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ABSTRACT With the popularity of Bitcoin, there is a greater demand for the scalability of the Bit-
coin blockchain, which is susceptible to the efficiency of block propagation. In the Bitcoin blockchain,
efficient block propagation approach can reduce the computing power and the risk of forks. Meanwhile,
larger blocks help to improve the throughput of transactions. Thus, the block propagation is a major issue of
the scalability of the Bitcoin network. This paper introduces a method to reduce the required bandwidth of
block propagation with erasure coding. To begin with, the network nodes are classified into several clusters.
When a node wants to propagate a block, the node does not need to propagate the whole information of the
block. Instead, the node can only transmit the transaction IDs and the coded information to each cluster. The
simulation shows that the proposed method can significantly ease the network traffic among these clusters.

INDEX TERMS Blockchain, block propagation, clustering evaluation.

I. INTRODUCTION

In recent years, blockchain has shown its wide range of appli-
cations, such as the digital currency and the smart contract.
However, there is a major issue in the scale of the blockchain.
In particular, Bitcoin [1] and Ethereum [2] demonstrate that
the transaction speed is not sufficient to handle large-scale
transactions.

If the miners cannot obtain the latest block header
promptly, they will waste the computing power. Thus, the per-
formance of propagating blocks is a core metric of the scal-
ability of the Bitcoin network, and the transmission delay is
generally considered as one of the major bottlenecks. A larger
block usually requires more time for propagation, and the
block is more likely to be a orphan block.

Though the Bitcoin network allows each node A to propa-
gate the entire information of a block L, the mechanism have
to consume a lot of bandwidth. It is known that each node
maintains a memory pool containing the received transactions
that have not yet been packaged into blocks. As a result, most
transactions in L may also be stored in the memory pool of
each node. Based on this observation, a number of techniques
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are proposed to reduce the required bandwidth of propagating
a block in the Bitcoin network [3]-[5].

These techniques heavily rely on the assumption that all
transactions in L are also in the memory pool of each node.
However, this assumption is not always true in practical appli-
cations. The report [6] indicated that it has the probability
53% that all transactions in L are also in the memory pool
(except for the coinbase); it has the probability 17% that there
is a transaction in L but not in the memory pool; it has the
probability 9% that there are two transactions in L but not
in the memory pool. When there are some transactions in
L that are not in the memory pool of a node B, the node A
have to transmit B these missing transactions indicated by the
transaction IDs [3], [4].

In this paper, we focus on the bandwidth of the block
propagation when the receiver misses a few transactions in L.
Precisely, we propose an erasure-coding based protocol to
reduce the bandwidth of transmitting missing transactions.
An example to transfer missing transactions is shown in Fig-
ure 1, where node A has a block L containing three transac-
tions {a, b, c}, and the memory pools of other nodes {B, C, D}
miss a transaction, respectively. In the conventional approach
in Figure 1(a), node A needs to know the IDs of missing trans-
actions in each node, and then respectively sends these nodes
the missing transactions. Instead, in the proposed approach
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FIGURE 1. An example of the proposed protocol.

in Figure 1(b), node A transmits other nodes {B, C, D} the
checksum p = a 4 b + c. Then the receiving nodes can
obtain the missing transactions by using p and other existing
transactions. This allows that 1). node A does not need to
know the IDs of missing transactions in other nodes, and
2). nodes A can save the bandwidth by only sending p to other
nodes.

The proposed protocol is based on the following insights.
First, the nodes in the Bitcoin network are categorized into
a number of clusters. In each cluster, there is a leader to
assist the block propagation in the cluster. To propagate a
block, the node A first sends transaction IDs to receiver nodes.
If these nodes aware missing transactions, they reply the num-
ber of missing transactions. Then the node A calculates and
sends the parity information of all transactions in the block
with erasure coding. After receiving the parity information,
the receiver nodes rebuild the block by decoding the missing
transactions. The contributions of the paper are enumerated
below.

1) Based on erasure coding and clustering, a block propa-
gation protocol is proposed to optimize the bandwidth
of the block propagation.

2) The simulation shows that the proposed method has
significant bandwidth savings. Precisely, our method
can reduce the bandwidth by 40% to 60% compared
to existing state of the art method [4].

3) Some issues derived from the proposed method are
discussed. Such as a variant of our protocol, which are
combined with other block propagation protocols.

