates WSS assumption over
slow-time domain due to wider bandwidth. In contrast to
the 3GPP-LTE systems, mmWave systems are supposed to
operate with highly directive antennas to mitigate higher path
losses. A highly directive beamformer may do the spatial
filtering of a multipath channel, e.g., it may illuminate only
a single, strong and a potentially sparse multipath cluster.
In such a case, the central limit theorem cannot be applied.
Consequently, modeling the propagation channel in such a
way that each subcarrier is a complex Gaussian random vari-
able, becomes questionable. Apart from high beamforming
gain, mmWave systems are supposed to be wideband due
to the large absolute bandwidths available at these frequen-
cies. When the overall channel bandwidth becomes wider,
the application of complex Gaussian CIR assumption over
time also becomes questionable.

On noting differences between theoretical expectations
and SOTA channel models for mmWave systems, validity
of narrowband WSS assumption in mmWave radio channels
becomes a question of fundamental interest. This is the pri-
mary scope of this contribution. With the best of our knowl-
edge, no such work exists in the mmWave channel modeling
literature. Note that, we used the same measurement data as
in our earlier contributions [14]–[17], but the scope of this
work is different and reported results are novel.

The paper is organized as follows: Details about the
measurement campaign and channel data processing are
described in Section II and Section III, respectively. One of
the objectives of Section IV is to investigate complex Gaus-
sian CIR assumption in slow-time, which results in constant
mean (roughly) and variances of the receive signal magnitude
in a local area. Moreover, validity of the WSS assumption
in the frequency domain is also investigated in Section IV.
Finally, conclusions are drawn in Section V.

2Notice that, earlier discussions focused on the complex Gaussian RV
assumption in the frequency domain i.e., per subcarrier. In contrast, here
we discuss about complex Gaussian CIR assumption i.e., along the delay
domain.

3By total power, wemean absolute square integrated over all subcarriers—
assuming that the transmitter (Tx) allocates equal power to each subcarrier.

II. MEASUREMENT SCENARIO AND
THE EXPERIMENTAL SETUP
A. CHANNEL SOUNDER
Channel measurements are conducted through ultra-wide
band (UWB) transmit (Tx) and receive (Rx) channel sound-
ing units which have been introduced earlier in [18]. After
calibration, channel sounder offers an instantaneous 3-dB
absolute bandwidth of 4 GHz with a dynamic range up to
70 dB. The sounding signal is a chip sequence of length
4095 with a chiprate of 6.75 GHz. Both Tx and Rx sounding
units are synchronized to the same clock via cables resulting
in a highly stable relative delay between the sounder units.

B. EXPERIMENTAL SETUP
Experiments are conducted in a typical laboratory room with
a plenty of equipment placed in the vicinity of both trans-
mitter (Tx) and Rx, as shown in Fig. 1. Position of Tx is
kept fixed, however, Rx moves towards the wall on a lin-
ear positioning device denoted as rail, as shown in Fig. 2.
Both LOS and NLOS4 measurements are conducted and with
Tx-Rx antenna setups shown in Table 1, which are detailed as
follows:

• In the LOS case, omni-directional antennas are used at
both Tx and Rx. Small-scale fading measurements are
conducted using the experimental setup, rail position
and Rx movement direction as shown in Fig. 2.

• In the NLOS case, only a particular spot on the wall is
illuminated with a 15◦ half power beam width (HPBW)
Tx antenna. Incident point in the wall is 2.6 meter away
from the Tx, which is far beyond the Fraunhofer dis-
tance (31mm) to ensure plane wave propagation. As a
result, Tx antenna footprint on the surface of the wall is
approximately 0.4 m2. At the Rx side, both directional
(always pointed towards the incident point) and omni-
directional antennas are used. Directional illumination
with 15◦ HPBWRx antenna, when placed at 4.8m away
from the surface of wall, leaves an antenna footprint of
1.25 m2 which reduces up to 0.4 m2 when Rx reaches
at the terminal point of its movement. Similarly, when
a 30◦ HPBW Rx is employed, the antenna footprint on
the surface of wall reduces from 5.2 m2 up to 0.7 m2 as
Rx moves closer to the wall. Note that, when low gain
Rx antennas are employed, a cross-talk between Tx-Rx
antennas may result in a possible violation of our NLOS
definition. However, we emphasize that, the energy
contributions of these cross-talk effects is negligible.
Consequently, the measurements with low gain Rx
antennas approximately fulfill our NLOS definition.
During measurements, Tx and Rx antenna pointing
angles are adjusted such that the intersection area of their
footprints on the surface of the wall imitate a geometry-
based multipath cluster [19].

