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ABSTRACT Reliably and effectively detecting and classifying leather surface defects is of great importance
to tanneries and industries that use leather as a major raw material such as leather footwear and handbag
manufacturers. This paper presents a detailed and methodical review of the leather surface defects, their
effects on leather quality grading and automated visual inspection methods for leather defect inspection.
A detailed review of inspection methods based on leather defect detection using image analysis methods
is presented, which are usually classified as heuristic or basic machine learning based methods. Due to the
recent success of deep learning methods in various related fields, various architectures of deep learning are
discussed that are tailored to image classification, detection, and segmentation. In general, visual inspection
applications, where recent CNN architectures are classified, compared, and a detailed review is subsequently
presented on the role of deep learning methods in leather defect detection. Finally, research guidelines are
presented to fellow researchers regarding data augmentation, leather quality quantification, and simultaneous
defect inspection methods, which need to be investigated in the future to make progress in this crucial area

of research.

INDEX TERMS Leather defects, segmentation, classification, machine learning, computer vision.

I. INTRODUCTION

Millions of tons of hides and skins are generated as co-
product from the slaughtering of animals for their meat
each year. They are mostly converted into leather, the most
important economic by-product of the meat industry. In 2003,
the global leather industry produced approximately 18 billion
ft2, with an estimated value of US$ 40 billion [1]. Developing
countries now produce more than 60% of the leather require-
ments world-wide. New Zealand hides and skins, especially
herd skins, make a major contribution to leather worldwide
by providing raw skins for the tanning industry [2]. Skins
are mostly sourced from sheep, cow, deer, and goat in New
Zealand. In 2011, 75% of sheep and lambskin were exported,
mainly to the garment industry [2].
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Before leather can be exported as a manufactured product,
it must undergo numerous processing steps. The general
leather processing steps include preparation for tanning,
tanning, and finishing. These processing steps have mul-
tiple stages that depend upon the type of material used
and the kind of leather required as a product. The pro-
cessed leather is then subjected to leather quality grad-
ing, which is the process of categorizing leather based on
the surface defects found during the inspection. The high
demands for quality assurance are driven by global customer
requirements, and increasingly rejection costs. Accordingly,
the inspection of skin surface defects is essential for objec-
tivity and reliability. Currently, the process of surface defect
inspection and grading is carried out by human inspectors.
The large scale of leather production makes defect inspec-
tion a labor-intensive and time-consuming process, which
can be a potential bottleneck in the production pipeline,
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FIGURE 1. Overall pipeline for leather visual defect inspection - a guideline for machine vision systems.

thus motivating the design and development of automated
visual inspection systems for surface defect detection and
grading.

This decade has seen astounding progress in the appli-
cation of intelligent systems to real-world problems in
areas including but not limited to medicine, telecommunica-
tions, finance, medical diagnosis, transportation, information
retrieval, energy and many more. The urge for automation
has revolutionized the industry sector with expert and intel-
ligent systems finding applications in almost all kinds of
industrial processing, ranging from resource optimization to
industrial inspection. Intelligent machine vision systems have
been at the heart of industrial inspection and surveillance
for the past two decades. Image analysis based methods
proposed for industrial inspection include both heuristic and
machine learning methods. Despite being an important sub-
ject in industrial inspection, leather defect inspection has not
received much attention yet. The majority of methods that
exist for visual defect inspection of leather are heuristic with
only limited studies that explore machine learning options
for robust performance. Leather quality grading based on
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defect inspection is an important area of research and rapid
advancements in intelligent systems for automatic leather
grading are expected in the near future.

Advancements in expert deep learning based systems and
their ability to surpass human performance has increased
their application in numerous fields including healthcare,
automotive industry, telecommunications, industrial visual
inspection and many more during recent years. Most con-
volutional neural networks (CNN) based methods pro-
posed for various computer vision applications can be
categorized by one of the following tasks: image classi-
fication, detection, semantic segmentation and multiclass
classification. Owing to their success in the aforemen-
tioned tasks and their ability to match or surpass human
level performance, we present a complete deep networks
based machine vision pipeline for visual defect grading,
which can be utilized by future researchers as a guideline.
Figure 1 shows the recommended pipeline for leather defect
inspection.