The rest of the paper is organized as follows. Section II is
the background. Section III describes the proposed protocol,
and Section IV gives the simulations. Some issues about the
proposed method is discussed in Section V, and Section VI
concludes this work.

Il. BACKGROUND

A. REED-SOLOMON CODE

Reed-Solomon (RS) code [7] is a class of maximum distance
separable (MDS) codes widely used in communication and
storage systems. The (n,k) RS code over a Galois field
GF(2™) encodes k message symbols (mq, m, ..., mg_1) into
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an-symbol codeword, where each message/codeword symbol
consists of m bits, and k < n < 2™. In particular, RS code
possesses an important property that the kK message symbols
can be completely reconstructed by using any k out of n code-
word symbols. If the code is systematic, the first k symbols
are the the message symbols and the latter n — k symbols are
the parity symbols.

The elements of GF(2™) are denoted as {oz,-}l.zza ! Inencod-
ing, we choose an information polynomial m(x) of degree
less than k by using the message symbols. For example,
the systematic version can choose a polynomial such that

m; = m(a;),

fori = 0,1,...,k — 1. Based on the Lagrange polyno-
mial [8], we obtain

k—1
o= Som 22
]

o
=0 j#i

Then the codeword is defined as the evaluations of m(x) at n
distinct points {ai}:’;ol

(m(ag), m(ay), ..., m(ay—1)).

The RS codes can tolerance the error-and-erasure channel,
and this paper only uses the erasure decoding. In erasure
decoding, the decoder receives k symbols {y, = m(r)},cr
and |R| = k, then m(x) can be uniquely determined

me =Yy [] ==

reR  seR\{r}

Then the message symbols are m; =
0,1,....,k—1.

m(e;), for i =

B. BLOCK PROPAGATION IN BITCOIN AND ETHEREUM

The block propagation mechanism is used in the consensus
protocol of blockchain. In the Bitcoin network, the propaga-
tion mechanism is based on the advertisement protocol [9],
that is shown in Figure 2. When node A receives a block L,
A will send the message inv to its neighbor nodes once L
passes the verification. The inv is a message type containing
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the hash of L. When the node B receives inv, B will check
whether L is in the local blockchain. If no, B will send A the
message getdata. After receiving getdata, A delivers the block
L to B. This mechanism announces the availability of blocks
via sending the message inv. This can significantly save the
propagation bandwidth, as opposed to directly transferring
the entire block.

In contrast to the block propagation of Bitcoin,
the Ethereum network uses the push/advertisement hybrid
propagation mechanism [10]. Assuming that the node A con-
nects to n neighbor nodes. When node A receives a block L,
A sends NewBlockMsg to /7 out of n neighbor nodes, where
NewBlockMsg is a message type that includes the whole
information of L. Further, A also sends NewBlockHashesMsg
to the remaining n — /n neighbor nodes, where NewBlock-
HashesMsg is a message type that includes the hash of L.

C. COMPACT BLOCKS

In the block propagation, most transactions in the block L can
be found in the memory pool of the receiver B. Based on this
fact, it is possible to further reduce the bandwidth required
in the block propagation. That is, the sender A only sends
B the block header of L and some necessary information.
Then B shall reconstruct the whole block L by utilizing the
transactions in the memory pool. However, there is an issue
that the block L is associated with which transactions in the
memory pool. The Compact Blocks [4] uses transaction IDs
to identify these corresponding transactions in the memory
pool. The outline of Compact Blocks is as follows.

1) Node A sends node B the message inv containing the
hash of L.

2) Node B replies node A the message getdata(CMPCT)
to ask for the unknown block.

3) Node A sends B a compact block that contains the 80-
byte block header, all the 6-byte short transaction IDs
in the block, and some additional transactions that A
expects that B does not have yet.

4) Node B tries to reconstruct the block. If B is still
missing some transactions, a message getblocktxn con-
taining the IDs of missing transactions is sent back.

5) Node A sends these missing transactions.

6) Node B reconstructs the new block and validates it
completely.

D. RELATED WORKS

As described in Section II-C, the receiver B has most
transactions in the block L, and Compact Blocks utilizes
transaction IDs to identify the transactions in the memory
pool of B. There are some other approaches. For example,
Xthin [3] uses a Bloom filter [11] and 64 bit transaction hash
to ensure smaller thinblock size. Graphene [5] also relies
on highly synchronized memory pools among participating
nodes. It effectively resolves the problem of set reconcilia-
tion in the p2p network by coupling a Bloom filter with an
IBLT [12]. Xthinner [13], a new block propagation protocol,
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leverages the benefits of lexical transaction ordering rule
(LTOR). For the ordered transactions in a block, senders can
identify the block by using one or two bytes per transaction
in most cases.

