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ABSTRACT This paper addresses the problem of estimating the parameters of constant-amplitude chirp
signals that have single or multiple components and are embedded in noise. Chirp signals are widely
employed in applications such as radar and telecommunications, and it is a key task in countermeasure
techniques to estimate their parameters without prior information. Hence, a parameter estimation processor
based on a complex-valued deep neural network (CV DNN) is proposed to perform this task efficiently.
The CV DNN, which is designed for regression, consists of a function fitter and a predictor. The function
fitter acts like a eigenfunction mapping: it maps the one-dimensional input into a two-dimensional feature
map suitable for subsequent network learning. As a special feature extraction tool, the predictor extracts
local features from the feature map and estimates parameters. Simulation results indicate that the CV DNN
outperforms conventional processors. Moreover, it is more accurate than the Wigner–Hough transform
while being several orders of magnitude faster, which will enable real-time signal processing with fewer
computational resources. Furthermore, we demonstrate that the CVDNN shows strong robustness to changes
in modulation parameters and the number of components of a chirp signal. This study shows the advantages
of deep learning systems for signal parameter estimation.

INDEX TERMS Chirp signals, complex valued deep neural network, deep learning, parameter estimation,
sensitivity analysis, time–frequency analysis.

I. INTRODUCTION
Linear frequency-modulated signals, which are also called
chirp signals, are widely employed in various applications
such as radar [1], sonar [2], ultrasonics [3], and telecom-
munications [4]. Accurate estimation of the parameters of
chirp signals, i.e., initial frequency f0 and chirp rate µ, with-
out any prior information is essential in electronic counter-
measure technology. An example is in the area of source
localization [5], where the estimated parameters can be used
to construct a matched filter to match signals received at
several locations to determine the time-difference-of-arrival
of a target.

The main trends in research on chirp signal parameter
estimation are improving estimation accuracy, increasing
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computational efficiency, and enhancing adaptation to low
signal-to-noise ratios (SNRs).

For a long time, various methods based on maximum like-
lihood estimator (MLE) [6], [7] are the predominant solutions
to this task, and they are reported to be asymptotically opti-
mal. Most of these methods can be ascribed to a multivariable
optimization algorithm, which requires a two-dimensional
extremum search in practical application. Therefore, heavy
computational complexity is generally needed for high esti-
mation accuracy [8], which does not meet the requirements
of real-time signal processing. The algorithms provided in
refs. [9], [10] are much more efficient in computation, but
not applicable to multi-component chirp signal.

A. TIME FREQUENCY ANALYSIS PROCESSORS
Time-frequency-based methods have been reported to be
effective for detecting and estimating chirp signals. These
techniques have attracted considerable attention and proved
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themselves to be effective [11]–[20]. The time–frequency
transform (TFT), which is a method that extracts the charac-
teristics of time–frequency joint distributions, is performed
by transforming a chirp signal from a one-dimensional (1-d)
time domain into a 2-d time–frequency domain through some
linear or nonlinear transformations. TFTs are usually com-
bined with some straight line detection (SLD) methods, e.g.,
the Hough [21] or Radon [22] transforms, which are a class of
methods widely used in image processing for shape detection
and feature extraction. Because chirp signals can be described
as straight lines in the time–frequency domain, SLD, which
integrates along all potential lines, is used to convert the
task of tracking straight lines in the time–frequency domain
into locating the maximum peak in the parameter (f0 and µ)
domain. This parameter estimation technique can be consid-
ered as a class of conventional processors whose input con-
sists of chirp signals and output is the estimated parameters,
as shown in Fig. 1.

FIGURE 1. Conventional chirp-signal parameter estimator.

Therefore, for chirp signal estimation in conventional
processors, a proper TFT is needed to obtain an appro-
priate line representation in the time–frequency domain.
Early TFT methods employed the spectrogram, which is
the square of the magnitude of the short-time Fourier trans-
form (STFT) [11]. However, this technique suffers from a
fixed time–frequency resolution due to the fixed window
length used in the analysis, which limits its applications
in practice. In [12] and [13], STFT is optimized from the
perspective of a wavelet base and polynomial phase decom-
position, respectively, and the derivative transformation of the
STFT is obtained. Although the time–frequency resolution is
improved, it is at the cost of computational efficiency. In con-
trast, the Wigner–Ville distribution (WVD) [14] is optimal
in the sense of maximum energy concentration about the
instantaneous frequency [23]. However, a bilinear transfor-
mation such as WVD generates redundant information such
as cross terms for multi-component chirp signals. Although
the Wigner–Hough transform (WHT) [24] can decrease the
undesirable cross terms in the parameter domain, the integral
operation on the cross terms also greatly increases the calcu-
lation cost. In addition, a series of Huang transforms, such as
the Teager–Huang [15] and Hilbert–Huang [16] transforms,
are noise-sensitive, and when they will be applied in a noisy
environment, noise reduction processing should be carried
out in advance [25].

It makes sense that chirp signals exhibit lines on the TFT
image given that the TFT, which is an eigenfunction map-
ping, maps chirp signal from the 1-d time domain to the
2-d time–frequency domain to highlight the joint features.

FIGURE 2. Proposed deep-learning-based chirp-signal parameter
estimator.

Then, an SLD method, which is a special feature extraction
tool, can be used to extract parameter features on such images.
A common feature of the above-mentioned processors is that
they are parametric and create forward mappings from signal
sequences to parameter outputs. Each TFT has its individual
advantages and disadvantages, and different matching criteria
result in different processors.