In the first stage defect detection and classification is per-
formed in parallel with defect segmentation. Based on the
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information from the detection, classification and segmenta-
tion; important features for grading including shape, texture,
location and context are computed using an image analysis
module. This in-depth analysis of the leather defect’s charac-
teristics is then fed to a multiclass classifier as a feature matrix
to obtain the final leather quality grade. We expand on this
pipeline in Section V, discuss and recommend CNN archi-
tectures that might be worth investigating for leather defect
detection, classification, segmentation and multiclass classi-
fication (grading). These guidelines would help researchers
in this field to investigate machine vision systems for leather
defect detection.

This paper aims at reviewing the various types of leather
defects, their effects on leather quality, and progress/
developments in the field of visual inspection based quality
assessment of leather. We intend to review the recent image
analysis based methods for autonomous leather defect identi-
fication and discuss their pros and cons. Moreover, motivated
by the success of the recent deep learning based methods
for autonomous visual inspection in related applications, this
paper provides detailed recommendations/guidelines for the
design and development of a machine vision based leather
defect detection system. We discuss the challenges in the
design and development of deep learning methods for leather
defect inspection and provide future research directions. This
paper also opens avenues for further research in this domain
and pose open research questions for researchers pursuing
this area. The following are the contributions of this work:

o Develop and introduce a comprehensive nomenclature
of leather defects, their characterization and leather
quality grading.

« Provide a comprehensive review of image analysis based
methods for autonomous leather defect inspection.

« Propose a complete leather defect inspection pipeline
using CNNs for defect detection, classification, segmen-
tation and grading.

« Discuss challenges and opportunities in the design and
development of deep learning based methods for auto-
matic leather inspection.

« Highlight open problems and future research directions
for research and development of machine vision systems
for autonomous leather quality grading.

The rest of the paper is organized as follows. Section II
provides background knowledge on leather processing and
leather quality grading followed by a comprehensive review
of leather defects. Section III reviews image analysis based
methods for leather defect inspection and their comparison
is presented in Section IV. Section V, discusses the appli-
cation of expert deep learning-based methods for various
applications including image classification and segmenta-
tion, deep learning-based methods for visual defect inspec-
tion. Section VI and VII present information regarding the
datasets for leather images and the evaluation measures
employed for evaluation of automated inspection systems.
Finally, Section VIII discusses the challenges, opportunities
and future research directions followed by the conclusions.
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Il. BACKGROUND KNOWLEDGE

A. LEATHER QUALITY

Leather & leather products have been used by people of
all kinds from ancient times. Due to extensive utilization
and industrialization, developing countries today account for
60% of leather production in the world, and this share is
growing [3]. The leather industry utilizes a meat industry’s
by-product. Animal skins and hides are processed to produce
leather of fine quality. Due to the intrinsic variation of the
natural raw material, the skin quality varies significantly. The
evaluation of an effective cut-off value that can be obtained
from the skin when used in the manufacturing of a product is
made based on defects on the skin substrate.

In a changing global scenario, the entire manufactur-
ing industry constantly demands higher product quality and
improved productivity to meet both customer requirements
and to reduce rejection costs. The increased demands for
objectivity, reliability, and efficiency have required the addi-
tion of automatic inspection systems in the traditional leather
industry. Surface defects reduce the quality and value of
the skins. In general, defects of hides and skins are widely
classified as antemortem (before animal death), post-mortem
(fault after animal death) and as processing defects. Possible
defects that occur during the lifetime of the animals are brand
marks, tick marks, pox marks, insect bites, wounds, scratches,
growth marks, etc.

For the manufacturing of leather products, that mostly
require high quality automatic visual inspection of the skin
surface, defects are important. Currently, these operations are
carried out by human inspectors who tend to miss a signifi-
cant number of defects because people are mostly unsuited to
such a simple and repetitive task. In addition, manual inspec-
tion is a labor-intensive task and is very slow; mostly the
human inspectors become a critical bottleneck throughout the
production process. Hence, it is vital to develop an automated
visual inspection system to harmonize the quality assessment
process.

Although automated control systems have successfully
replaced manual systems in many areas, improving process
accuracy is still necessary to reduce false positives (prod-
ucts classified as good if they are defective), false negatives
(products classified as defective when they are good) and
processing time.

The quality of raw skins and hides depends largely
on the amount of antemortem and post-mortem damage.
Ante-mortem or post-mortem defects affect the quality of the
raw material. Although post mortem defects can be controlled
to a certain amount, antemortem damage poses major chal-
lenges for the tanner. The quality of raw skin and hide is cru-
cial to the quality of the leather formed and accounts for about
50% to 70% of the production cost, the raw material being the
most valuable and most important element in production.