In addition, the clustering approaches can reduce the trans-
action propagation delay in Bitcoin network. In [14], Bitcoin
Clustering Based Super Node (BCBSN) protocol is proposed.
A set of geographically diverse clusters is generated, and each
cluster has a cluster leader that is responsible for maintaining
the cluster. Each node connects to one cluster leader and
each cluster leader connects to other cluster leaders. This
can reduce the unnecessary hops that the transaction passes
through. Similarly, Location Based Clustering (LBC) proto-
col is proposed to increase the locality of connectivity in the
Bitcoin network [15]. The communication link cost measured
by the distance between nodes is significantly reduced using
LBC. In [16], a proximity-aware extension to the current
Bitcoin protocol, named Bitcoin Clustering Based Ping Time
protocol (BCBPT) is introduced. By grouping Bitcoin nodes
based on ping latencies between nodes, BCBPT is more effec-
tive at reducing the transaction propagation delay compared
to BCBSN and LBC.

Some methods reduce the block propagation delay by
choosing the selection of neighbor nodes carefully. The
method [17] makes the message propagate in time by select-
ing the closest neighbor of a node, where the distance between
two nodes is measured by its transmission latency. In [18],
each node evaluates other nodes by the speed of block deliv-
ery, and the nodes with good scores are acted as its neighbors.

Some studies consider the synchronization of the mem-
ory pools among Bitcoin nodes. In [19], a prioritized data
synchronization protocol, called FalafelSync, is proposed.
This protocol periodically synchronizes the transactions that
are most likely to be included in upcoming blocks, and this
achieves superior performance than Compact Blocks and
Graphene.

Some works use coding schemes for scalability improve-
ments in the blockchain systems. Velocity [20] is a block
propagation approach based on fountain codes [21]. By sup-
porting increased block sizes without sacrificing consen-
sus guarantees, Velocity provides significant increases in
transaction throughput. In [22], a polynomially coded shard-
ing (PolyShard) scheme is introduced to achieve the scaling
efficiency and the security simultaneously. PolyShard allows
each node to store and compute a coded shard generated by
linearly mixing uncoded shards. In addition, the work [23]
proposes a novel network-coded Practical Byzantine Fault
Tolerant (PBFT) consensus protocol. The consensus protocol
improves the scalability by reducing the maximum required
bandwidth between nodes.

Ill. PROPOSED PROTOCOL

As addressed in Section II-C, Compact Blocks relies on a fact
that most transactions in the block L can be found in the mem-
ory pool of the receiver B in the block propagation. However,
as stated in Section I, the probability that the memory pool
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FIGURE 4. An example of block propagation.

misses at least one transactions in L is 47% [6]. The proposed
protocol aims to reduce the bandwidth of propagating these
missing transactions. The proposed protocol consists of two
stages. The first stage clusters the network nodes into several
non-overlapping groups, and each group has a leader node.
Figure 3 shows an example that the 13 nodes are clustered into
three non-overlapping groups. In the second stage, the sender
node broadcasts a block to other nodes. Figure 4 gives an
example that leader node S wants to sends a block L to a clus-
ter. First, Figure 4(a) shows that S sends A the block header
and the transaction IDs. Then A broadcasts the information to
other nodes in the cluster. Second, Figure 4(b) shows that each
node checks the number of missing transactions m, and sends
m to its leader A of the cluster. Then A sends S the maximum
of these ms. In this case, the value is 4. Third, Figure 4(c)
shows that S sends A the parity part {C,-}?: | of (k+4, k) MDS
codes. The MDS code uses all transactions of L as the input
message. Then A respectively sends the parity part to each
node by the value m.