4Although, measurements consider perfect optical visibility between
Tx&Rx, the setup is still referred to as NLOS, because directional antennas
are not pointed towards each other.
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FIGURE 1. Picture of the environment and fading measurement setup.

FIGURE 2. Top-view schematic of the radio channel fading measurement
set-up.

For both LOS and NLOS measurements, same experimen-
tal setup shown in Fig. 2 is used, while maintaining the rail
position and direction of motion of Rx i.e., towards the wall.
Note that, high resolution antennas (greater than 15◦ HPBW)
have been intentionally avoided during the measurements,
as this may lead a situation when only a single MPC is
illuminated instead of a cluster. Thus resulting in a measured
channel with a no random process to model. In order to track
changes in the time-varying propagation channel, at least two
snapshots per wavelength should be measured [20]. There-
fore, Rx movement step size is fixed to λc

2 = 2.5mm, where,
λc corresponds to a wavelength at 60 GHz center frequency.
In this way, Rx is moved on the rail towards the wall, covering
a 2.2m long track in a local area. These linear Rx movements
result in measuring a total of 881 time snapshots along the
track. Three synchronized PCs are used to control linear Rx
movements along the rail, switches for the polarization and
record the data sent by the UWB sounding units. Rest of
the measurement channel parameter values are summarized
in Table 1.

III. POST-PROCESSING OF THE MEASURED
CHANNEL DATA
At first, the measured CIR h (t, τ ) is processed by estimating
a noise floor Nf in dB, using a post-procedure described
in [21]. After that all the time domain samples below Nf +
10 dB are zeroed out. Finally, a 25 dB dynamic range is
applied to the CIR. Let H (t, f ) corresponds to a channel

TABLE 1. Channel sounding and measurement parameters.

FIGURE 3. Root mean square (rms) delay spread statistics over the whole
measurement track.

transfer function (CTF) obtained after discrete fourier trans-
form (DFT) of the complex CIR h (t, τ ). We assume that
H (t, f ) is approximately frequency flat, which is quite plau-
sible assumption for both LOS and NLOS measurements
due to the small delay spread (DS) values (large coherence
bandwidth) shown in Fig. 3. In the LOS case, most of the Rx
signal energy is carried by the LOS path, resulting in small
DS values, as shown in Fig. 3. In the NLOS case, small DS
values come from the fact that Tx illuminates only a particular
spot on a reflection surface as shown in Fig. 2 with a narrow
15◦ HPBW antenna. Let nf (= 3095) be the total number of
frequency samples with an absolute bandwidth 1.3 MHz per
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sample after calibration. Now the CTF at a particular time
instant t on the rail can be expressed as

H (t, f ) =
nf∑
n=1

A (t, n) ejθ(t,f )δ (f − n1f ) (1)

where, A and θ correspond to magnitude and phase responses
of the channel at the nth frequency bin. For bandwidth reduc-
tion (if required), frequency domain samples are extracted
while maintaining the center frequency fc and length of the
full-band frequency domain channel such that

HW (t, f ) =

{
H (t, f ) , fl ≤ f ≤ fh
0 otherwise.