B. LEATHER DEFECTS
Leather defects can be generally classified into natural,
mechanical, flaying, curing and tanning defects. The specific
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FIGURE 2. Examples of defects in raw hides: (a) bot fly closed wounds, (b) ticks marks, (c) vaccine abscess, (d) bot fly open wounds, (e) flay
mark, (f) brand marks made from hot iron, (g) wrinkles, (h) photosensibility, (i) closed cuts, (j) scabies, (k) horn fly wounds and (l) open cuts.

TABLE 1. Type of defects and their causes.

Causes

diseases and parasites on the liv-
ing animal i.e. anthrax, scars, ring-
worm, tumours, or lice, warble and
ticks etc

Defects
Natural Defects

Mechanical Defects living animal such as brands,
bruises, scratches, wounds, wire
damage etc.

Flaying Defects scores, cuts, holes, corduroy,

pulling machine damage, grain
cracks etc.

Curing and storing | red heat, salt stains, putrefaction
defects etc.

Tanning Defects (1) mechanical defects

fleshing cuts, uneven thickness due
to splitting or having, sammying
folds

(2) process and chemical defects
chrome or salt stains, incorrect
moisture content, incorrect physical
or chemical properties as specified
by ISO norms for wet-blue (or other
relevant and agreed upon national
or international technical specifica-
tions).

causes and characteristics of these defects are listed
in Table 1. The tanning defects can further be categorized into
mechanical or process and chemical defects. Figures 2 and 3
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show representative examples of the aforementioned defect
types. These defects are characterized by variety of forms,
colors, and textures that emerge from several significant
defects in raw hides and leather, which reduce their market
value. Images of raw hides with defects taken after skin-
ning and before tanning are shown in Figure 2. Figure 3
shows defected leather samples after the first phase of tanning
known as wet blue leather.

A standard system must be in place in the leather industry
to determine the quality of the hide or skin. This refers
directly to the characteristics of leather in terms of its yield
and quality. This standard system is crucial for both the
vendor and the buyer. This system is based on different grades
of quality and weight range. In some nations, first to third
grades are only available, but in some other nations, fourth
grade is also available. In general, the grading principle is
the same for all countries, given that there will be a slight
variation from country to country. The sub-divisions of a hide
are given in Figure 4. For this standard, faults and defects are
distributed in five groups given in Table 1.

Standard grading norms which are widely accepted by the
leather industry for determining leather quality are described
below!:

First Grade: First grade defects are given in Figure 5,
The first grade shall be done according to the following
requirements.

IThe standards for these gradings are taken from https://www.allpi.
int/courses-and-publications/reports/manuals/hides-and-skins-improvement
published by Africa Leather and Leather Products Institute on
10 October 2016.
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FIGURE 3. Examples of defects in wet blue leather: (a) ticks marks, (b) wrinkles, (c) vaccine abscess, (d) bot fly wounds, (e) open cuts, (f) closed
cuts, (g) brand marks made from hot iron, (h) Haematobia irritans wounds, (i) scabies, (j) veining, (k) seed on pp, (I) warts on neck, (m) lap rib

on pickled pelt, (n) mild raised rib, (o) pinholes and (p) whitespot shear pattern.

Hide of the fine pattern, tidy and well-cured, no sign of
putrefaction

Free of defects in the butt and neck region, except for a
maximum of 5 blind warbles,

With just a few score marks or a hole in the bellies,
Without brand marks.

Second Grade: Second grade defects are given in Figure 6.
The second grade shall be done according to the following
requirements.

Hide of the fine pattern, tidy and well-cured, no sign of
putrefaction,

With a few tiny holes or cuts or other groups one and two
defects in the butt,

With a moderate amount of defects from group one, and
group two - except for brands and four in the belly and
neck,

With a brand mark that is completely within 18 cm of
the perimeter of the hide,

With a maximum of 10 open warbles or 20 blind
warbles,
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With dung and urine stain not more than an area of
30 x 30 cm on each of the hind shanks.

Third Grade: Third grade defects are given in Figure 7.
The third grade shall be done according to the following
requirements.

Hide of poor pattern or spoiled,

some putrefaction defects,

With group one, two faults - except for brands and four
to 30% of the hide region,

With a brand that has a part of more than 18 cm from the
perimeter of the hide,

With more than 10 open warbles and 20 blind warbles,
With more stain during and urine than acceptable for
grade 2.

Fourth Grade: Fourth grade defects are given in Figure 8.
The Fourth grade shall be made according to the following
requirements.