B. PROPOSED PROCESSOR
The above analysis shows that TFT has its limitations as a
eigenfunction mapping. An alternative could be provided by
a deep neural network (DNN) [26]–[28], which is a machine
learning-based method. The most striking fact about neural
networks is that they are capable of fitting any function [29].
Therefore, it is theoretically feasible to replace a TFT with
a neural network. Further, convolutional neural networks
(CNNs) have been attracting attention due to their superior
feature extraction capability [30]. Hence, for features that
cannot be defined intuitively but are closely related to the
parameters to be estimated, a CNN becomes a powerful tool
for extracting them.

Although DNNs are generally used for classification
[31]–[36], they have recently been used in regression prob-
lems, such as direction-of-arrival estimation [37] and the
estimation of gravitational wave parameters [38], where
DNNs are able to interpolate between waveform templates
in a similar manner to that of Gaussian process regression
(GPR)2 [39]. Therefore, it makes sense to apply DNNs to
parameter estimation problems.

In this paper, we propose a parameter estimation processor
based on a DNN for chirp signals. The noisy time-series
data is directly input to the DNN, and a fully connected
neural network (FCN) is introduced as a function fitter to
map the 1-d input to a 2-d feature map suitable for subsequent
network learning. After that, a convolutional neural network
(CNN), which is a special feature extraction tool for the
feature map generated by the FCN, is used as a predictor to
estimate parameters f0 and µ. In contrast to the processor that
combines TFT and SLD, in the processor based on DNNs,
the TFT is replaced by an FCN and the SLD is replaced by
a CNN.

Further, a chirp signal is a type of non-stationary signal
that contains not only the amplitude but also the phase infor-
mation, which is hidden in the real and imaginary parts.
It has been shown that the phase information in speech
signals affects their intelligibility [40]. Thus, to make the
network more robust, it makes sense to retain as much useful
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FIGURE 3. Framework of an Nc -component CV DNN, where I denotes the in-phase, i.e., real part of the signal, and Q is the quadrature,
i.e., imaginary part of the signal.

information as possible from the original signal. Therefore,
a noisy complex-valued time-series data is input to the DNN
directly, and the complex-valued form of a DNN, the CV
DNN [41]–[44], is introduced. Accordingly, in the proposed
processor, the FCN is modified into a complex-valued FCN
(CV FCN), and the CNN is modified into a CV CNN,
as shown in Fig. 2.

To the best of our knowledge, this is the first time that a
DNN has been utilized for the parameter estimation of chirp
signals.

The rest of the paper consists of five parts. Section II intro-
duces the framework of the CV DNN and details the forward
propagation and backpropagation. Section III presents the
details of CVDNN training. Section IV presents the results of
simulations to evaluate the performance of the proposed pro-
cessor with respect to that of the conventional one. Section V
concludes the paper.

II. CV DNN FOR PARAMETER ESTIMATION
In this section, we present the design of the CV DNN
framework for parameter estimation.

A. OVERALL FRAMEWORK
The overall framework of the proposed processor based on
CV DNN is shown in Fig. 3, which is divided into two
parts: the function fitter and the predictor. The two parts are
composed of a CV FCN and a CV CNN, respectively.

The input of the whole framework is a complex-valued
Nc-component (Nc ≥ 1) chirp signal, which is a 1-d time-
series data of length N . In the function fitter, the CV DNN
denoises the input and acts as a eigenfunction mapping to
fit a function. Then, the output is reshaped into a complex-
valued 2-d matrix, which can be regarded as a feature map,
for input to the predictor. In the predictor, a CV CNN,
which acts as a special feature extraction tool, extracts fea-
tures related to the parameters from the complex-valued
matrix. After several convolution and pooling operations,
all local features are finally combined by a fully connected
layer to output the estimated parameters. The output of the
whole framework is several sets of estimated parameters,{
[f1,0, µ1], . . . , [fNc,0, µNc ]

}
, i.e., neurons in the output layer

are divided into two categories, which are output initial

frequency f0 and chirp rate µ. A set of neurons outputting[
fj,0, µj

]
, j ∈ {1, . . . ,Nc} can be regarded as a channel that

outputs the parameters for the jth component of a chirp signal
according to the specified order.

Note that the network structure designed in this paper
has a one-to-one correspondence with the number of sig-
nal components Nc, i.e., signals with different numbers of
components need to be trained by networks with different
structures, respectively. For instance, the Nc-component CV
DNN framework shown in Fig. 3 can only be applied to
Nc-component chirp signals. The only difference between
these networks is the number of neurons 2 Nc of the output
layer.

B. FUNCTION FITTER
The universality theorem [29] proves that artificial neural net-
works with just three layers (one hidden layer) can model any
function up to any desired level of accuracy. Thus, it makes
sense to use neural networks instead of TFTs to fit a function
that reflects the parameter features of chirp signals. In this
paper, the function fitter consists of a 3-layer CV FCN.

FIGURE 4. Function fitter.

Generally, a CV FCN has an input layer, one or more
hidden layers, and an output layer, as shown in Fig. 4. A non-
linear activation function is applied to the output of each
hidden layer. Without this nonlinearity, the use of multiple
layers would become redundant, as the network would only
be able to express linear combinations of the input. The
most commonly used nonlinear activation functions are the
logistic sigmoid, hyperbolic tan, and rectified linear unit
(called ReLU) [45]. It has been empirically observed that the
ReLU produces the best results for most applications [46].
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This function is mathematically expressed as max(x, 0).
In the CV DNN, we extend ReLU to its complex form
(cReLU) [41] as follows:

f (·) = cReLU (x) = max (<(x), 0)+ j max (=(x), 0) , (1)

where < and = denote the real and imaginary parts of a
complex value.