The following describes the details. Section III-A intro-
duces Packet-level Reed-Solomon codes used to encode
transactions, and Section III-B presents the clustering stage.
After grouping the nodes in the blockchain network, the block
transmission can be divided into two categories, termed
the intra-cluster block propagation and the inter-cluster
block propagation. These are respectively described in
Section III-C and Section III-D.
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A. PACKET-LEVEL REED-SOLOMON CODES

The proposed protocol makes use of an erasure-correcting
code to encode the transmitted packets. This subsection
introduces the Packet-level Reed-Solomon (PRS) code [24].
A (n, k) PRS code over a Galois field GF(2™) consists of k
message packets and r = n — k parity packets, and 2" > n.
As shown in Figure 5, a (n, k) PRS code can be viewed as a
(P/m) x n matrix over GF(2™), where each column is a P-
bit packet, and each row is a codeword of (n, k) RS codes.
The sender transmits these n packets. After receiving any k
of these n packets, the receiver can reconstruct all message
packets by the RS decoder.

Figure 5 gives the details of the code used in the proposed
protocol, where each message packet is a transaction of a
block L. As a block has around a couple thousand trans-
actions [25], we can choose m = 16 to meet the require-
ment 2™ > n. In addition, as the length of transactions
are variant (In general, the size of a transaction is between
500 and 800 Bytes [19]), it is necessary to align the size
of transactions. Thus, the value P is defined as the largest
transaction in a block (In Figure 5, the largest one is Tx1).
Other transactions smaller than P bits are padding with zeros.

B. CLUSTERING STAGE

In the clustering stage, the nodes in the network are divided
into a number of clusters, and each cluster has a leader.
A number of clustering algorithms are proposed, and most of
them can be used in the proposed scheme. In the following,
we introduce an applicable approach [14] in the proposed
scheme. As shown in Figure 3, the first step is to choose
some nodes to act as the leaders via a leader selection scheme.
In the second step, each leader connects to the closest nodes
to form a cluster.

For security reasons, the leader selection is based on a
reputation protocol. The protocol is implemented by referring
the weight, that is a positive real number, of each node.
The weight is calculated by the number of Bitcoins obtained
by the node, as well as the length of online time for the
node. The node keeping the largest weight in an area will be
chosen as a leader. The scheme ensures that malicious nodes
are difficult to impersonate leaders. Further, to incentive
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FIGURE 6. Proposed protocol for sending a block from node A to node B.

information propagation in Bitcoin network, the article [26]
introduces an incentive mechanism for leader nodes. The
mechanism will reward a leader when it behaves honestly to
propagate a valid transaction.

For fairness, leaders should be updated over time. When
a node S wants to act as a leader, S will send the node ID
and the weight to its neighbors. In addition, this message will
also be forwarded to other nodes in the network. When a node
K receives this message, this node accepts the invitation if
the node S is closer and it has larger weight than the original
leader of K.

C. INTRA-CLUSTER PROPAGATION STAGE

To begin with, we consider the block transmission between
two adjacent nodes. The following presents that node A wants
to send a block L to node B. Figure 6 shows the protocol
visually.

1) Node A sends node B the message inv containing the
hash of L.

2) Node B replies node A the message getdata to ask for
the unknown block.

3) Node A sends B the header of L and the message TxIDs,
which contains all the short transaction IDs of the
transactions in L. Notably, these short transaction IDs
in TxIDs possesses the same order of the transactions
in block L.

4) Node B starts to find out the missing transactions. If no
any missing transactions, B can reconstruct the block L,
and the transmission is completed. Otherwise, B sends
A the number of missing transactions m, then go to the
next step.

5) Node A encodes all the k transactions of L with
(k + m, k) PRS codes, and sends B the parity packets
{Ci ;n:l'

6) Node B decodes the missing transactions by performing
(k + m, k) PRS decoding on the obtained transactions
in Step 4) and {C;}7" . After that, the new block can be
reconstructed.

Notably, in Step 3), the 6-byte transaction ID is used to

prevent the Denial-of-Service attacks [4]. In Step 4), node A
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only need to know the number of missing transactions m.
In contrast, Step 4) of Compact Blocks (Section II-C) requires
the message getblocktxn to identify all missing transactions.
Further, as stated in [4], the number of missing transactions
in a warmed up node is rarely more than 6, and thus we can
consider that m is small in most cases.

Figure 7 illustrates that using the protocol Figure 6 in the
intra-cluster block propagation. When node C generates a
block L, then C sends the leader A the block L. Then A
broadcasts L to other nodes in the cluster and other leader
nodes.

D. INTER-CLUSTER PROPAGATION STAGE

An example of the inter-cluster block propagation introduced
in the first paragraph of Section III (see Figure 4). The
following gives the details of the protocol.