Very bad pattern, very spoiled hide.
With any kind of defect covering up to 50% of the hide
region.
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TABLE 2. Summary of image analysis based methods. These methods belong to the general categories of texture-based methods, wavelet-based

methods, classifier based techniques, and miscellaneous methods. The techniques are generally classified as belonging to image processing, machine

learning or neural network domain. A summary of achieved outcomes is also reported.

Sr. # Author Name Description Technique Outcomes

1 A.Learch et al. [19] Processing and segmentation of images of defects and areas of different | Image Processing line correction for automatic cutting of hides
quality, usually manually marked

2 R. Rodrigues et al. [13] | Support Vector Machine for leather defect classification. Compared | Machine Learning accuracy of 99.59% obtained using SVM classifier
LIBSVM and Weka SMO techniques.

3 C. Yehetal. [14] Used an algorithm which gave deductible area, unusable area, deviation | Image Processing obtained an error rate of 1.16%
rate and error rate of each transaction.

4 H. Pistori et al. [18] Used Attribute reduction on 4 different classifiers. Compared these | Machine Learning KNN obtained accuracy of 92.3%
classifiers kNN, C4.5, Naive Bayes and SVM

5 Fuqiang He et al. [9] Wavelet transform for Automatic Band selection scheme Image Processing normalized energy of 96.2% was achieved

6 V.K. Sahu et al. [25] Auto adaptive edge detection algorithm. Compared their technique with | Image Processing Gives clear and continuous edges as compared to other algorithms
Canny, Sobel, Prewitts and Roberts

7 K. Vani et al. [10] Wavelet feature Extraction method. WCF and WSF were used as feature | Machine Learning SVM performed better when both WCF and WSF were used
extractor with SVM classifier

8 H.Binetal. [15] Used Feed Forward Neural Network technique. Applied Decision Tree | Neural Network neural network obtained an accuracy of 90%
for classification

9 P. Villar et al. [16] Used multi-layer perception to train the neural network Neural Network MLP achieved an accuracy of 95%

10 C. Hoetal. [26] Multi-camera fusion based algorithm for marking of leather defects. Image Processing percentage error improvement from 1.1% to 0.1%.

11 R.F. Pereiraetal. [17] | Used classifiers KNN, MLP and SVM to detect 10 kind of defects. Machine Learning | SVM with RBF kernel was found to outperform other methods with 86% accuracy

12 Pistori, H et. al [12] The performance comparison for several classifiers was applied to both | Machine Learning accuracy = 100% when image size was 40x40
raw hide and wet blue leather samples.

13 Limas-Serafim [31] used multi-resolution pyramids for segmenting the scar and small vein | Image Processing only a few representative visual results on calf leather were presented
defects in calf leather.

14 Lovergine et al [5] classify the input leather surface types based on gradient orientation and | Image Processing only few visual results presented
local coherence

15 J.L. Sobral et. al [8] wavelets technique, which uses a bank of optimized filters, where each | Image Processing real time performance
filter is adjusted to a certain defect.

16 Yeh and Perng [22] semi-automatic methods for wet blue leather defects extraction and | Image Processing fully quantified grading system
classification.

17 Kwak, C. et. al [23] use of geometric and statistic descriptors, in addition to the use of | Neural Network accuracy of 91.25% on 140 defect samples
decision trees for the classification of the leather surface.

A A
B ©
E
F b ©

Head ... LA Crop ... .. A+B+D or A+C+E
Shoulder ..... B+C Back .. .. B+D or CE
Bend ... ..DorE Croupon .. D+E
Belly . .ForG Dosset .. .. B+C+D+E+A

Side ........... A+B+D+F or A+C+G Culatta D+E+F+G

FIGURE 4. Subdivisions of a hide.

Ill. IMAGE ANALYSIS BASED METHODS FOR

LEATHER DEFECT INSPECTION

In past years, a wide variety of image analysis based methods
for automated leather defect inspection have been reported
in literature. These methods can be broadly classified into
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texture based methods, Wavelet based methods and classifier
based methods. Other prominent methods investigated for
leather defect detection include methods based on geometric
and statistical descriptors, histogram based methods, edge
detection based methods, multi-camera fusion based tech-
niques and semi-interactive methods. All the aforementioned
methods are described here in this section and a quantitative
comparison of these techniques is presented in the follow-
ing section. A summary of these techniques is presented
in Table 2.