In the l + 1th fully connected layer, the complex output
O(l+1)
i ∈ CI is computed by the multiplication between all

the previous layer’s outputs O(l)
k ∈ CK , and a bank of filters

ω
(l+1)
ik ∈ CK×I . Then, a bias b(l+1)i ∈ CI is added and the

outputO(l+1)
i ∈ CI can be obtained from the activated V (l+1)

i ,
where C denotes the complex domain and the superscript
is its dimension. Further, K and I respectively represent the
number of neurons in layers l and l + 1. The output can be
written as

O(l+1)
i = f

(
V (l+1)
i

)
, (2)

where

V (l+1)
i =

K∑
k=1

ω
(l+1)
ik · O(l)

k + b
(l+1)
i . (3)

C. PREDICTOR
The predictor consists of a 5-layer CV CNN that contains
three convolutional layers, a fully connected layer, and an
output layer.

1) BASIC NEURON STRUCTURE
The basic mechanism of a single neuron structure [42] in the
convolutional layers of a CV CNN is illustrated in Fig. 5.

FIGURE 5. Basic neuron structure and connections of the convolutional
layers in a CV CNN.

Here, x ′ and x represent the input of the previous neuron
and the next neuron, respectively. Similarly, y′ and y represent
their output, ω represents the weight between neurons, a rep-
resents the results of the input sent to the next layer through
the weight, and b represents the bias, where x ′, x, y′, y, ω
a, b ∈ C. Subscripts R and I represent real and imaginary
components, respectively.

Note that the cReLU is used in this paper and is obtained
as follows:

f (·) = cReLU
(
x ′
)
= max

(
x ′R, 0

)
+ j max

(
x ′I , 0

)
. (4)

We can then obtain

∂y′R/∂x
′

R =

{
1, x ′R > 0
0, x ′R ≤ 0

, ∂y′I/∂x
′

I =

{
1, x ′I > 0
0, x ′I ≤ 0

(5)

FIGURE 6. Basic neuron structure of the output layer in the CV-CNN.

In this paper, the expected output of the overall frame-
work is the real value of the estimated parameters; therefore,
the output layer’s neurons need to be activated by the absolute
value function abs(·), as follows (Fig. 6):

yo = |xR + jxI| =
√
(xR)2 + (xI)2. (6)

2) COMPLEX-VALUED CNN
Each hidden unit, which is complex valued, in the convolu-
tional layers is connected to local patches in the feature maps,
also complex-valued, of the previous layer through a set of
complex weight matrices known as kernels or filter banks.
The units in a local patch are convolved by the weight matrix
and then passed through the nonlinear activation function.
Convolution means that the units in a feature map are forced
to share the same filter bank. Different feature maps in a
layer use different filter banks, which correspond to different
channels. Each filter bank detects specific regional features
from the input matrices, so each feature map represents a
unique feature at different positions in the previous layer.

1) In the convolutional layer, the complex-valued output
feature maps O(l+1)

i ∈ CW2×H2×I are computed by the con-
volution between all the previous layer’s output feature maps
O(l)
k ∈ CW1×H1×K and a bank of filters ω(l+1)

ik ∈ CF×F×K×I .
Then, a bias b(l+1)i ∈ CI is added, where C denotes the
complex domain and the superscript is its dimension. This
convolution is calculated by

O(l+1)
i = f

(
V (l+1)
i

)
= max

(
<

(
V (l+1)
i

)
, 0
)
+jmax

(
=(V (l+1)

i ), 0
)
, (7)

V (l+1)
i =

K∑
k=1

ω
(l+1)
ik ∗ O(l)

k + b
(l+1)
i

=

K∑
k=1

(
<

(
ω
(l+1)
ik

)
· <

(
O(l)
k

)
−=(ω(l+1)

ik ) · =(O(l)
k )
)

+ j
K∑
k=1

(
<

(
ω
(l+1)
ik

)
· =

(
O(l)
k

)
+=

(
ω
(l+1)
ik

)
·R

(
O(l)
k

))
+ b(l+1)i , (8)

where j =
√
−1 is the imaginary unit. Symbol ‘‘∗’’ denotes

the convolution operation, O(l)
k is the unit of the kth output

feature map in layer l, and V (l+1)
i denotes the weighted sum

of inputs to the ith input feature map in layer l + 1. Finally,
f (·) denotes cReLU.
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2) The pooling layer is used to merge semantically similar
features that are detected by the convolutional layer. The
pooling function calculates a summary statistic over a local
patch independently for each feature map in the convolu-
tional layer. Therefore, the numbers of feature maps in the
pooling and convolutional layers are equal. The maximum
and average of a rectangular neighborhood are the two most
commonly used pooling functions.

A straightforward extension of average pooling from real
to complex can be defined as

O(l+1)
i (x, y) = ave

u,v=0,...,g−1
O(l)
i (x · s+ u, y · s+ v), (9)

where g denotes the pooling size, s is the stride, and
O(l+1)
i (x, y) is the unit of the ith input feature map at posi-

tion (x, y).
3) In the top layers, usually one or more fully connected

layers are used in our CV CNN. That is, each neuron in
the fully connected layers is connected to all neurons in the
preceding layer, which can be seen as a special case of a
convolutional layer. The output is written the same as it is
in (2) and (3), while f (·) is associated with abs(·).

D. COMPLEX-VALUED BACKPROPAGATION
Supervised training of a DNN optimizes the weights/biases
so that the network output matches the desired output or the
given labels of the training data. After the multiple feature
extraction stages, there still exists an error between the output
and the target. The error can be described as a loss function E .
Therefore, the network parameters are trained by stochastic
gradient descent and the loss function is minimized during
backpropagation [47]. Stochastic gradient descent refers to
the process of estimating the gradient using only a subset of
the training samples, i.e., an Nb-sample minibatch, where Nb
is the batch size. Therefore, the estimated gradient is actually
sampled from a small number of cases, which is in fact a
stochastic sampling process. By computing the error gradient
with respect to the parameters (∂E/∂w), the updating rule is
ω← ω−η(∂E/∂ω), where η is the learning rate. The training
sample of each iteration can be expressed as {X (n),T (n)}Nbn=1,
where X (n) and T (n) denote the nth input data and the label,
respectively.

