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ABSTRACT Using random sensing matrices imposes some constraints on applying compressed sensing in
practical applications such as computed tomography, high resolution radars, synthetic aperture radars and
other imaging systems. On the other hand, the lack of certain criteria to measure the suitability of a sensing
matrix in compressed sensing,makes designing of the relevant sampling system difficult; so, researchers have
turned largely toward trial and error methods for designing such sensing matrices. In this paper, we propose
a constructive approach to design measurement matrices which largely overcomes the aforementioned
drawbacks and presents some simple and calculable measures for sensing matrices. The presented algorithm
outperforms various random and deterministic approaches in designing compressed sensing matrices due to
its recoverability performance and generality, at the same time, our scheme benefits from the fact that the
sensing matrix performance is easily determined. Based on the proposed method and despite all constrains
that exist in measurement matrices in different problems, we can design sensing matrices in a unified manner
with even better performance than that of random scenarios. In addition, we apply the proposed algorithm
in computed tomography where the measurement matrix is a structured matrix and our method can gain
much improvement in the recoverability performance. Furthermore, this article provides parameters that
affect the performance of a sensing matrix, which theoretically clarifies the causes of the good recoverability
performance of Gaussian matrices and the poor recoverability performance of periodic matrices.

INDEX TERMS Compressed sensing, sparsity constant, measurement matrix design, transitivity of corre-
lations, computed tomography.

I. INTRODUCTION
Compressed sensing (CS) has been widely adopted in imag-
ing systems due to its high resource management efficiency
and superior performance in sparse scenarios [1], [2]. CS
combines two phases of data acquisition and data compres-
sion of signal x ∈ Rn in a linear projection y = Ax
where A denotes the measurement or sensing matrix and y
is the measured data. The sampling rate can be reduced in
this linear projection which is important in various scenar-
ios such as computed tomography (CT) and other medical
imaging systems. For such applications, one can benefit some
of the following advantages through employing CS theory:
i) Reduction of the time needed for the measurement,
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ii) Saving the energy of sampling or reduction of the side
effects of this energy on human body such as exposure to
x-ray in CT, iii) Reduction of the required high speed mem-
ory, iv) Reduction of the required bandwidth for transferring
sampled data, and v) Simplifying the analog to digital con-
verter. On the other hand, when a number of samples ismissed
for different reasons, the CS theory can be used to recover
the original signal without any degradation. Despite all of
these advantages, there are some challenges in deploying
the CS theory in practical applications such as CT and high
resolution radars that motivate us to go further for a better
design of CS-based measurement matrices.

A. RELATED WORKS
Many literature have been devoted to the usage of com-
pressed sensing in different applications including computed
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tomography [2]–[6], high resolution radars [7], synthetic
aperture radars [8], [9], and ground penetration radars [8].
In one line of these researches, the performance of different
measurement matrices is often considered for various areas,
such as high resolution radars [7], magnetic resonance imag-
ing (MRI) [10], and ultra-wideband (UWB) channel esti-
mation [11]. In another perspective, reference [9] compares
the performance of different types of measurement matrix
A including periodic structures, pure random structures and
jitter random structures in synthetic aperture radars. Candès
and Tao in [12] use the restricted isometry property (RIP) to
formulate the recoverability of the CS problem. Based on the
RIP analysis, in another line of relevant researches, a mea-
surement matrix structure is introduced and its performance
is examined by considering its RIP-ness or mutual coher-
ence property with statistical or deterministic tools [13]–[15].
From the RIP analysis aspect, there are three schemes to
design the sensing matrix1 A:

i. Random matrix approaches: It is shown in [16] that
the RIP-ness in random matrix approaches is hold with
a high probability for different distributions, e.g., Gaus-
sian matrices.

ii. Deterministic methods: In these approaches, the sens-
ing matrix A with a good RIP-ness is designed by vari-
ous deterministic methods such as number theory [17],
approximation theory [18], expander graph theory [19],
and coding theory [20]. A different approach for design-
ing a binary sensing matrix based on the average of
columns cross correlations is presented in [21].

iii. Hybrid methods: The sensing matrix A is assumed
to be deterministic in these methods, while signal
x is modeled as a random vector. For instance,
reference [22] defines the statistical restricted isometry
property (StRIP) constant instead of the RIP constant
and then designs the sensing matrix A using the StRIP
in a deterministic way.

B. MOTIVATION
Designing the sensing matrix A using deterministic
approaches is of great interest due to the following reasons:

1) In almost all practical scenarios such as computed
tomography, radars andMRI, the physics of the problem
determines the measurement matrix structure [7], [10].
Thus, we cannot use random matrices in such
applications.

2) The implementation of a random matrix is complex in
some applications such as radars [22].

3) For random matrices with small dimensions, fine tuning
of the measurement matrix is essential [23].

4) Randommatrices may not display a proper performance
in some applications where the quality of service is
needed to be guaranteed [14].

1Throughout the paper, we occasionally use the term sensing matrix A
instead of measurement matrix A.

In practical applications, the main challenge of applying,
the compressed sensing theory is to design its measurement
matrix and evaluate its performance from the recoverability
points of view. The CS theory presents the use of random
matrices and provides criteria such as the RIP constant and the
null space property [24], however, it is shown that the calcula-
tion of these parameters is computationally intractable [25].
Taking the above considerations into account, the

accomplishment of proposed methods for designing the
measurement matrix should be investigated. To the best
of our knowledge, in the most relevant research studies,
the RIP-ness of the measurement matrix has been proved
asymptotically and there is no proposed matrix that can beat
random Gaussian matrices from the recoverability perfor-
mance points of view. Some drawbacks of the RIP analysis
will be presented in Section II. On the other hand as far as
we know, the existence of a measurable criterion for evalu-
ating the performance of the measurement matrix is an open
problem that has not yet been solved. Furthermore, the con-
struction of deterministic matrices with a better performance
than random matrices is important in our understanding of
the CS theory.