A. TEXTURE BASED METHODS

Limas-Serafim used multi-resolution pyramids to create a
leather surface texture model [4]. This method was imple-
mented and applied in calf leather to segment the scar and
small vein defects. Lovergine er al. used a leather patch
as a unit for the classification and input of leather surface
types based on local consistency and gradient orientation [5].
This also showed that leather defects such as folds and scars
could be detected by segmenting the leather surface’s oriented
texture map. Branca et al. identified leather surface defects
according to oriented structures using human vision [6].
The neural network approach was then used to evaluate the
texture-oriented approach. The resulting system is flexible
and does not rely on the composition, color or size of the
defects.
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First Grade
Putrification Dirt Brand Marks

Warbles
maximum five blind warbles

FIGURE 5. First grade defects on wet blue leather.

maximum five blind warbles

Score Marks Holes

e g e

Second Grade
Putrification Dirt Brand Marks

X

Warbles Maximum of
ten open warbles

Scars

Ticks
Ringworm, etc
Bruises
Scratches
Wounds, etc
Flay cuts

With few small holes or cuts or other defects from group one and two in the butt.
With moderate number of defects from group one, two - except from brand - and four in bellies and neck.

FIGURE 6. Second grade defects on wet blue leather.

Maximum of
20 open warbles

e

The work of Branca et al. relies on orientation flow field
modeling for texture analysis [5]. The oriented texture field as
a vector can be defined by its components, i.e. the dominant
gradient direction and the coherence. The gradient direction
can be generally defined as:

2 .
Zm’ 2 T SI0 260 5

f = —arctan 3 s
Zm’n 1.0 €08 20

ey

where 6, , € [— z, %] and the representation in 1 is in polar
form. The coherence measure € determines the accord of local

gradient orientation in a neighborhood (given by x and y) and
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Third Grade

Putrification
Dirt Brand Marks

Scars

Ticks
Ringworm, etc
Bruises
Scratches
Wounds, etc

Flay cuts

g g

X
)

With defects from group one, two - except for brands - and four up to 30% of the hide area

g g

Scars
Ticks
Ringworm, etc

Bruises
Scratches
Wounds, etc

)
e

Flay cuts

With defects from group one, two - except for brands - and four up to 30% of the hide area

FIGURE 7. Third grade defects on wet blue leather.

Fourth Grade

Natural Defects
Mechanical Defects
Flaying Defects

Any kind of defect covering upto 50% of the hide area

Any Kind of
Defects

Any kind of defect covering upto 50% of the hide area

Putrification
Dirt Brand Marks
Poor Pattern

FIGURE 8. Fourth grade defects on wet blue leather.

is defined as:

Zx’y Vi,ycos(Ox,y — Op.n)
Zx,y VXJ’ ’

(@)

€m,n = Vm,n

where V., = (Vp, vl = I'm, wexpnn and as evident
from equation 2, € is directly proportional to the closeness
of orientations in the neighborhood, given by x and y.

In other methods Kumar and Pang rely on Gabor filters to
mimic the early human visual system [7]. The idea is to char-
acterize the textures of regions using the various orientations
detected by the Gabor filters. The general 2D Gabor function
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is expressed as:

Yx,y) =

1 X2 y2 .
exp |:—§ (ﬁ‘i‘p)} exp 2njfx),  (3)

where f is the frequency of the filter, y and n represent the
Gaussian envelope along the major and minor axis.

2nyn

B. WAVELET BASED METHODS

Sobral et al. introduced a new wavelet-based method using
optimized filter banks where each filter is adjusted to a par-
ticular defect [8]. These filters and the wavelet ranges are
selected based on the maximization of attributes obtained
from leather flaws. Such a method can detect faults even if
there is a small change in attributes and it is based on Gabor
filters as described by [7]. Furthermore, it has been shown that
this technique is fast enough to detect in real-time. He et al.
automatic band selection scheme was developed based on
wavelet transform and wavelet energy coefficients distributed
in different frequency channels, to determine decomposed
sub-images and the number of multi-resolution levels [9].
They achieved normalized energy of 96.2% and claimed real-
time performance. Jawahar et al. gave a feature extraction
method for leather defects identification using wavelet fea-
ture extraction [10]. Wavelet Co-occurrence Feature (WCF)
and Wavelet Statistical Feature (WSF) were used as feature
extractors. They used SVM as the classifier. They claimed to
get good results when both WCF and WSF were combined.
Their system was able to discriminate between defective and
non-defective leather.