1) Leader S sends leader A the message inv containing the
hash of L.

2) Leader A replies leader S the message getdata to ask
for the unknown block.

3) Leader S sends A the header of L and the message
TxIDs. Then A broadcasts the information to other
nodes in the cluster.

4) In the cluster, each node N; checks the number of
missing transactions m;, and sends m; to the leader A.
Then A sends S the maximum m’ = max{m;}.

5) Leader S encodes all the k transactions of L with
(k + m’ , k) PRS codes, and sends A the parity packets
{Ci ;n=1~

6) Leader A respectively sends each node N; a por-
tion of parity packets {Ci};'il. Then N; decodes
the missing transactions by performing (k + m’, k)
PRS decoding. After that, the new block can be
reconstructed.

Note that, in Step 2), the message getdata sent by leader A
means that no other nodes in the cluster possess this block.
Thus, A does not need to ask other nodes in this cluster for
this block.
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IV. SIMULATION

The proposed protocol is evaluated via a bitcoin network
simulator [27], which is a discrete event-based simulator
implemented by Python. In this simulator, the behaviors of
nodes, as well as the interactions via the P2P network, can be
simulated and recorded, and thus we can extract the relevant
information for the simulation. The library Simpy [28] in the
simulator is applied to manage the event handing. In addition,
we also implement some functions on the simulator to meet
the usage of the simulation.

A. CONFIGURATION

In each simulation, 40, 80, 120, 160, 200 or 240 full nodes
are generated. Further, we randomly choose 6 of these nodes
as miners. In the P2P network, each node has A outgoing
connections and B incoming connections, where | < A < 8
and I < B < 20 are chosen in random. For comparisons,
two block propagation protocols, termed Compact Blocks
and the proposed protocol with cluster, are implemented.
Each experiment simulated the blockchain activities 3 hours.
In the simulation, a block is generated every M minutes, for
M =2,4,6,8, 10. In the simulation, the connection latency
in a cluster is always less than that between any two distinct
leaders. For the leader selection, the miners are appointed as
leaders, and the nodes producing the latest block are likely to
be the leaders. The number of leaders is 5% of the number of
nodes.

B. RESULT

In both protocols, we evaluated the total bandwidth to broad-
cast a block over the entire network. For each configuration,
we record the average value by running the simulation five
times. The result is shown in Figure 8. Clearly, the band-
width is positively correlated with the number of nodes in
the network. For a small network, Compact Blocks requires
less bandwidth. However, for a larger network, the proposed
protocol requires lower bandwidth. For the case 120 nodes
in Figure 8, we show the amount of traffic for each message
type in Figure 9. It can be seen that the amount of the
massages inv and getdata are significantly reduced.

VOLUME 7, 2019

Oinv O getdata M blocktxn

Oheader @ txIDs

Ecmpctblock O getblocktxn

O miss_txn_num [ parity packets

Compact Blocks  proposed protocol

150 200 250 300 350
KB/block

FIGURE 9. Amount of traffic for each message type for 120 nodes.

180%
block generation rate
160%
=4—10min 8min
140%
=== 6Min === 4min
120%

=X==2min

100%

Ratio

80%

60%

40%
20%

0%
40 80 120 160 200 240

Full Nodes

FIGURE 10. The bandwidth saving ratios between the proposed protocol
and Compact Blocks.

Let

Bandwidth_for_Ours

Bandwidth_Saving_Ratio = .
anawidin_saving _Rato Bandwidth_for_CB

Figure 10 shows the bandwidth saving ratios for various
number of nodes and various block generation rates. One can
see that the proposed scheme performs better when the block
generation ratio is 10 min. In particular, the bandwidth saving
ratio is significant in a larger network.

The number of missing transactions in memory pools is
also a key factor for the block propagation. Notably, the num-
ber of missing transactions in a memory pool is determined
by

fiTransactions_Received_By_A_Node

Sync._Ratio = -
#All_Transactions_In_Network

Figurell shows the bandwidth saving ratios, for the syn-
chronization ratios 70%, 75%;, . .., 100%. In this simulation,
w adjust the transaction verification time by modifying the
transaction verification rate. Then the transaction propaga-
tion will be influenced so that synchronization of memory
pools changes. Figurel 1 shows that the proposed scheme per-
forms better traffic savings, when the synchronization ratio is
lower.
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V. DISCUSSION
In this section, we discusses a number of issues derived from
the proposed method.