C. CONTRIBUTION
In this paper, we define the sparsity constant of the sensing
matrix and use a constructive approach to design the sensing
matrix A in a deterministic manner. Contrary to the compu-
tational intractability of the RIP constant and the null space
property, the sparsity constant of the sensing matrix A can be
easily calculated and used. In this method, we construct the
measurement matrix A iteratively to achieve the maximum
sparsity constant. The designed sensing matrix not only dis-
plays a good recoverability performance, similar to random
matrices, but also in different scenarios, it outperforms the
random matrix in terms of the recoverability performance.
In addition, the proposed scheme answers an old question
in the CS theory about the very poor performance of peri-
odic sampling scenarios and the unified good recoverability
of all random matrices. Furthermore, we employ the mean
restricted isometry property (MRIP) introduced in Section IV
to consider the robustness of the designed measurement
matrix against noise. The proposed algorithm can be applied
in almost every application that compressed sensing is used.
Despite this generality, we also apply our algorithm to com-
puted tomography in Section III and as we will show in this
section, the proposed method can gain much improvement
over recoverability performance. Numerical results verify the
effectiveness of our approach and further confirm the validity
of our theoretical analysis.
The rest of the paper is organized as follows. In Section II,

we briefly describe some basic concepts of the CS theory and
review its precise notations. The proposed sparsity constant
based measurement matrix design is given in Section III.
In Section IV, we deploy the proposed method to computed
tomography. The conclusions are presented in Section V.
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TABLE 1. Notations.

II. INTRODUCTION TO COMPRESSED SENSING
Compressed sensing asserts that we can measure sparse sig-
nals with fewer samples than what the Shannon sampling
theorem requires [26]. CS relies strongly on the sparsity
of measured signals meaning that if a signal is sparse, one
can find a proper basis such that the sparse signal has
a concise representation. Sampling in compressed sensing
means a linear projection of a digital signal that typically
has lower dimensions. In real scenarios, signals are ana-
log and CS can be employed to sample signals just like
the usual way and find a proper basis such that the data
has a sparse representation based on it. Then, the CS pro-
cess reduces dimensions of the signal using some linear
projections.

A. NOTATIONS
In this paper, vectors and matrices are shown in bold lower-
case and uppercase letters, respectively, and sets are shown
by non-bold mathematical blackboard uppercase letters. The
other notations is grouped in Table 1.

Let x0∈Rn represents a discrete k-sparse signal
(i.e. ‖x‖`0 6 k), which must be measured and the measured
data vector b∈Rm is a linear projection of x0 sampled by
the rows of sensing matrix A. Compressed sensing in its
original form uses the basis pursuit [26] to recover the original
signal x0; thus, we can formulate the measurement and the
recovery phases of compressed sensing as

Ax0 = b, (1)

x̂ = arg min
x
‖x‖`1 vs Ax = b. (2)

Furthermore, CR = m
n is the compression ratio, and for

each CS problem with sensing matrix A and k-sparse signals,
triple (m, n, k) is defined as the problem size vector. A CS
problem is recoverable if for a sensing matrix A and a prob-
lem size (m, n, k) , x0 = x̂ can be achieved from (2) with a
high probability.

It is shown in [27] that the recoverability of a CS problem
for a specific x0 depends only on the support and signs of x0.

Thus, for a k-sparse signal, there are
(
n
k

)
2k different signs

and supports that among them only N number of them are
recoverable. Hence, the probability of recoverability would
be as

Pre (k) =
N(
n
k

)
2k
. (3)

In this paper, we frequently plot this measure versus k to
compare the recoverability performance of different sensing
matrices.

B. DIFFERENT TOOLS IN DEVELOPING CS THEORY
1) Approximation and measure theory: These approaches
had been introduced based on the approximation theory
in [28] and then have been considered again in the Donoho’s
work in [29]. As a brief explanation, let S̃ denotes the set of all
m-dimensional subspaces of Rn where CS is recoverable for
sufficient sparse signals. It can be shown that the measure of
S̃ approaches to 1 when (n− m)→∞ (see [18] and [23] for
more details). According to this theory, if we choose sensing
matrix A in a uniform random form, then for sufficiently
large size problems, the selected matrix will be a proper
recoverable matrix with a high probability.

2) RIP analysis: The RIP constant of matrix A with s
degree is the smallest number δs such that

(1− δs) ‖x‖2`2 6 ‖Ax‖
2
`2
6 (1+δs) ‖x‖2`2 , (4)

is held for every arbitrary s-sparse vector x. It is shown that
if δ2s ≥

√
2− 1, then matrix A is recoverable for all s-sparse

vectors [24].
3) Null space property: Some drawbacks of the RIP anal-

ysis and the necessary and sufficient conditions for recover-
ability of CS with sensing matrix A have been given in [24]
which depend on the null space of matrix A. To clarify the
subject, we just quote the following Theorem in [24] without
any proof.
Theorem 1: Given A∈Rm×n and any integer k > 1,

the recoverability

{x0} = arg min
x
{‖x‖`1 :Ax = Ax0}, (5)

holds for all x0∈Rn such that ‖x0‖`0 = k if and only if

∀ v 6=0 :Av = 0 H⇒‖v‖`1>2 ‖v0‖`1 (6)

holds for all index sets 0⊂{1, · · · ,n} such that

|0| = k, (7)

where v0 is the same as v for indexes included in set 0
and zero in other elements. Theorem 1 demonstrates that the
recoverability of the compressed sensing problem depends
only on the null space of matrix A. If two matrices have the
same null space, they have the same recoverability as well.
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For example, row operations of a matrix do not change its
null space; thus, we can use row operations to change the
matrix to a reduced row echelon form of the matrix without
any changing in the recoverability.