C. CLASSIFIER BASED SYSTEMS

Many classifier-based systems have been proposed for leather
defect detection in literature. Most of them employ a defini-
tive set of features that can be generally classified as first-
order statistical measures, second-order statistical measures,
spectral measures or image-level descriptors (local binary
patterns and Gabor features). A set of measures based on
the co-occurrence matrix [11] that are found common among
several implementations are energy E, entropy S, inertia I and
homogeneity H, and are defined as:

E=Y "% CGj @

J
S =—) > CliplogC.j), ®)
iJ
1= (i=)*CG.j. ©)
i
! -
H = Z ; mn(lvﬂv (7

where C is the co-occurrence matrix. Various classifiers
including support vector machines (SVM), linear discrim-
inant analysis (LDA) and neural networks have been
employed with these features for detection and classification
of leather defects.
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Pistori et al. presented a comparison performed for sev-
eral classifiers using the Concurrence Matrix’s first - order
descriptors [12]. The classifiers were applied on both samples
of rawhide and wet blue leather. Datasets were trained and
tested at different image sizes ranging from 10 x 10 pixels to
40 x 40 pixels. In both rawhide and wet blue leather SVM and
KNN both correctly classified samples 100% when image
size was 40 x 40 pixels.

Viana et al. adopts the Support Vector Machine as a
classifier with a focus on properly adjusting the classifier
parameters using a stochastic method [13]. They compared
LIBSVM and Weka SMO and also used Simulated Annealing
for parameter tuning. Ticks, brand marks, cuts and scabies
faults were used for detection. Highest accuracy of 99.59%
was achieved when LIBSVM was tuned with Simulated
Annealing.

Yeh and Perng used image processing technique to iden-
tify the defect and group nearby defects into a larger scrap
area [14]. They categorized the defects into 7 types which
include spots, thin spots, stripes, holes, lines, irregulars, and
patterns. They were able to achieve an error rate of 1.16% on
lot size greater than 600. In total, 170 samples were used in
this research. Jian et al. used Feed Forward Neural Network
(FNN) analysis for obtaining attributes of leather surface
defects and they then applied an algorithm decision tree for
classification of defects [15]. They achieved an accuracy
of 90%. Villar et al. presented an automatic Wet Blue Leather
defect classification method [16]. The classifier used was
a multilayer perceptron. This method worked by applying
the Sequential Forward Selection method in the selection
stage of the feature, as well as an appropriate procedure to
train the neural network. Their success rate was higher than
95%. Pereira et al. used computer vision for goat leather
classification. 10 different type of defects were used during
training [17]. The classifiers used were KNN, MLP, and
SVM. Among all these classifiers SVM with RBF kernel
gave the best accuracy rates. Amorim et al. used attribute
reduction techniques to apply four different classifiers [18].
The attribute reduction techniques used were CLDA, Fisher
Face, YLDA, DLDA, and KLDA. They used C4.5, kNN,
Naive Bayes and SVM classifiers. They trained and tested
classifiers on both wet-blue and rawhide images. On wet-blue
images, kNN performed better with CLDA used to attribute
reduction. It was able to achieve a correct classification rate
(CCR) of 90.3%. When raw-hide images were used again
kNN classifier and CLDA outperformed others and were able
to achieve a CCR of 92.23%.

D. MISCELLANEOUS METHODS

The LeaVis system was the first system that used machine
vision to detect leather defects [19]. The LeaVis system was
designed to process and segment various images of defects
and areas of different quality, that are usually manually
tagged/marked. Poelzleitner and Niel followed a hierarchical
approach and was able to detect seven features of wet-blue
leather [20].
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Krastev et al. showed a histograms-based detection
method, using the x? criteria for image analysis and his-
togram construction [21]. This method detects leather defects
based on evaluating the distinction between the grayscale
histogram and other image search areas. Yeh and Perng eval-
uate semi-automatic methods for extraction and classification
of wet blue leather defects. Compared to human specialists,
their results are reliable and efficient [22]. A fully quantified
system for measuring leather raw hides called the demerit
count reference standard is the main contribution of the work.
The authors also point out that the need for specialized human
intervention to take account of the total amount of demerit on
wet blue leather is one of the disadvantages of their proposal.

Kwak et al. presented a method based on the use of geo-
metric and statistical descriptors in addition to the use of
decision trees for the classification of leather surfaces [23].
After Wet Blue, the leather classification is performed on
finished leather levels, so a classification mistake is the irre-
vocable loss of the leather piece. Georgieva proposed the chi-
square criteria to analyze the histograms of the image [24].
This method compares the distance with the defects between
the histogram for the area analyzed and the area histogram.
Amorim et al. implemented software to manually extract and
label samples from defective areas. Kasi et al. proposed an
auto-adaptive edge detection algorithm [25]. The algorithm
is claimed to outperform the already available edge detectors
which include Canny, Sobel, Prewitt and Roberts. This algo-
rithm gives clear and continuous edges as compared to other
algorithms.