A. OVERHEADS WITH USING OTHER PROTOCOLS

In Bitcoin network, the order of transactions in a block should
be specified. If we change the order of transactions, the hash-
ing of the block will be changed, and this leads that the block
cannot pass the verification. Thus, in Step 3) of the proposed
scheme (Section III-C), node A shall inform node B the order
of these transactions in the block L. In this proposed protocol,
node A sends node B the message TxIDs, that contains all the
transaction IDs in correct order. Thus, the new block can be
recovered correctly.

In contrast, if we use Graphene [5] to transmit the block,
node A shall send B extra nlog,(n) bits to notice the ordering
of transactions, where n is the number of transactions in L.
In addition, Xthinner [13] requires that all transactions shall
follow the rule LTOR. This causes that there is only one valid
ordering for a set of transactions in a block. This limits the
flexibility of the protocol in bitcoin blockchain.

B. TRANSMISSION PROTOCOL WITH BLOOM FILTER
LTOR is a rule of sorting the transactions in a block [13]. Pre-
cisely, LTOR is the requirement that transactions are sorted
numerically (or alphabetically in hex) by transaction IDs.
With LTOR, Xthinner [13] introduces a method to further
compress the transaction IDs. However, Xthinner can only
be applied on Bitcoin Cash (BCH), and BTC network is
unable to adopt the default version of Xthinner, as Bitcoin
Core (BTC) does not follow LTOR.

To solve this issue, the author [13] presents another version
of Xthinner without LTOR. In this case, each sender node
should reorder the transactions in a block by LTOR, and the
receiver should revert the transaction ordering after receiving
the block. Thus, the encoder should also send the ordering
information to the receiver. In this way, the new Xthinner can
be performed on BTC. The above idea can also be applied to
the proposed protocol. The steps are as follows.

1) Node A sends node B the message inv containing the
hash of L.
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2) Node B replies node A the message getdata to ask for
the unknown block.

3) Node A creates a Bloom filter ' seeded with the trans-
actions of L, then sends F', the block header, the order-
ing information and the number of transactions k.

4) Node B tests each transaction in the memory pool with
F to know whether the transaction is in L. If the number
of matched transactions is k£, B can reconstruct the
block L. Otherwise, B sends back a Bloom filter F’
seeded with the matched transactions.

5) Node A tests each transaction in L with F’ to know
whether the transaction is missing for B. Then A sends
B the missing transactions.

6) Node B can reconstruct the new block with the ordering
information.

The following gives an example to show the bandwidths
of transmitting a block with several schemes. Assuming that
a block contains n = 2000 transactions, and a memory
pool contains p = 6000 transactions. In this case, Xthin [3]
requires 2000 x 8B = 16KB to transmit the hashes. In addi-
tion, Xthin creates a Bloom filter with the false positive rate
(FPR) f = 0.0005. Notably, a Bloom filter with p items
inserted and a FPR of f is well known to be %n(f) =
11.87KB. Then the total required bandwidth is 16KB +
11.87KB = 27.87KB. Further, Compact Blocks requires
2000 x 6B = 12KB to transmit transaction IDs.

In contrast, in the propose protocol, the two Bloom fil-
ters F and F’ requires ;Z(le)“ifg x 2 = 7.91KB. Addi-
tionally, the ordering information requires nlog,(n)bits =
2.74KB. In summary, the proposed protocol requires a total
of 791KB + 2.74KB = 10.65KB, which is more efficient
than Xthin and Compact Blocks.

VI. CONCLUSION

The block propagation is vital for ensuring the scalability of
the Bitcoin blockchain. Currently, the propagation mecha-
nisms rely on the synchronized memory pools among par-
ticipating nodes. However, when the transactions in a new
block are not all in the memory pool of each node, the missing
transactions need to be transmitted, and this severely affects
the efficiency of these propagation mechanisms. In this paper,
we introduce a method to reduce the bandwidths of block
propagation based on erasure coding and clustering. The
simulation shows that the proposed method has better net-
work traffic savings than existing block relay protocols. Some
related issues have also been discussed. There are some
unsolved issues as follows. First, this paper does not anal-
ysis the security of the proposed method, and this is one of
the possible future research issue. Second, the transaction
propagation mechanism for the erasure-coding aid protocol
is another issue.
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