III. SPARSITY CONSTANT BASED MEASUREMENT
MATRIX DESIGN
In this section, we propose a new method called sparsity con-
stant based measurement (SCBM) matrix design that obtains
the sensing matrix A iteratively based on its null space. This
method provides a unified manner to design sensing matrices
with different structures. Another advantage of this method is
that the performance of a new designed sensing matrix can be
measured easily. For such a scheme, we face with a subspace
selection problem for the null space ofmatrixA. Each point in
space Rn is spanned by orthogonal bases a1, . . ., an. Accord-
ingly, designing of matrix A means the selection of n − m
bases as the null space of matrix A, and simply constructing
matrix A with taking other m bases as the row vectors of
matrix A.
In most situations, the matrix structure is imposed by the

problem mechanism. For instance, in a frequency spectrum
estimation problem, the rows of matrix A may be the Fourier
coefficients for determination of the Fourier transform and
in a radar application, the columns of matrix A may be the
shifted chirp signals. Taking the above considerations into
account, the main contributions of this work are summarized
as follows:
1) The recoverability of measurement matrices is managed

by the sparsity constant (SP) in a sense that recoverabil-
ity is improved with an increase in SP. Suppose that B
is a matrix whose columns are orthonormal and span the
null space of themeasurementmatrixA, then the SP ofA
is defined as follow:

SP(A) = ‖BBT
‖`1 . (8)

2) SP(A) considers just the null space of matrix A and
matrices designed based on sparsity constant might be
too noise sensitive, although this condition occurs rarely.
Thus, for designing a robust measurementmatrix against
noise in addition to sparsity constant, we must con-
sider MRIP. Suppose the measurement matrix A with
the problem size (m, n, k) is recoverable based on its
null space. Under this condition, the distribution of all
eigenvalues of k-columns sub-matrices of A determines
its performance against the noise. Nonetheless for most
applications, the average of the smallest eigenvalue of
k-columns sub-matrices of sensing matrix A, is a good
criterion to express the matrix robustness against the
noise. Thus, we propose the MRIP of a measurement
matrix A with k-sparse signals as follows:

MRIP(A, k) =E[λmin (SA(k)) ], (9)

where E denotes the expectation operator and SA(k)
is a k-columns sub-matrix of sensing matrix A.

In general, we should continue the simulations until the
observed variations of the estimated quantity is stabi-
lized, i.e., it tends to a steady state situation. In practice,
the averaging of λmin (SA(k)) over few hundreds ran-
domly selected sub-matrices is sufficient for estimating
the reliable MRIP.

A. SOME IMPORTANT DISCUSSIONS
Before going to why we propose sparsity constant, we should
discuss some important questions for clearance:
1) Although constructing sensing matrices is one of the

heavily researched topics, but there still exist much
works to do. Note that the measure theory and the RIP
analysis are two different methods which come from dif-
ferent phenomena that are used to prove the same prob-
lem in the asymptotic case (n− m) → ∞. In practice,
when CS uses a sensing matrix in a special problem size,
the dominant factor is usually unknown. As an example,
one can refer to distributions of the smallest and largest
eigenvalues of Gaussian sensing matrices given in [30]
and [31]. Using these distributions, we can consider the
RIP constant for a Gaussianmatrix. Under this condition
and similar to the results represented in [12], the RIP
analysis guarantees that the CS problem is recoverable
with the Gaussian matrix for an 5-sparse signal and
1
2 compression ratio, if the signal length is more than
14000. Such a RIP analysis originates from some phe-
nomena that are essentially different from the case when
we use CS to recover 30-sparse signals with the signal
length 200. Of course, these method are very rigorous
but are very restrictive, underestimate the recoverability,
computationally intractable and do not give any insight
to design measurement matrices.

2) Due to the aforementioned drawbacks, themutual coher-
ence of the sensingmatrix,µ(A) proposed formeasuring
of the recoverability. Let G = ÂT Â, where Â is the
column normalized version ofA, thenµ(A) can be stated
as:

µ(A) = max
i 6=j

G(i, j). (10)

It is shown that all k-sparse vector is recoverable when
k satisfies the following inequality [26]:

k < 1/2(1+ 1/µ(A)). (11)

For efficient optimizing of µ(A), [32] proposes mini-
mizing of

µ(A) = ‖G− I‖`2 , (12)

where I is identity matrix. Since G is the gram of
the column normalized matrix, µ(A) and µ(A) are two
parameters against each other and usually a reduction in
µ(A) leads to an increase in µ(A) for a well designed
sensing matrix. The idea of [32] is a misunderstanding
and as far as we examined, low coherency for com-
pressed sensing is a useless scheme. Indeed, the sparsity
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FIGURE 1. The recoverability performance of Gaussian manipulated matrices with m = 100, n = 200 for different sparsity
constants. As it is shown, the SP constant is the major parameter in recoverability.

constant is neither the low coherency scheme nor its dual
for the following reasons:
i) For a typical Gaussian measurement matrix with m =
5000 and n = 10000, the inequality (11) states that
just 5-sparse signal is recoverable while all 1900-sparse
signal can be recovered efficiently, thus, inequality (11)
does not even state anything about the real recoverability
of Gaussian random matrices.
ii) We manipulate randomly a Gaussian matrix so that
we decrease its sparsity constant while keeping µ(A)
and µ(A) unchanged. The recoverability performance
error is shown in Fig. 1. As seen in this figure, recov-
erability is decreased with reduction of the sparsity con-
stant while µ(A) and µ(A) have not effect on it.