Ho et al. used a multi-camera fusion-based system used for
marking leather defects [26]. Multi-camera calibration was
achieved by applying homography transformation. Overlap-
ping of pixels was calculated using a homography matrix
and boundary re-sampling was then implemented to blend
images. The authors claim that their method improved the
percentage error obtained by manual processing from 1.1%
to 0.1%.

Penaranda et al. implemented a computer-vision based
artificial system for leather distribution, inspection, and
water-jet cutting [27]. Anand et. al used a computer vision
system as the front end to obtain the image of each uneven
sheet and part and thus solve the problem of two-dimensional
stock cutting in the apparel and leather industries [28].
Paakkari et al. used computer vision to provide precise real-
time information on the preform outline and position used
in the test phase, resulting in cost and material savings [29].
Lanzetta and Tantussi’s vision-based leather trimming labora-
tory prototype was suggested to raise the level of automation
in the leather sector [30].

IV. COMPARATIVE ANALYSIS OF IMAGE PROCESSING
BASED METHODS FOR LEATHER DEFECT DETECTION

In this section, we compare the performance of methods
discussed in the previous section in terms of their leather
classification capability. Table 3 presents a comparison of
methods in terms of their classification accuracy for leather
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defect detection. It is noteworthy that Table 3 presented here
does not fully represent all the methods discussed in the
previous section. The reason for this is the inconsistent perfor-
mance evaluation of previous methods and lack of a common
benchmark. In this Table, we present only those methods
which present their standard classification accuracy perfor-
mance. A majority of the methods in the literature for leather
defect classification only report the performance measure of
their choice on their data. This is one of the main reasons
which causes hindrance in their thorough comparative evalu-
ation. In addition to the lack of a suitable benchmark another
problem that hinders the thorough comparative evaluation of
leather defect classification methods is the lack of publicly
available software/code against the reported methods.

It can be seen from Table 3 that most methods report
above 90% accuracy, while the KNN approach achieved
100% accuracy. This performance can be partially attributed
to the fact that all these methods are evaluated on very small
local datasets. The largest collection of leather images used
in the aforementioned studies consists of 700 images out of
which 70% were used for training and 30% for testing. Hence,
the largest test set used for evaluation by these studies is
comprised of only around 200 images. Considering the nat-
ural variations that can occur in leather samples in industrial
processing, this seems to be a small test set for evaluation of
models.

Secondly, the top performing methods such as the method
of Pistori et. al [12] evaluated their model on only 16 images,
while Viana et al. [13] evaluated their method on only
15 images. They extract train and test patches from the small
number of leather images to demonstrate their efficiency.
Although these studies employed powerful classifiers (such
as SVM with quadratic kernel as in Viana et al. [13] and
k-nearest neighbor classifier as in Pistori ef al. [12]) in addi-
tion to robust feature attributes based on texture and color
information, the generalization of these methods on such
small datasets may not guarantee robustness on highly vary-
ing real-world leather imagery. The outstanding performance
of these techniques can also be attributed to their high dimen-
sional feature sets such as the 139-dimensional attribute set in
the work of Viana et al. [13] and a 66-dimensional feature
set employed by the technique of Pistori et al. [12]. The
technique of Jawahar et al. [10] employed high dimensional
Wavelet based statistical and co-occurrence features to tackle
the problem of leather defect classification. The high dimen-
sional representation in the feature space enabled the SVM
classifier with a Gaussian kernel to achieve a test accuracy
of 98.8% on 200 leather images. It would be interesting to
evaluate the approach of Jawahar et. al on real-world varying
leather samples in industrial settings for categorization of
multiple defect types.

Table 4 compares image-analysis based leather defect
detection methods in terms of their defect detection capa-
bility. In other words, it presents the maximum number of
defects that each method is capable of predicting. Classifier
based methods including SVM and decision trees can detect
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TABLE 3. Comparison of leather defect detection methods in terms of classification accuracy .