(2)

Now the channel absolute bandwidth W is defined as
W = fh − fl , where, fh and fl are the highest and low-
est frequencies of the band, respectively. Time domain CIR
vector hW (t, τ ) is obtained by inverse Fourier transform of
HW (t, f ). From the Parseval relation, the total receive signal

magnitude is defined as ERx (t) =
√∫
∞

0 |hW (t, τ )|
2 dτ =√∫

∞

−∞
|HW (t, f )|2 df . In this paper, measured CTFHW (t, f )

is normalized such that the ensemble average of Rx mag-
nitude over all Rx positions is ρ = E (ERx (t)) = 1. This
normalization removes the global pathloss due to an initial
Tx-Rx distance of each measurement. However, local
pathloss or path gain effect due to the Rx movement after-
wards on the rail is maintained.

IV. STATISTICAL CHARACTERIZATION
OF MEASURED CHANNELS
Objective of statistical characterization, in this section, is to
study the impact of high antenna directivity and system
bandwidth on WSS of the Rx signal. A random process is
said to be WSS if its mean, variance and auto-correlation
function (ACF) are time– or shift– invariant.

A. WSS IN THE RX SIGNAL MAGNITUDE
By definition, a stationary random process always return
towards its mean value and it does not show any specific
increasing/decreasing trend. Consequently, the mean value of
a stationary process remains constant over the whole obser-
vation interval. Intuitively, when small-scale fading domi-
nates over the large-scale fading effects in a channel, then
a deterministic increasing/decreasing trend (due to path-loss)
in the Rx magnitude may vanish. Consequently, the Rx signal
magnitude appears to be a stationary random process within
a fading interval. On the other hand, in the absence of small-
scale fading, the Rx signal magnitude is expected to be a non-
stationary process due to the dominance of path-loss. A visual
inspection of results in Fig. 4 demonstrates that, in contrast to
the narrowband channels, Rx magnitude shows an increasing
trend for high bandwidth channels when illuminated with
high gain antennas.

In general, propagation channel parameters evolve with
time and displacement when either of the Tx or Rx moves

FIGURE 4. Rx signal magnitude (relative to the 0 dB mean value) analysis
over the whole measurement track, VV polarization, speed of the Rx is
equal to 10 kilometer per hour, (a) NLOS, Tx 15◦ HPBW, Rx 15◦ HPBW.
(b) NLOS, Tx 15◦ HPBW, Rx-Omni. (c) LOS, Tx-Omni, Rx-Omni.

in a certain direction. Consequently, channel snapshots at
adjacent Tx–Rx positions are supposed to be correlated. This
results in a time series that can be described by an arbitrary
difference (or differential) equation. In order to analyze WSS
of this time series, roots of the characteristic equation (cor-
responding to the difference equation of time series) need
to be analyzed. If there exists at least one unit root5 then it
implies that mean, variance and ACF are time-variant which
result in a non-WSS time series. We use the Dickey-Fuller
(DF) test [22] with a null hypothesis that the process con-
tains at least one unit root. A rejection of null hypothesis
implies that, Rx magnitude is a stationary random process
over the whole measurement track and acceptance explains

5Solution set to the characteristic equation contains a root with an absolute
value equal to 1.
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TABLE 2. Results obtained from Dickey-Fuller test.

that the time series is non-stationary. Accept (A) and reject
(R) decisions are based on the critical value (CV) of −3.43
(1 % significance), where the values lower than the CV result
in a rejection of null hypothesis and vice versa. As expected,
test statistics in Table 2 show that, Rx signal magnitude does
not remain a stationary random process for high bandwidth
and high gain antenna systems.

B. VARIANCE OF THE RX MAGNITUDE
We now analyze the temporal variability of variance of the
Rx signal magnitude as function of bandwidth and antenna
directivity. In general, a small-scale fading area is defined
such that channel statistics does not vary considerably and
the Rx signal remains a stationary random process. An exact
length of the stationary interval is hard to define [23], because
radio channel statistics are strongly coupled with the proper-
ties of system under consideration, as shown in this paper.
Length of the stationarity (i.e., 30λc) interval, in this work,
is largely based on the visual inspection which may not
be very accurate for each measurement setup. A smaller
length (< 30λc)may be more appropriate, but 30λc is chosen
because authors wished to have enough measured channel
snapshots as well, for better statistical accuracy. For this
purpose, an overlapping sliding window of length 30λc is
moved over the whole 2.2m long measurement track. This
results in an extraction of 822 small-scale fading areas each
of length 30λc. For each of these intervals, irrespective of any
W , mean value of ERx (t) is maintained as ρ = 0 dB due to
the normalization. Thus allowing only the standard deviation
(σ0) of ERx (t) to change along different fading intervals and
for differentmeasurement setups. Intuitively, a high similarity
of σ0 values over the measurement track indicates that, σ0 is
time-invariant (a requirement of WSS) and vice versa. Two
interesting observations are evident from results in Fig. 5,
• Fading of the Rx signal magnitude vanishes because the
average spread (σ̄0) reduces with W up to a bandwidth
W0 = 2.5 GHz, known as stability bandwidth [24]. For
bandwidth W > W0, there are no significant changes in
the radio channel from fading perspectives.