3) Designed matrix with a high sparsity constant may be
noise sensitive, thus, MRIP constant must take into con-
sideration not meaning that the MRIP constant is suffi-
cient. MRIP in our theory is just an axillary parameter.
MRIP is similar to the RIP constant which is based on
the infimum of λk , the minimum eigenvalue of k column
sub matrices of A, and MRIP is based on the average
of all λk , thus, MRIP unlike RIP is computationally
tractable. The major parameter is sparsity constant that
is one can designmatrices with highMRIP constant, low
sparsity constant and poor recoverability as it is shown
in Fig. 1. However in the optimization and designing the
measurement matrix, we must consider that the MRIP
does not decrease so that the designed matrices with the
proposed algorithm gain improvement in recoverability
performance without any reduction in noise robustness.

4) The gained improvement in recoverability performance
with the proposed method is seen for both noiseless and
noisy scenarios as it is shown in Fig. 2. It should be noted
that, in Fig. 2 the recoverability phase is based on the

following semidefinite program using the second order
cone programming [33].
Measurement phase:

b = Ax0 + z, z ∼ N (0, σ 2) (13)

Recovery phase:

x̂ = arg min
x
‖x‖`1 vs ‖Ax− b‖ 6 αE[‖z‖`2 ], (14)

where α is a regulation parameter.
5) Sometimes the original signal is not sparse, but there is

a dictionary φ that signal x has a sparse representation
in it. Then, the overall measurement matrix would be as
follows:

Ax = b
x = φz

}
H⇒ Aφx = b. (15)

It should be noted that the sparsity constant is applicable
for each case where the full rank, total measurement
matrixAmn is ill, i.e.,m < n. Thus, when signal x has an
over complete sparsity basis φnp that is p > n, the total
measurement matrix, Aφ is ill and the sparsity constant
is applicable either with orthogonal and non-orthogonal
dictionary.

6) The MRIP and SP are computationally tractable, nicely
fitted recoverability performance, giving us efficient
tools in destining compressed sensing but do not foresee
the recoverability region. However, comparison of these
parameters with the according parameters of the same
size Gaussian matrix, give us handy tools.

B. PRELIMINARIES
In this subsection, we consider the sparsity property, `0-norm,
`1-norm and their relations to sparsity. When a vector x is
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FIGURE 2. The recoverability performance of Gaussian manipulated matrices with m = 100, n = 200 for different sparsity
constants and various SNRs. As could be seen from the figure, the proposed method improve recoverability performance
in noisy and noiseless scenarios.

sparse, it means that the major part of its energy is concen-
trated on some few of its elements. Thus, when a vector is
multiplied by a constant coefficient, it does not change the
sparsity behavior of the vector. For this reason, we suppose
that all vectors are normalized to `2-norm, from the sparsity
points of view. For normalized vectors, `1-norm is an excel-
lent measure for investigating the sparsity of a vector; i.e., less
`1-norm of a vector implies more sparsity of the vector and
vice versa. The maximum `1-norm of a normalized vector
occurs when all its elements have the same magnitude, while
the minimum occurs when its whole energy is concentrated
on a single element.

Consider two normalized vectors v1 and v2 with the same
elements except the first two elements as follows:

v1 = [a1, a2, · · · ,an] , (16)

v2 = [a1 + α, a2 + β, · · · , an]. (17)

Without loss of generality, let α and a1 have the same signs,
while, β and a2 have the opposite signs, |a1| 6 |a2| and
max (|α| , |β|) �

∣∣|a1|−|a2|∣∣. In order to keep v2 normal-
ized, α and β cannot simultaneously have equal (or opposite)
signs with a1 and a2 and it is easy to show that |α| > |β|,
which means that ‖v2‖`1 > ‖v1‖`1 . Thus for a normal-
ized vector, reducing its larger element and increasing its
smaller one, i.e., a2 and a1, lead to an increase in its `1-norm.
Therefore, `1-norm is an excellent measure for sparsity, if its
`2-norm is constant. In fact, increasing `1-norm while keep-
ing `2-norm constantly, distributes the energy between differ-
ent elements of the normalized vector. In this paper, we use
this property to define the sparsity constant and design the
sensing matrix A based on its null space. On the other hand,
this property can use for gaining the sparse solution of an

undetermined equation system shown as follows:

min
x
‖x‖`1 , (18)

Ax = Ax0, (19)

‖x‖`2 = ‖x0‖`2 . (20)

This set of equations is non-convex and indissoluble.
Nonetheless, we can ignore (20) because Ax = b plus the
RIP-ness property of measurement matrices, approximately
provide the `2-norm constraint.

C. SPARSITY CONSTANT
Let consider a k-sparse vector denoted by x. According to
Theorem 1, to satisfy the non-recoverability of x, there must
exist a vector α in the null space of A such that its elements
with opposite signs with some of the corresponding k non-
zero elements of x follow

M = {i : |x i| > 0, sign (xiαi) = − 1}, (21)∑
i∈M
|αi| >

∑
i∈Mc

|αi|, (22)

where Mc denotes the complement of set M. In contrast,
if there exists a vector α with the property (22), then all sparse
vectors which have the opposite sign elements with vector α
in indexes included in set M, are not recoverable by the `1
programming.
Definition 1: A point in the null space that satisfies the

property (22) is defined as the ill point with degree |M|. The
mean of a point is a specific support of the vector and its signs.
Thus, we just need to consider the supports and signs of a
vector in Rn.
Lemma 1: Let assume

min
i
(|αi∈M|) > max

i
(|αi∈Mc |). (23)
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Then, the inequality in (24) is a necessary condition for vector
α to be an ill point in the index of set M.∑

i∈M
α2i >

∑
i∈MC

α2i . (24)

Proof: See Appendix A.
This lemma shows that the accumulation of the energy in a

few number of elements makes an ill point. Thus, if we avoid
the accumulation of energy in the design of the null space
of a measurement matrix, we can reduce the number of ill
points. It can be shown that an ill point with degree |M|makes

2k−|M|
(

n
k − |M|

)
points from all 2k

(
n
k

)
k-sparse points,

irrecoverable. The number of ill points is a fundamental
property of a subspace meaning that it does not depend on
any specific basis of the subspace.