Considering that parameter estimation is a kind of
regression-type problem that is different from the classifi-
cation problem, the loss function, which can directly reflect
the difference in value between output and label, should
be selected. Mean squared error, root mean squared error
(RMSE), and mean absolute deviation are all options for the
loss functions for solving regression-type problems. Further-
more, considering that the two parameters f0 and µ to be
estimated in this paper have different lower bounds for their
estimated errors, an equal weight is clearly not appropriate.
Hence, a weighted RMSE (WRMSE) based loss function
is introduced to the network in the proposed system and is

expressed as follows:

E =
1
Nb
·

Nb∑
n=1

[
εf0 · RMSE

(
T [f0](n),O[f0](n)

)
+ εµ · RMSE

(
T [µ](n),O[µ](n)

) ]

=
1
Nb
·

Nb∑
n=1

[
εf0

Nc
·

( Nc∑
k=1

∣∣∣T [f0]
k (n)− O[f0]

k (n)
∣∣∣2)

1
2

+
εµ

Nc
·

( Nc∑
k=1

∣∣∣T [µ]
k (n)− O[µ]

k (n)
∣∣∣2)

1
2 ]
, (10)

where T [f0]
k (n) and T [µ]

k (n) respectively mean the f0 and µ
(label) of the kth component of the nth data, whereas O[f0]

k (n)
and O[µ]

k (n) are those of the output. The loss is the weighted
sum of the errors estimated by the two parameters εf0+εµ = 1
and εf0 . In addition, ε ∈ R are weight coefficients, which are
related to the normalized minimum of the RMSE. Note that
εf0 and εµ are defined in Section III-C.2.

The minimum of the above loss function is searched for by
iteratively adjusting the weights according to

w(l+1)
ik [t + 1] = w(l+1)

ik [t]+1w(l+1)
ik [t]

= w(l+1)
ik [t]− η

∂E[t]

∂w(l+1)
ik [t]

,

b(l+1)i [t + 1] = b(l+1)i [t]+1b(l+1)i [t]

= b(l+1)i [t]− η
∂E[t]

∂b(l+1)i [t]
. (11)

The derivatives of complex functions are obtained according
to the complex chain rule [48]. The key process is computing
the error gradient of the weights as

∂E

∂w(l+1)
ik

=
∂E

∂<
(
w(l+1)
ik

) + j ∂E

∂=
(
w(l+1)
ik

)
=

 ∂E

∂<
(
V (l+1)
i

) ∂<
(
V (l+1)
i

)
∂<

(
w(l+1)
i

)+ ∂E

∂=
(
V (l+1)
i

) ∂=
(
V (l+1)
i

)
∂<

(
w(l+1)
i

)


+ j

 ∂E

∂<
(
V (l+1)
i

) ∂<
(
V (l+1)
i

)
∂=
(
w(l+1)
ik

)
+

∂E

∂=
(
V (l+1)
i

) ∂=
(
V (l+1)
i

)
∂=
(
w(l+1)
ik

)
 . (12)

To simplify the expression, an intermediate quantity called
the error term is defined as

δ
(l+1)
i = −

∂E

∂<
(
V (l+1)
j

) − j ∂E

∂=
(
V (l+1)
i

) , δ
(l+1)
i ∈ C.

(13)
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With (7), (8), and (13), (12) can be simplified as

∂E

∂w(l+1)
ik

= −δ
(l+1)
i O(l)

i , (14)

where (·) denotes the complex conjugate.
The specific derivation of error terms in each layer is given

in [43], and several final generalized formulae for parameter
updating are obtained.

Neurons in the fully connected layers are formed in a 1-d
array, and their parameters are updated by

w(l+1)
ik [t + 1] = w(l+1)

ik [t]+ ηδ(l+1)i O(l)
i , (15)

b(l+1)i [t + 1] = b(l+1)i [t]+ ηδ(l+1)i . (16)

In other layers, neurons are formed in a 2-d array as

w(l+1)
ik [t + 1]

= w(l+1)
ik [t]+ ηδ(l+1)k ∗ O(l−1)

k

= w(l+1)
ik [t]+ η

∑
x,y

δ
(l)
k (x, y) · O(l−1)

k (x − u, y− v),

(17)

b(l+1)i [t + 1]

= b(l+1)i [t]+ ηδ(l+1)i = b(l+1)i [t]+ η
∑
x,y

δ
(l+1)
k (x, y).

(18)

The parameters are adjusted iteratively until the error
between the target and the network output is small enough
to meet the requirement.

III. APPLICATION TO THE PARAMETER ESTIMATION
OF CHIRP SIGNALS
In this section, we present the detailed implementation of the
proposed CV DNN for estimating the parameters of chirp
signals. First, some assumptions are made; next, the data set
preparation is described, followed by the detailed configu-
ration of the CV DNN. Finally, the training strategy of the
network is introduced.

A. ASSUMPTIONS
The study in this paper is based on the following assumptions:
1) The sampling point of a time-series data is fixed

N = 256 and the number of components Nc is known.
2) The pulse width T of a chirp signal is equal to the length

of the observation time.
3) There is only the chirp signal and additive white

Gaussian noise in the channel without other interfer-
ence or noise.

B. TRAINING SET AND TEST SET
For the datasets for an Nc-component CV DNN, the data
are vectors of size 1 × N generated by the computer. They
consist of Nc-component chirp signals with the same num-
ber of components and different modulation parameters.