• For narrow-band channels, σ0 values for different
fading intervals are almost same, demonstrating that
ERx (t) is nearly a stationary process over the whole

FIGURE 5. Measured and modeled values of σ0
(
W

)
while maintaining

ρ = 0 dB mean value due to the channel normalization.

measurement track. However, same is not true for
wide-band channels as the spread of σ0 increases for
higher bandwidth channels demonstrating that Rx signal
becomes a non-stationary random process.

Intuitively, one cannot expect from a propagation environ-
ment to favor one stationary interval over the other. Therefore,
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TABLE 3. Proposed models for the mean σ̄0
(
W

)
and standard deviation Xσ0

(
W

)
of σ0 and their parameter values.

σ0 is modeled as a normally distributed random process
N
(
σ̄0 (W ) ,Xσ0 (W )

)
, where, Xσ0 (W ) is the spread of σ0

at a particular bandwidth W . Results in Fig. 5 show that, σ0
obtained from 822measured stationary intervals is an increas-
ing function of W around σ̄0 (W ) which demonstrates that
Rx signal magnitude becomes non-WSS. This is indicated by
the positive slopes m in the slope-intercept model of Xσ0 (W )
in Table 3. One may note that, an increase in Xσ0 is not
monotonic with W . However, an approximation of Xσ0 (W )
with a slope-intercept form in Table 3 is done to maintain
simplicity and intuitiveness. Fig. 5 shows that, the slope-
constant model with parameter values in Table 3 provides a
very good approximation of σ̄0 (W ) and same is the case for
slope-intercept model derived for variance of σ0 (W ).

C. WSS IN THE CHANNEL IMPULSE RESPONSE OVER
THE SLOW-TIME
Now we intend to analyze if the channel temporal ACF
ch (1t, τ ) = E

[
h (t +1t, τ ) h∗ (t, τ )

]
is shift- or time-

invariant—a requirement for CIR to beWSS in the slow time.
Let µII (1t, τ ) and µQQ (1t, τ ) are ACFs of inphase (I) and
quadrature (Q) components and γIQ (1t, τ ) is their temporal
cross-correlation, then real (<) and imaginary (=) parts of
ch (1t, τ ) are defined as

< {ch (1t, τ )} = µII (1t, τ )+ µQQ (1t, τ ) (3)

and

= {ch (1t, τ )} = γIQ (1t, τ )− γQI (1t, τ ) · (4)

where,

µII (1t, τ ) = E
[
hI (t +1t, τ ) h∗I (t, τ )

]
(5)

µQQ (1t, τ ) = E
[
hQ (t +1t, τ ) h∗Q (t, τ )

]
(6)

γIQ (1t, τ ) = E
[
hI (t +1t, τ ) h∗Q (t, τ )

]
(7)

γQI (1t, τ ) = E
[
hQ (t +1t, τ ) h∗I (t, τ )

]
· (8)

A real valued ch (1t, τ ) is possible when
γIQ (1t, τ ) = γQI (1t, τ ) = 0, ∀1t ≥ 0, which leads to a
fact that complex Rx signal is a circularly symmetric complex

Gaussian random variable and the channel corresponds to a
rich scattering environment [25]. Using the same measure-
ment data, validity of the narrowband rich scattering assump-
tion has been analyzed in our earlier work [17]. Results
in [17] demonstrated that rich scattering assumption does not
remain valid due to high gain antennas and higher bandwidth
of mmWave systems. Consequently, Rayleigh–Rice fading
channels for the cluster fading envelope are not realistic.