LetA = {a1, . . ., an} denotes a set of orthonormal bases of
Rn. If n− m vectors of them can span the proper null space2

of the desired measurement matrix, then all points of the null
space can be shown as

y = [a1, · · · , an−m] x,

x∈Rn−m and ‖x‖`2 = 1, (25)

where y spans the null space of the measurement matrix.
Since, we only need to consider normalized vectors and all
the basis vectors are orthonormal, we drop ‖x‖`2 = 1 in (25).
Let us rewrite (25) in the row direction as follows: y1

...

yn

 =
 bT1
...

bTn

 x. (26)

If
[
y1, · · · , yn

]T is an ill point with indexes of set M, then
there is a vector x that has significant correlations with
{bJ| J∈M} and lower correlations with other vectors. Hence,
the following necessary and sufficient conditions can be
deduced for good recoverability performance of the measure-
ment matrix.

Necessary condition: For reducing the number of ill
points, it is necessary that every group of vectors bJ , J ∈M,
has a good cross correlation with all other group of vec-
tors. If there is a group of vectors bTj1 , . . . , bTjs which are
orthogonal or near orthogonal to another group of vectors
like bTjs+1 , . . . , bTjn , then, we can choose x in the span of
bTj1 , . . . , bTjs , and there will be ill points in the null space.
Thus, the non-orthogonally of some groups of bT1 , . . . , b

T
n

to others is an essential condition for the recoverability of
the subspace. In another way, we can use the Van der Corput
Lemma [34] for showing the property of transitivity of corre-
lation, which basically asserts that if a vector x is correlated
with many vectors of bT1 , . . . , bTn , then, many pairs of
bT1 , . . . , b

T
n are correlated with each other.

Sufficiency of good cross correlations of bT1 , . . . , bTn
for good recoverability: Increasing the cross correlations
between vectors bT1 , . . . , b

T
n , is sufficient for decreasing the

2A proper null space is a null space with a reduced number of ill points.

number of ill points. Suppose that x has a good correlation
with {bTj1} and very poor correlations with {b

T
j2 , . . . , b

T
js }, and

these two subsets have a good correlationwith each other. The
vector x can be indicated as a sum of two orthogonal vectors
bj1 and b

⊥

j1 as

x = αbj1 + α
cb⊥j1 , (27)

where α and αc represent the correlation between x and two
vectors bj1 and b

⊥

j1 , respectively. Then, it is sensibly expected
that with an increase in the cross correlations between bj1
and bj2 , . . . , bjs , the cross correlations between x and
bj2 , . . . , bjs increase, which reduces the number of ill points.
Based on the above arguments, for reducing the number of

ill points in the null space, the cross correlations between all
pairs of bj1 , . . . , bjs should increase as much as possible.
Thus, to analyze the recoverability of the sensing matrix A,
we should study the cross correlations between the rows of
null space matrix bTj1 , . . . , b

T
jn . These cross correlations can

be shown with the Gram matrix3 G as follows

AB = 0,

BTB = I,

G = BBT, (28)

where A is the m × n sensing matrix, B is a n × (n − m)

matrix with orthogonal columns which its columns span the
null space of matrix A and I represents the identity matrix.
The interesting property of the Gram matrix G is that every
criterion for the recoverability of sensing matrix A should
depend only on the null space of matrix A. It should be noted
thatG in (28) depends on the null space of matrixA and does
not change with the row operations on matrixA. On the other
hand, `2-norm ofG is equal to `2-norm of rows bT1 , . . . , b

T
n ,

which is constant and equals to m − n. Thus, for increasing
the cross correlations between these vectors, `1-norm of G
should increase.

D. SPARSITY CONSTANT BASED MEASUREMENT MATRIX
DESIGN ALGORITHM
Taking the above considerations into account, one can use
the following problem for designing measurement matri-
ces with optimized recoverability. Let an orthogonal basis
{a1, . . ., an}, spans the space Rn. The optimized subspace
with k dimensions (as null space of measurement matrix A),
is a set of vectors

{
ai1 , . . ., aik

}
, which its Gram matrix has

the maximum `1-norm, i.e,

Optimized null space=arg max
i1,··· ,ik

{∥∥Gram ([ai1 , . . ., aik])∥∥`1},
(29)

whereGram(A) = ATA. This is a very complicated combina-
torial optimization problem which is not solvable. However,
we can use greedy algorithms to find an approximate solution.