TheNc-component simulated chirp signals in the data all have
the following form:

zNc (t) =
Nc∑
i=1

si(t)+ n(t), (19)

si(t) = e
2π j

(
fi,0t+ 1

2µit
2,
)

(20)

where n(t) is additive white Gaussian noise, sampling fre-
quency Fs = 1.5 MHz, and length N = 256.

For the training data, chirp rate µ is varied from 0.04 to
4.00 GHz/s in steps of p1 = 0.04 GHz/s, and the initial
frequency f0 is varied from 7.5 KHz to 750 KHz in steps of
p2 = 7.5 KHz. The testing data have intermediate parameter
values, i.e., parameters separated from values in the training
data by 0.5 · p. By not having overlapping values in the
training and testing data, one can ensure that overfitting can
be avoided to a certain extent, i.e., the network memorizes
only the inputs shown to it without learning to generalize to
new inputs. The distribution of the parameters and 5,050 tem-
plates for generating the training and testing data, are shown
in Fig. 7.

FIGURE 7. Distribution of the data.

Subsequently, different SNRs are superimposed on top of
the signals, thus augmenting the size of the data sets. The
SNR was adjusted according to the aims of each training
session. As usual, the inputs are normalized to make the
training process easier.

The final training sets at each given SNRi consist
of 1,500,000 data, where each instance of training data is
produced from 5,050 templates by adding noise within the
range of

(
SNRi − 5 dB, SNRi + 5 dB

]
, i = 1, . . . , 13. It is

also standard practice to use a validation set to monitor the
performance of the network on unseen data during training to
prevent overfitting. The validation and testing sets at SNRi,
which consist of 500,000 data each, were generated from a
different set of 5,050 templates by superimposing random
noise.

Because of the randomness of parameter selection, for
multi-component chirp signals, it will be difficult for the loss
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FIGURE 8. Node details of an Nc -component CV DNN.

function to converge if output channels of the parameters of
each chirp component are not specified in order. Therefore,
during the preparation phase, the parameter labels of the data
sets need to be arranged in the order specified. Therefore,
for each element

(
up, f0,q

)
, p, q = 1, ...100 in the evenly

distributed parameter templates, we encode each element
using the following rule:

order =
p+q∑
i=0

i+ q, (21)

Then, we can obtain

order p, q,
∑p+q

i=0 i, q
1 1, 0, 1, 0
2 0, 1, 1, 1
3 2, 0, 3, 0
4 1, 1, 3, 1
5 0, 2, 3, 2
· · · · · · · · · · · ·

. (22)

With the help of this constraint, parameter labels in the data
sets are arranged in order frommaximum tominimum, so that
neurons outputting µ and f0 are aligned, and the channels for
outputting each component’s parameters are formed.

C. NETWORK STRUCTURE AND IMPLEMENTATION
This section first presents the process of building the whole
network structure; then, εf0 and εµ in the loss function are
defined. Finally, the training strategy of the network is intro-
duced in detail.

1) NETWORK STRUCTURE
Each instance of input training data is a sequence of size
1 × 256. Accordingly, the input layer contains 256 neurons.
After the data flow passes through the filters of the fully
connected layers, the 1-d vector is reshaped into a complex-
valued matrix with size of 64 × 64 × 1, which means the
size of a local patch is 64 × 64 and the number of channels
is 1. The complex-valued matrix can be regarded as a feature
map fitted by the CV FCN based on the characteristics of
the training examples, which then is input to the CV CNN.
The input complex-valued matrix is filtered by a bank of six
convolution filters of size 9×9×1 with a stride of one in the
first convolutional layer.

Meanwhile, to retain more edge information, each convo-
lution operation is accompanied by a corresponding padding,
resulting in six feature maps of size 64×64. This is followed

by an average pooling layer, with a pooling size of 2 × 2
and stride of one: its size then becomes 32 × 32. The filter
size of the second convolutional layer is 5 × 5 × 6 × 10,
producing 10 feature maps of size 32 × 32. The output of
the same pooling layer is feature maps of size 16× 16× 10.
Similarly, the filter size of the third convolutional layer is
3 × 3 × 10 × 12. After convolution and pooling, its output
is 12 feature maps of size 8 × 8. Then, the 3-d feature maps
are reshaped into a 1-d vector containing 768 neurons for the
fully connected layer. This is followed by the output layer
containing 2Nc neurons, whose output is activated by abs(·).
Here, 2Nc is equal to the number of parameters and Nc is the
number of signal components.

2) LOSS FUNCTION
As mentioned in Section II-D, because the estimated error
of f0 and µ have different lower bounds, we introduce the
following WRMSE as the loss function:

E =
1
Nb
·

Nb∑
n=1

[
εf0 · RMSE

(
T [f0](n),O[f0](n)

)
+ εµ · RMSE

(
T [µ](n),O[µ](n)

) ]

=
1
Nb
·

Nb∑
n=1

[
εf0

Nc
·

( Nc∑
k=1

∣∣∣T [f0]
k (n)− O[f0]

k (n)
∣∣∣2)

1
2

+
εµ

Nc
·

( Nc∑
k=1

∣∣∣T [µ]
k (n)− O[µ]

k (n)
∣∣∣2)

1
2 ]
, (23)

where εf0 + εµ = 1, εf0 , and εµ ∈ R are weight coef-
ficients that are related to the normalized minimum of the
RMSE. One optional reference is the Cramér–Rao lower
bound (CRLB) [10], which represents the best estimation
accuracy that can be obtained in an unbiased estimation,
i.e., the minimum estimated error of the mean squared error.
Thus, CRLB

1
2 for RMSE.