In general, for non-Gaussian signals, second-order statis-
tics of a time domain signal are not fully described by
ch (1t, τ ) [25], [26]. Therefore, another function, denoted
either as relation function rh (1t, τ ) = E[h (t +1t, τ )
h (t, τ )] [25] or complementary ACF (CACF) [26] is
used which measures a correlation between h (1t, τ ) and
h∗ (1t, τ ). From hereinafter, in the subsequent discussions,
rh (1t, τ ) is referred to as CACF. The real and imaginary
parts of the CACF are defined as

< {rh (1t, τ )} = µII (1t, τ )− µQQ (1t, τ ) (9)

and

= {rh (1t, τ )} = γIQ (1t, τ )+ γQI (1t, τ ) · (10)

A CACF provides following insights into the channel
properties:
• rh (1t = 0, τ ) = 0 implies that the channel h (t, τ ) is
a circularly symmetric random variable—a requirement
for Rayleigh–Rice fading signals; analyzed in our earlier
work [17].

• Vanishing of CACF rh (1t, τ ) ≈ 0, ∀1t implies that
ch (1t, τ ) is time-invariant—a requirement for WSS
signal [27], [28]. Therefore, following two conditions
must be satisfied,

µII (1t, τ ) = µQQ (1t, τ ) (11)

and

γIQ (1t, τ ) = −γQI (1t, τ ) · (12)

These conditions imply that, for a CIR to be WSS in slow
time, the I and Q components must be balanced in the sense

180078 VOLUME 7, 2019



N. Iqbal et al.: Investigating Validity of WSS Assumption in mmWave Radio Channels

FIGURE 6. Analysis of CACF (averaged over multipath delays) for WSS testing. Speed of the Rx is equal to 10 kilometer per hour, (a) NLOS, Tx 15◦
HPBW, Rx 15◦ HPBW. (b) NLOS, Tx 15◦ HPBW, Rx 30◦ HPBW. (c) NLOS, Tx 15◦ HPBW, Rx-Omni directional. (d) LOS, Tx-Omni, Rx-Omni directional.

FIGURE 7. Correlation analysis of CTF (averaged over each time snapshot) for the testing of WSS in frequency domain. Speed of the Rx is equal to
10 kilometer per hour, (a) NLOS, Tx 15◦ HPBW, Rx 15◦ HPBW. (b) NLOS, Tx 15◦ HPBW, Rx 30◦ HPBW. (c) NLOS, Tx 15◦ HPBW, Rx-Omni directional.
(d) LOS, Tx-Omni, Rx-Omni directional.

that their ACFs are the same and their cross-correlation func-
tion γIQ (1t, τ ) is an odd function. For each measurement
setup, results in Fig. 6 show CACFs (averaged over path
delays) for different bandwidth channels. It is interesting to
note that, when high gain antennas are used, rh (1t) does not
vanish to zero even for narrowband channels (e.g. 30 MHz
and 100 MHz). In contrast, an increasing trend in values
of rh (1t) is quite evident with an increase in bandwidth
and antenna gain. However, when omni-directional antennas
are used, the measured CIR demonstrates properties quite
closer to a WSS signal. As expected, an increase in system
bandwidth also have a profound impact on the complex CIR
which becomes non-WSS in high bandwidth channels.