3Some of the Gram matrix characteristics is given in [35].
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Greedy constructive measurement matrix design based
on sparsity constant: Using greedy approaches, one can
construct sensing matrix A as follow:
i) Choose an initial ai1 from {a1, . . ., an} and set k = 1.
ii) S = {i1} and Ŝ = {i2, . . . , in}.
iii) k ← k + 1.
iv) ik = arg max

ik∈Ŝ

{∥∥Gram [[a{i|i∈S}
]
, aik

]∥∥
`1

}
.

v) S = S∪ {ik} , Ŝ = Ŝ− {ik}.
vi) Repeat step ii to step v.
vii) Stop when k=n-m.
It should be noted when there are some constraints such

as when the elements of matrix must be binary or when the
non-compressed matrix is structured, the greedy optimization
problem changes the elements of it in a manner that the
constraint is satisfied in each step; e.g. when the there is
a structured non-compressed matrix, the greedy algorithm
change the selected rows of the non-compressed matrix in
each step (e.g., for the chirp matrix in Fig. 3) and when
the elements of matrix must be binary the greedy algorithm,
just changes the sign of one of the elements in the mea-
surement matrix in each step. We denote ‖G‖`1 of the null
space of measurement matrix A as the sparsity constant of
the matrix represented by SP (A). We use this parameter to
compare the recoverability of different measurementmatrices
in compressive sensing. The recoverability performance error
Pre(k) of different structures and different problem sizes of a
measurement matrix A is shown in Fig. 3. In this figure, CR
is the compression ratio, DCT is the discrete cosine transform
matrix and k is the number of non-zero elements. In our
simulation, we define a bad matrix as the random matrix
with the lowest sparsity constant in 10000 iterations, good
matrix is a random matrix with the highest sparsity constant
in 10000 iterations, and ‘‘OPT" matrix is the matrix that is
optimized by the proposed algorithm. The value after each
matrix name (e.g., Bad, 1190 in Fig. 3) is the sparsity constant
of the matrix. It is worth mentioning that the sparsity constant
of a bad (m = 100, n = 200) DCT matrix is 1168, while the
sparsity constant of a same size periodic compressed DCT
matrix is 460. This very low sparsity constant justifies the
poor recoverability performance of the periodic compressed
measurement matrices.

In Fig. 4, similar to Fig. 3, the proposed method is applied
to the binary, trinary and the Gallager LDPC code by simula-
tions. As be seen, the proposed method can be used success-
fully and effectively either for considering the recoverability
performance and also optimizing the desired measurement
matrix. In the LDPC case, the improvement is very little
because the constraints in the columns and rows of the mea-
surement matrix decrease the degree of freedom during the
optimization of the sparsity constant.

E. ROBUSTNESS OF SPARSITY CONSTANT BASED
MEASUREMENT MATRIX DESIGN
A detailed discussion about the performance analysis of the
CS theory against the noise has been given in [36], [37].

Based on the null space property, we analyze the effect of an
additive noise for the proposed method. The noise changes
measurement vector b = Ax0 to b′ = Ax0 + z, where
z ∼ N (0, σ 2) represents the additive noise vector. In this
regard, we have the following three scenarios:
1) CS without noise: This is the original noiseless CS

problem, i.e.,

min
x
‖x‖

`1

st. Ax = b. (30)

2) Robust CS (RCS): When the noise exists, the constraint
equationAx = b cannot display the real constraint equa-
tions, even these set of equations may not be consistent;
thus, we must substitute the constraint Ax = b with
‖Ax− b′‖`2 6 ε, i.e.,

min
x
‖x‖

`1

st. ‖Ax− b′‖`2 6 ε. (31)

3) Non-robust CS (NRCS) when noise exists: In this mode,
we use the original CS recoverability scheme, despite of
the noise existence, i.e.,

min
x
‖x‖

`1

st. Ax = b′. (32)

If measurement matrixA has a good RIP property, it can
be shown that the solution is approximately correct [36].
It is worth mentioning that with a non-RIP but a good
null space measurement matrix4, the recoverability per-
formance of the NRCS decreases drastically as can be
seen in Fig. 5.

In the first scenario, CS is recoverable if vector x is the
sparsest vector in the affine space Ax = b. For recoverability
of the robust CS, x0 must be the sparsest vector in a family of
closed affine subspaces ‖Ax− b‖ 6 ε. In this case, the error
can occur in two ways, i) vector x is not a member of these
subspaces, ii) another sparser vector can be found in these
subspaces.

As mentioned earlier, the recoverability in the noiseless
scenario depends only on the null space of the measure-
ment matrix. However, this problem is completely different
from noisy situations. In this case, the robustness against the
noise is reduced by decreasing the minimum eigenvalue of
sub-matrices composed by a number of the sensing matrix
columns. Let ε denotes the amplitude of the added noise.
If ε is in the direction of the minimum absolute eigenvalue
λmin, then the noisy term, which can be added to x, has ε

λmin
amplitude. This problem makes subspaces ‖Ax − b′‖`2 6
ε too large and consequently the recoverability will reduce
drastically. Therefore, a second measure namely, MRIP con-
stant, is required for the recoverability of a matrix when the
noise exists.

Mean restricted isometry property: Suppose the mea-
surement matrix A with the problem size (m, n, k) is recov-
erable based on its null space. Under this condition, the dis-
tribution of all eigenvalues of k-columns sub-matrices of A

4A good null space measurement matrix is a matrix with a high sparsity
constant which implies a good recoverability performance.
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FIGURE 3. The recoverability performance error of different structures of a measurement matrix A with various problem
sizes. The curves have been prepared for three cases of A: bad matrix, good matrix and optimized (proposed) matrix. The
sparsity constant of each case is presented in the legend.

determines its performance against the noise. Nonetheless
for most applications, the average of the smallest eigenvalue
of k-columns sub-matrices of sensing matrix A, is a good
criterion to express the matrix robustness against the noise.
Thus, we propose the MRIP of a measurement matrix A with
k-sparse signals as has been defined in (9). Unlike the RIP
constant problem which has been proved to be NP-hard [25],

theMRIP constant is computationally tractable. For example,
using the random optimization method and starting from a
typical Gaussian matrix, the sparsity constant of the matrix
can be optimized. Although the performance of this matrix in
the noiseless scenario is better than that of random matrices,
its performance reduces drastically when the noise exists.
Therefore, to design a noise resistant matrix, we use the
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FIGURE 4. The recoverability performance error of a measurement matrix with different coding structures including Binary, Trinary and Gallager LDPC
codes in comparison to a Gaussian random matrix with similar size. The curves have been prepared for three cases of bad matrix, good matrix and
optimized (proposed) matrix. The sparsity constant of each case is presented in the legend.