CRLB
1
2 (f0)≈

√
96

4π2N 31210
SNR
10

=

√
96

4π2NT 210
SNR
10

(24)

CRLB
1
2 (µ)≈

√
90

π2N 51410
SNR
10

=

√
90

π2NT 410
SNR
10

(25)

The bounds CRLB
1
2 (f0) and CRLB

1
2 (µ) are different in this

paper; for instance, when SNR = 10 dB, CRLB
1
2 (f0) =

180.5872 andCRLB
1
2 (µ) = 2.0491×106. Further, because of

the difference in the normalized dimensions, the RMSE of f0
and µ converge at different bounds. Data sets are normalized
according to maxmin criterion as follows:

Xnorm =
X − Xmin

Xmax − Xmin
, (26)

X̂norm =
X̂ − Xmin

Xmax − Xmin
, (27)
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where X ∈ {f0, µ}, X̂ ∈
{
f̂0, µ̂

}
. Then,

RMSE
(
TXnorm ,OXnorm

)
=

(∑Nc
n=1

∣∣TXnorm (n)−OXnorm (n)∣∣2
Nc

) 1
2

=


∑Nc

n=1

∣∣∣Xnorm−X̂norm∣∣∣2
Nc


1
2

=


∑Nc

n=1

∣∣∣X − X̂ ∣∣∣2
Nc · |Xmax−Xmin|2


1
2

=
RMSE (TX ,OX )
|Xmax−Xmin|

. (28)

Therefore, we can obtain the normalized form of CRLB
1
2 .

Again, we take SNR = 10 dB. This yields

CRLB
1
2 (f0)norm =

CRLB
1
2 (f0)

|max (f0)− min (f0)|

[−1pt] =
180.5872∣∣7.5× 105 − 7.5× 103

∣∣
[−1pt] = 2.4322× 10−4, (29)

[−1pt]CRLB
1
2 (µ)norm =

CRLB
1
2 (µ)

|max (µ)− min (µ)|

[−1pt] =
2.0491× 106∣∣4× 109 − 4× 107

∣∣
[−1pt] = 5.1745× 10−4, (30)

and we can obtain
CRLB(f0)norm
CRLB(µ)norm

=
0.2837
0.7163

, (31)

which means that at the same loss, µ converges more easily
than f0. Moreover, it can be found from (24) and (25) that this
ratio is independent of the SNR. Therefore, it is an effective
method to weight the RMSEs of the parameters according to
this ratio so that the RMSEs of both can converge to their
minimum values synchronously. The weights are hence

εf0 : εµ=0.7163 : 0.2837
(
εf0+εµ=1, εf0 , εµ ∈ R

)
.

(32)

D. TRAINING STRATEGY
The hyperparameters were optimized by trial and error to
obtain the architectures of the DNNs that achieve the best
performance in terms of speed and accuracy. First, we used
a mono-component chirp signal without Gaussian white
noise to determine the optimal architectures of the mono-
component CVDNN. The structure of the hidden layers in the
mono-component CV DNN was also found to be optimal for
multi-component CV DNNs. The CV DNNs were designed
and trained using Python’s TensorFlow.

FIGURE 9. Training process of mono-component CV DNN under
SNR10 = 10 dB, where batchsize = 512, number of iterations = 2,930, and
rounds = 80. The solid line represents the batch loss of the training set,
loss = 512 · E , whereas the dots represent the batch loss of the
validation set.

A new strategy was devised to reduce the training time of
the CV DNNs while ensuring optimal performance. In this
strategy, training is started by training the CV DNN on inputs
with high SNR1 (100 dB) and then gradually decreasing the
SNRi in steps of 10 dB in each subsequent training session
until a final value of SNR13 (−20 dB). This process ensures
that the performance can be quickly maximized for low
SNR while remaining accurate for signals with high SNR.
For instance, Fig. 9 shows the training process of a mono-
component CV DNN at SNR10 = 10 dB, where Scheme 2 is
the loss curve obtained when trained using this scheme with
gradually decreasing SNR and Scheme 1 is obtained without
decreasing the SNR. Scheme 2 clearly enables the network
to learn the training features under higher SNRi. Moreover,
it makes the training loss under lower SNRi converge bet-
ter and more quickly: Scheme 2 only needs two epochs to
converge the loss, whereas Scheme 1 needs eight epochs.
Meanwhile, the minimum value of the convergence using
Scheme 2 is nearly 50% lower than that of Scheme 1.

A similar approach can be applied to multi-component
CV DNN. Fortunately, with a trained mono-component CV
DNN, one strategy to reduce the training time of multi-
component CVDNNs is transfer learning [49]. The basic idea
of transfer learning is to make full use of a pre-trained model,
that is, a model that has been trained on a ready-made data
set that can correspond to completely different problems to be
solved. It is necessary to find a layer that can output reusable
features in the pre-trained model, and then use the output of
this layer as the input feature for training the smaller neural
networks that need fewer parameters. Because pre-trained
models have already learned patterns of data, this smaller
network only needs to learn about the specific connections of
the data to a specific problem. As mentioned earlier, the only
difference between these networks is the number of neurons
2 Nc of the output layer. Therefore, we treat the parameters
of the hidden layers (excluding the input and output layers)
as the transfer object by starting off training the mono-
component CV DNN and then transferring the parameters to
a multi-component CV DNN.
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IV. SIMULATION AND RESULTS
In this section, we first introduce a conventional proces-
sor, WHT, as the comparison method, then, several specific
targeting experiments are conducted to observe the estimated
performance of the proposed processor CV DNN.

A. PREPARATION
WHT [24], which is a representative processor combining
TFT and SLD, is an effective method for analyzing chirp
signals and is expressed by

Ws(t, f ) =
∫
∞

−∞

s
(
t +

τ

2

)
s
(
t −

τ

2

)
e−j2π tf dτ, (33)

where (·) denotes the complex conjugate and Ws(t, f )
depicts the energy distribution of s(t) in frequency f at
time t .