D. WSS IN FREQUENCY DOMAIN
For a time varying CTFHW (t, f ), this section aims to analyze
WSS in the frequency domain; uncorrelated scattering in the
delay domain. This means that, at a particular time instant t ,

the channel frequency correlation function (FCF)

cH (t,1f ) = E
[
H (t, f +1f )H∗ (t, f )

]
(13)

depends only on the frequency lag1f = f2 − f1. This means
that, cH (t,1f ) does not depend upon the absolute frequency
f . Similar like complexGaussian CIR,H (t,1f ) is a complex
Gaussian random process in frequency (hence WSS), if the
second-order statistics are fully described by cH (t,1f ) and
complementary auto-correlation function

rH (t,1f ) = E [H (t, f +1f )H (t, f )] (14)

is zero for all 1f ≥ 0. All results in Figs. 7a to 7d show
that, the time averaged rH (1f ) ≈ 0 for the whole frequency
lag 1f . This implies that the function cH (t,1f ) in (13) is
independent of absolute frequency andmeasured channels are
WSS in the frequency domain.
Assuming that, the frequency domain samples in the CTF

are decorrelated when cH (t,1f ) is less than 50% of the peak
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correlation value, then the coherence bandwidth Bc evaluated
from the measured channels is shown in Fig. 7. As expected
from the delay spread statistics in Fig. 3, the coherence
bandwidth is quite large i.e., Bc = 0.2 GHz in the case when
highly directive 15◦ HPBW Tx-Rx antennas are employed.
However, coherence bandwidth reduces when less directive
antennas are used at Rx. In the LOS case, when omni-
directional antennas at both Tx-Rx are used to illuminate the
channel, coherence bandwidth is lowest, i.e., Bc = 0.12 GHz.

V. DISCUSSION AND CONCLUSION
High bandwidth and high beamforming gain are the features
that distinguish mmWave systems from the conventional
narrowband sub 6 GHz systems. For sub 6 GHz systems,
success and simplicity of the corresponding geometry-based
stochastic channel models [2]–[4] owes its origin to the
narrowband assumptions in these models. In a sequence of
contributions [14]–[17], [29]–[31], we have reported that fade
depth of a Rx signal vanishes in spatially-filtered (due to
high gains antennas) and delay-resolved (due to high system
bandwidth) radio channels. Thus, resulting in radio channels
with a considerably reduced small-scale fading. For these
channels, discussions in [15] provide insights into how a
sparse illumination of a propagation channel reduces Doppler
spread. Therefore, in contrast to Doppler spread, concept of
Doppler shift experienced by each MPC gains more impor-
tance in the multipath modeling. Additionally, randomness
in the polarization coupling matrix vanishes with bandwidth
[30], [32]. Therefore, cross-polarization power ratio (XPR)
cannot be modeled as log-normal random process. Results
in [31] show that, intra-cluster number of MPCs is small,
and therefore Rayleigh-Rice channels are not realistic mod-
els for the cluster fading envelope. In contrast to [2]–[4]
where each cluster has Rayleigh fading Rx envelope with
zero-mean and unit variance, results in [31] show that
Rx envelope of each multipath cluster from a differ-
ent reflection surface differs considerably, demonstrating
that mmWave frequencies are more sensitive to reflection
surfaces.

In this contribution, we extended our studies presented
in [14]–[17], [29]–[31] and focused on analyzing impact of
antenna directivity and bandwidth on the validity of WSS
assumption in the slow-time and in the frequency domain.
It has been shown that:

1) Rxmagnitude does not remain a stationary random pro-
cess in the slow time and it shows a semi-deterministic
trend in fading with Rx movement.

2) Variance of the Rx magnitude varies considerably for
different fading intervals over the measurement track.

3) When directivity and/or bandwidth increases, the radio
CIR in the slow time does not remain a WSS. This
means that i.i.d. complex Gaussian CIR assumption
as that of Rayleigh–Rice channels cannot be applied.
In this way, we also negate some of our previous
results in [14]–[16], where Rician multipath model is
proposed.

4) Measured channels are WSS in the frequency domain
and the coherence bandwidth increaseswith an increase
in antenna directivity.

From the results and discussions above, we conclude that
the channel modeling methodology in 3GPP-TR 38901 [6]
(inherited from [2]–[4]) and other SOTA channel models does
not meet on theoretical expectations on WSS imposed by
high antenna directivity and bandwidth of mmWave systems.
Therefore, for accurate performance prediction of mmWave
systems, channel modeling methodology in SOTA channel
models need to be revised. These revisions and concept val-
idations must be supported by extensive measurements and
data evaluations.
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