FIGURE 5. The recoverability performance of a Gaussian CS matrix with
SNR = 20dB and CR = 0.5 from different methods: typical random (Typ),
optimized without the MIRP consideration (Opt1), and optimized when
the MIRP constant is held (Opt2).

same optimization method to maximize the sparsity constant
of the matrix, while, we must avoid decreasing the MRIP
constant. This optimization problem is numerically evaluated
in Fig. 5 for the Gaussian matrix, SNR = 20 dB and the
compression ratio CR= 0.5. In this figure, ‘‘Typ’’ is a typical

FIGURE 6. Parallel beam geometry tomography setup [38].

random matrix, ‘‘opt1’’ is an optimized sparsity constant
matrix without the MRIP consideration and ‘‘opt2’’ is an
optimum matrix with considering the MRIP constant. For
all cases, signals are recovered by the RCS using the second
order cone programming [33].

F. DISCUSSION ON THE IMPLEMENTATION ISSUES
There three different measurement matrix schemes in
compressed sensing: i) deterministic matrices, ii) quasi
random matrixes and iii) true random matrices. In most
situations, the used measurement matrices are quasi ran-
dom or deterministic where the proposed algorithm can be
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FIGURE 7. Recoverability performance error of 1) bad, 2) good and 3) opt
matrices versus the number of nonzero elements. As it is shown the
proposed method has been able to increase the recoverable region by
77%.

used effectively. In these situations, greedy algorithms are
used to design measurement matrices offline. Then, with
this offline designed measurement matrix, we can implement
measurement simply while we are sure that our measurement
setup has a good recoverability performance. Note that a
true random measurement matrix is not a good technical
choice, since one cannot predict the recoverability of the
system beforehand. Although for some cases (e.g., Gaussian
randommatrices), the variance of recoverability performance
is small, however, in many situations such as chirp matrix
in radar application or Radon transform matrix in computed
tomography, the variance of recoverability performance is
large. In a real random measuring system, the measurement

matrix is not designed beforehand and the measurement
matrix is revealed to us simultaneous to the end time of the
measurement, then we use this matrix with one of the dif-
ferent recovering algorithms such as basis pursuit to recover
original signal. Finally, we would like to emphasize to this
point that even in true random matrices, we can use spar-
sity constant effectively to evaluate the recoverability perfor-
mance of the measurement matrix simply.

IV. COMPRESSED COMPUTED TOMOGRAPHY: CASE
STUDY
Computed tomography (CT) provides tools for investigating
the inner structure of an object and has many medical and
industrial applications [38]. The idea behind CT is to find the
image of the 2 dimensional attenuation function, µ (x, y) of
an object from its projection in different angles. The setup
of the 2D parallel beam geometry tomography is shown
in Fig. 6.

It can be shown that the logarithm of attenuation function is
R [µ (x, y)], the Radon transform of µ(x, y) [38]. Thus, as it
is shown in Fig. 6, in parallel beam computed tomography
one can obtain Pθ (t), the projection of µ(x, y) in the angle θ
and position t as follow:

Pθ (t) = Rθ [µ (x, y)] =
∫∫
∞

−∞

µ (x, y) δ(xcosθ

+ysinθ − t)dxdy, (33)

where δ(t) is the Dirac function. Using the CS for find-
ing µ(x, y) from Pθ (t) when µ(x, y) is sparse, requires to

FIGURE 8. The recoverable image of Shepp-Logan and one artificiality less sparse image with different reconstruction methods. As it is shown,
the compressed sensing recovering method outperforms significantly other methods with very few number of measurements when the scene is sparse
and the proposed method reduces the sparsity requirements substantially.
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FIGURE 9. The recoverable image of two bubbles phantom image [41] with different reconstruction methods.

discretize (33) to a linear equation form:

Az = s, (34)

whereA,z and swill be defined shortly. Suppose that µ (x, y)
is discretized with xi = x1 + i1x i = 1, . . . ,N , and
yi = y1 + i1y i = 1, . . . ,N , then the matrix µ is defined as
follow:

µ =

 µ(x1, y1) · · · µ(x1, yN )
...

. . .
...

µ(xN , y1) · · · µ(xN , yN )

 .
z is the column base vectorized version of the µ matrix or in
the Matlab language: z = µ (:). Let discretize the measure-
ment angles and t-axis as follow:

θi = 1θ × i, i = 1, . . . ,m,

tj = t1 +1t × j, j = 1, ..., n. (35)

Since, the Radon transform is linear, thus the Radon trans-
form of a scene is the sum of Radon transform of each
pixel [39]. For any measurement in the angle θ , each column
of Aθ is the discretized Radon transform when only the
according pixel intensity is equal to one and the others are

zero. Thus, Aθi and zθi are defined as follow:

Aθi =



R
θ i
[δ
(x
−
x 1
,
y
−
y 1
) ]

, . . .

R
θ i
[δ
(x
−
x i
,
y
−
y i
)]

. . . ,

R
θ i
[δ
(x
−
x N
,
y
−
y N
)] 

, (36)

sθi = Pθi (t1, ..., tn), (37)

and the final measurement matrix become: Aθ1
...