TheWHT is defined as a mapping from the time domain to
the parameter domain (f0, µ) and expressed by the following
integral transformation:

WHs[s(t; f , µ)] =
∫
+∞

−∞

∫
+∞

−∞

s
(
t +

τ

2

)
s∗
(
t −

τ

2

)
·e−j2π(f0+µt)τdtdτ. (34)

In polar coordinates, WHT is defined as

WHs[s(t; ρ, θ)]=
∫
+∞

−∞

∫
+∞

−∞

s
(
t +

τ

2

)
s∗
(
t −

τ

2

)
·e−j2π

1
sin θ (ρ+cos θ ·t)τdtdτ

=

∫
+∞

−∞

Ws

(
t,

1
sin θ

(ρ+cos θ ·t)
)
dt, (35)

where θ ∈ (0, 2π ).
Because of the oscillating properties [50] of the cross terms

in WVD, the cross terms can be effectively suppressed on
the parameter plane by the Hough transform, which enables
the WHT to achieve high estimation accuracy. Therefore,
it makes sense to take WHT as the comparison object of the
proposed processor.

The main issues addressed in the experiments are as
follows:
• In Experiment 1, the sensitivities of WHT and CV DNN
to chirp signal parameters are compared.

• In Experiment 2, the estimated accuracy and computa-
tional efficiency ofWHT and CVDNN are studied using
a set of samples.

• In Experiment 3, the sensitivities of WHT and CV DNN
to the number of components Nc (Nc > 1) of a multi-
component chirp signal are studied.

B. EXPERIMENT 1
To study the sensitivity of the processors to chirp signals
with different parameters, under each test template (the red
dot shown in Fig. 7), a mono-component chirp signal with
SNR = 10 dB was generated as a sample. All samples
make up the sample set in Experiment 1. Then, each sample
was processed in a Monte Carlo simulation (MCS) with

200 trials using WHT and a mono-component CV DNN,
respectively.

The degree of deviation under each parameter template is
expressed as relative error as follows:

DP =
1
M

M∑
1

∣∣Pestimation − Paccuracy∣∣
Paccuracy

, (36)

where M is the number of MCS trials, Pestimation is the
parameter value estimated by the processors, and Paccuracy is
the accurate value of the parameter, where P ∈ {f0, µ}.

FIGURE 10. Sensitivity of CV DNN and WHT to chirp signal parameters.

Figure 10 shows the error matrix obtained by CVDNN and
WHT. The triangular region represents the parameter distri-
bution of the sample set, which is same as the testing set’s
parameter distribution in Fig. 7. Different colors represent
the magnitude of the relative error DP, whose upper bound
shown in the figure is 0.05, i.e., for each point DP = 0.05
in the figure, its true DP > 0.05. To make the error matrix
more general, we performed a cubic spline interpolation on
the error matrix and extended its size from 100 × 100 to
1, 024 × 1, 024. Figures 10(a) and 10(c) respectively show
the error matrix amplitude diagram of CV DNN and WHT
estimating µ on the sample set, whereas Fig. 10(b) and 10(d)
respectively show the results for f0.

The simulation shows that CV DNN is more robust to the
distribution of chirp signal parameters than WHT.

These results show that in the sample set, WHT has a
large estimation error for the samples associated with a lower
µ or lower f0, especially when µ, f0→ 0. For instance, when
theµ of a sample is less than 0.5GHz/s,Dµ is always> 0.05.
Similarly, Df0 > 0.05 for samples with f0 less than 50 KHz.
Furthermore, as µ and f0 increase, the relative error gradually
decreases, but oscillates as µ varies.

For CV DNN, although the region with lower parame-
ter values also shows higher errors, the sensitive region is
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relatively smaller, the relative errors are smaller, and the
stability in the error variation ismuch better than that ofWHT.
For instance, in the Dµ matrix, Dµ is always 6 0.05, Dµ is
> 0.04 only when µ6 0.1GHz/s, andDµ 6 0.02 invariably
when µ> 1 GHz/s. Similarly, the maximum of matrix Df0 is
also 6 0.05, and Df0 6 0.04 when f0 6 30 KHz.

C. EXPERIMENT 2
1) OBTAINING EXPERIMENT SAMPLES
Three mono-component chirp signals with the same ampli-
tude were generated for the experiments as samples of Exper-
iment 2 and Experiment 3, whose modulation parameters are
different from each element in Fig. 7 but within the template’s
scope.
• The parameters of the samples si{fi,0, µi} are
s1{300 KHz, 2.63 GHz/s},
s2{400 KHz, 0.88 GHz/s},
s3{200 KHz, 0.44 GHz/s}.

For a clearer representation, Fig. 11(a) shows the sum of
WVD for each mono-component chirp signal, i.e., WVD=∣∣∣∑3

i=1Wsi

∣∣∣, and 11(c) shows its WHT,
∑3

i=1WHsi . More-

over, Fig. 11(b) and 11(d) show the WVD =
∣∣∣∣W∑Nc

i=1 si

∣∣∣∣ and
WH∑3

i=1 si
of a 3-component chirp signal composed of three

mono-component chirp signals.

FIGURE 11. (a) WVD=
∣∣∣∑3

i=1 Wsi

∣∣∣, (b) WVD =

∣∣∣∣∣W∑Nc
i=1 si

∣∣∣∣∣, (c)
∑3

i=1 WHsi ,

and (d) WH∑3
i=1 si

.

2) ESTIMATION PERFORMANCE
A mixed 2-component chirp signal was composed of mono-
components s1 and s3, which have different initial frequencies
and chirp rates, as s = s1 + s3, as shown in Fig. 11(a).