AθN


︸ ︷︷ ︸

A

[z] =

 sθ1
...

sθN


︸ ︷︷ ︸

s

. (38)

For applying the CS theory, we must omit more rows of (38),
which means the reduction in the measurements number.
Since we do not know in prior any information of the object,
the easiest way is the random selection of some rows of A.
Without SCBM, one cannot even consider the recoverability
performance of a selected random matrix. We make mea-
surement matrix for an (32 × 32) image with just 500 mea-
surements, with 10000 random iterations, in which i) choose
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the matrix with the most high sparsity constant and it is
named as ‘‘good’’, ii) the most low sparsity constant and
it is named as ‘‘bad’’, iii) then we make one compressed
measurementmatrix with the proposed greedy algorithmwith
the name ‘‘opt’’. The recoverability error of these matrices
is shown in Fig. 7. As seen from this figure, there exists a
large improvement in the recoverability performance in these
matrices with the increase in the sparsity constant.

Nowwe use these different matrices in recovering the head
phantom Shepp-Logan Test image (Fig. 8a)) which has been
used widely by researchers and it is a standard test image [40]
and one artificial less sparse image (Fig. 8d)). The result is
shown in Fig. 8. As it can be seen from Fig. 8, even the
bad matrix can recover 32× 32 resolution of Shepp-Logan
Test image, while the popular conjugate gradient algorithm
with Tikhonov regularized method cannot reconstruct the
image with these very few measurements. However, bad and
good matrices cannot recover an artificial less sparse image
in Fig. 8(d), but the opt matrix can recover it without degra-
dation in Fig. 8(h).

Further, we consider image reconstructions for the two
bubbles phantom image similar to [41] in the parallel beam
computed tomography in Fig. 9. The recoverable images are
shown in sub-figures 9(b), (c), (d) and (e) using the follow-
ing reconstruction methods, respectively: i) conjugate gradi-
ent algorithm with Tikhonov regularization ii) compressed
sensing with random matrix. iii) compressed sensing with
good random matrix chosen with the proposed method iv)
compressed sensing with optimized sparsity constant (the
proposed algorithm). As it is shown, the compressed sensing
recovering method outperforms significantly other methods
with very few number of measurements. As be seen, not
every measurement matrix can be used properly for two
bubbles phantom; however, the proposed method enables us
to select good measurement matrices or design a matrix with
optimized sparsity constant. Although either of matrices that
is used in sub-figures 9(d) and (e) recover the two bubbles
Phantom image completely, the optimized matrix of sub-
figures 9(e) even can recover less sparse image.

For the other schemes that use compressed sensing such
as applying sparsity in total variation of the image [42],
frequency domain [5] and Coded-Aperture X-Ray Lumi-
nescence Tomography [2], our measurement matrix design
method can be used to reduce the sparsity requirements.

The implementation of the proposed algorithm in the CT
is straightforward. In this regard because of hardware limita-
tions of the CT, we should select a subset of θis in designing a
sensing matrix. Note that the measurements can also be done
in specific values of both θi and xi. Then in the implemen-
tation, we measure the intensity function only in these θis.
When xi values is selectable, wemustmask the parallel beams
to prevent the x-ray beams in the non-selected xi as described
in [2]. Each selection of the parameters generates a different
sensing matrix with different capabilities. The proposed algo-
rithm can be used to select the optimum parameters.

V. CONCLUSION
In this paper, we defined the sparsity constant of the mea-
surement matrix and analyzed its effect on the recoverabil-
ity performance. We used this new parameter as the heart
of the recoverability performance, to propose a novel con-
structive approach for designing the measurement matrix
based on SC. It was demonstrated that using the proposed
algorithm, it is possible to design measurement matrix in
a deterministic way with a very good recoverability per-
formance even better than Gaussian measurement matrices.
Moreover, we considered the MRIP constant (as a calculable
and easy to use criterion) along with the null space property
for analyzing the recoverability performance to design the
noise robust matrix. The described theory explained an old
question about the good recoverability of random matrices
and poor recoverability of periodic sampling. In addition,
the proposed method was applied successfully to the com-
puted tomography where it could make a large improvement
in recoverability performance. Overall, our theory paves the
way of using compressed sensing in different applications
where random matrices cannot be used and in different sce-
narios can improve the recoverability performance and reduce
the sparsity requirements.

APPENDIX A
PROOF OF LEMMA 1
To prove the lemma, let assume αi > 0 and let

|M| = k+ 1,
∣∣∣MC

∣∣∣ = m. (39)

We just consider the infimum situation and normalize case
where

∑
i∈M αi =

∑
i∈MC αi = 1.Without loss of generality,

let us assume that αi is ordered from the greatest to least as
follow:

α0, α1, · · · , αk︸ ︷︷ ︸
SetM

, αk+1, · · · , αk+m︸ ︷︷ ︸
SetMC

. (40)

Consider the necessary condition (41) which must be proved.∑
i∈M

αi
2>

∑
i∈MC

αi
2. (41)

The minimum value of the left hand side is when the energy
of indexes in set M distributes equally as much as possible
and the maximum value of the right hand side is where the
energy of indexes in set M concentrates in a few number of
them, as much as possible. Let αk = β, then this extreme case
can be shown as follow:
1− β
k

, · · · ,
1− β
k︸ ︷︷ ︸

k

, β

︸ ︷︷ ︸
SetM

, β, · · · , β︸ ︷︷ ︸
k’

, (1− k ′β), 0, · · · , 0︸ ︷︷ ︸
(m-k’)︸ ︷︷ ︸

SetMC

,

(42)

where k ′ = fix(1/β) and the normalize condition implies that
0 6 β 6 1/(k + 1). Now the necessary condition in (41) is
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simplified as

β2 +
(1− β)2

k
> k ′β2 + (1− k ′β)2. (43)

Let m = 1− k ′β, then the right hand side of (43) is less than
β as follows:

k ′β2 + (1− k ′β)2 = (1− m)β+m2 6 (1− m)β+mβ=β

(44)

Then (43) is converted to

β2 +
(1− β)2

k
> β. (45)

It is easy to see that (45) is equal to β 6 1/(k + 1).�
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