Further, to strengthen the comparison, we introduce a part-
search maximum likelihood estimation (PSMLE) [7] on the
basis of WHT, i.e., MLE is carried out in the region of the
estimated parameters obtained by WHT to obtain a better
estimation, as follows:

{f̂0, µ̂} = argmax
{(f0,µ)}∈�

∣∣∣∣∣
N−1∑
n=0

x(n)e
−j2π

(
f0n+ 1

2µn
2
)∣∣∣∣∣ , (37)

where{
(f0, µ)

∣∣∣ ∥∥∥f0 − f̂ WHs0

∥∥∥
2
<ςf0 ,

∥∥∥µ− µ̂WHs∥∥∥
2
<ςµ

}
⊆ �,

(38)

where ς is search radius, f̂ WHs0 and µ̂WHs are parameters
estimated byWHT, and the search step is 2ς

100 . PSMLE serves
as a reference for asymptotically optimal estimation.

An MCS with 200 trials was run with different SNRs
(−15 dB to 10 dB in 1 dB intervals). The RMSE in the form
of dB is used, as the evaluation criteria of Experiment 1. It is
defined as

RMSE(dB)=10 ∗ log

[
1
M

M∑
1

(
Pestimation − Paccuracy

)2] 1
2

.

(39)

The RMSE (dB) of the initial frequencies and chirp rates
obtained by a trained 2-component CV DNN, WHT, and
PSMLE are shown in Fig. 12. Here, the CRLB [10] serves
as a reference. TABLE 1 lists the average runtime of MCS
conducted by these processors under different SNRs.

FIGURE 12. RMSE (dB) results for (a) initial frequency f0 estimation and
(b) chirp rate µ estimation.

TABLE 1. Average runtime of 200 MCSs.

These results allow us to draw some conclusions about the
methods:

1) CV DNN has a lower SNR threshold, i.e. when
SNR < −12 dB, the estimation accuracy of WHT
drops significantly, whereas that of the CVDNN is still
robust. Moreover, the error curve of the CV DNN is
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FIGURE 13. CS estimation results: (a) initial frequency f0 estimation and
(b) chirp rate µ estimation.

closer to that of PSMLE and CRLB1/2, which indicates
that the CV DNN is close to the optimal estimation
and much better than WHT in terms of estimation
accuracy.

2) CV DNN is insensitive to the change in signal parame-
ters. The error curves of s1 and s3, which have different
parameters under the CV DNN, are similar whereas
the error curves under WHT have different SNR
threshold results, which supports the conclusion of
Experiment 1.

3) Although the neural network-based approaches require
a substantial amount of time to train the network in the
early stages, the time spent on subsequent calculations
for the trained network is greatly reduced. A trained
CV DNN improves the computational efficiency by
nearly 200 times compared with that of WHT and by
2,700 times compared with that of PSMLE.

D. EXPERIMENT 3
For multi-component chirp signals, mutual interference
caused by the aliasing between components may influence
the parameter estimation accuracy. Therefore, we designed an
experiment to study the sensitivity of the proposed processor
to the number of chirp signal components by observing the
estimation accuracy of a specified component in different
multi-component chirp signal combinations.

Three mono-component chirp signals shown in Fig. 11(a)
were combined into different groups, where the multi-
component signals are composed of different mono-
component signals, G = {s1 + s2, s1 + s3, s1 + s2 + s3}.
By studying the performance of the s1 estimation results
under different groups, the impact of changes in the number
of components on the results can be analyzed. The evaluation
criterion is component sensitivity (CS), which is defined as
the ratio of the s1 estimation results in the multi-component
signal to that of s1 in the mono-component signal, i.e.,

CS(i) =
1
M

M∑
1

RMSE(s1 ∈ Gi, i = 1, 2, 3)
RMSE(s1)

. (40)

CV DNN and WHT were used for an MCS with 200 trials
in each group. Note that, in the CV DNN processor, s1 in
the denominator of (40) is the input of a trained mono-
component network andG1 andG2 are the inputs of the same

network structure, which is a trained 2-component network,
whereas G3 relies on another network structure, a trained
3-component network. Figure 13 shows the CS results of
these processors.

The results indicate that both CV DNN and WHT are
insensitive to changes in Nc. The mutation of WHT’s CS is
caused by the SNR threshold effect. A reasonable guess about
the stability of the CS of CV DNN is that transfer learning
enables multi-component CV DNN to inherit and learn fea-
tures that are common to mono-component CVDNNs, which
makes the network robust to the number of components or the
number of neurons in the output layer.

V. CONCLUSION AND FUTURE WORK
There are many parameter estimation processors of chirp sig-
nals.Most of them are composed of parts with clear functions.
From this perspective, because of the strong advantages of
neural networks in function fitting and feature extraction,
we replace each part in the conventional processor with a
neural network to achieve comparable or better performance.
In this paper, a CV DNN processor was proposed to replace a
conventional time–frequency analysis method processor. The
results of simulation experiments show that compared with
the conventional processor, the proposed processor has the
following advantages:

1) It is robust to the parameters of a chirp signal.
2) The estimation accuracy and computational efficiency

are greatly improved.
3) The estimation accuracy of each component in a multi-

component chirp signal is not affected by other com-
ponents, i.e., the proposed processor is robust to the
number of components of the chirp signal.

We revisit here the assumptions made in Section III-A. The
proposed system can be thought of as a processor to estimate
the parameters of a chirp signal with a known number of
components. In a channel that contains complex signals with
different numbers of components, if the number of compo-
nents can be determined using classification, the parameter
estimation of a complex signal could be realized by the
parallel operation of the processor proposed in this paper.
Besides, it will also be necessary to add other forms of
interference to the training data so that the network can accu-
rately distinguish chirp signals from interference. Therefore,
in future work, wewill discuss the application of the proposed
method in complex electromagnetic environments. Further,
signal length, network structure, and data set size are common
factors affecting network learning ability in deep learning,
and these topics are also worthy of further discussion and
research.
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