Sr. # Authors Model Code and Models Brief Description Classification Accuracy (%)
1 R. Vianaet. al [13] LIBSVM not available A machine learning classifier is 99.6
trained to learn the mapping func-
tion between a set of features and
leather defect type.
2 M. Jawahar et. al [10] WSF+WCF not available Binary SVM with Gaussian kernel 98.8

3 C. Kwak et. al [23] Decision tree not available

4 L. Jian et. al [15] FEN decision tree  not available

5 M. Jawahar et. al [32] ANN not available

6 P. Villar et. al [16] NN not available

7 R.F. Perieraet. al [17] MLP not available

8 H. Pistori et. al [12] KNN not available

was used to discriminate defective
and non-defective leather samples.

Used sequential decision-tree clas- 91.3
sification scheme in order to maxi-
mize the classification efficiency.

FNN is used for selecting the var- 94.0
ious relevant attributes, to get the

properties for the best combination

of classification, and then we can

extract classification rules by the

decision tree method.

Used Artificial Neural Network for 88.6
defect detection due to their abil-

ity to describe complex decision

regions, and Artificial Neural Net-

work is one of the most flexible

classifiers.

Bayesian Regularization algorithm 96.6
is used for training a neural net-

work because it offers better train-

ing speed and a method to deter-

mine the number of neurons in the

hidden layer.

Used multilayer perceptron. In the 90.3
first step it finds the failure regions

and in next the one extracts some

features from the failure map it

found.

The k-nearest neighbor approach 100.0
was used using Weka’s implemen-

tation. Tested Knn with 5 neigh-

bours, weighted by the inverse of

their distance.

up to four defects, whereas image-analysis based methods
improve the number of defects to greater than five. Notably,
ANN and KNN based methods outperform other classifier
and image analysis based methods by detecting more than
10 different leather defects.

V. PROPOSAL FOR APPLIED DEEP LEARNING FOR
AUTONOMOUS LEATHER QUALITY INSPECTION

Based on our proposed guidelines for autonomous leather
quality grading in Section I, in this section, we provide a brief
background knowledge on deep learning and specifically
convolutional neural networks in the context of visual leather
inspection. Next, based on prior works and the requirements
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of the leather inspection process, we provide recommenda-
tions and guidelines for choosing appropriate architectures
for leather defect detection and categorization, semantic seg-
mentation of defects for in-depth analysis and multi-class
leather grade classification.

A. DEEP LEARNING BACKGROUND

In the leather industry, usually two types of machine learn-
ing are required: defect detection (classification problem),
and in-depth geometric information of the detected defects
(segmentation problem). Leather images have so many vari-
ations in terms of morphology and contrast of defects.
There could be more than 15 defects in one image with
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TABLE 4. Comparison of methods in terms of their defect detection capability .

Sr. # Authors Model Binary Classification 4 defects > 5 defects > 10 defects
1 R. Viana et. al [13] LIBSVM v
2 M. Jawahar et. al [10] WSF+WCF v
3 C. Kwak et. al [23] Decision tree v
4 L. Jian et. al [15] FEN decision tree v
5 M. Jawahar et. al [32] ANN v
6 P. Villar et. al [16] NN v
7 R.F Perieraet. al [17] MLP v
8 H. Pistori et. al [12] KNN v
9 H. Pistori et. al [18] Attribute reduction v
10 C. Yehet. al [22] Custom v
11 C.Yehet. al [14] Digital Image Processing v

different contrasts. Even one type of defect itself varies
greatly in an image. This is the reason why traditional
machine learning algorithms fail to detect multiple defects
at one time. This makes the leather defect classification/
segmentation problem the best candidate for deep neural
networks. The good thing about neural networks is that they
can be designed for both image classification and image
segmentation. Classification is the process of taking an input
(i.e. image) and outputting a class or probability that the
input is a particular class. Image segmentation is the task
of partitioning the image in to multiple segments. Semantic
segmentation is used to do this in deep neural networks.
Semantic segmentation is the task of assigning a class to each
pixel in a given image. Classification assigns a single class
to the whole image, while semantic segmentation classifies
each pixel of the image to one of the classes. Some essential
processes common to both applications are

« transfer learning,

« data augmentation,

« loss function.

CNN’s are currently one of the most widely used architec-
tures for deep image learning. Data-related features need to
be extracted manually in traditional machine learning, while
deep learning employ the raw image for learning features.
CNN’s structure consists of a layer of input, a layer of output
and several hidden layers sandwiched between layers of input
and output. The hidden layers consist of convolutional layers,
max-pooling layers, and layers that are fully connected. The
general architecture is shown in Figure 9.

CNN architectures vary in the type and number of lay-
ers implemented for any specific application. If we have a
continuous application then at the end the CNN needs to
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have a regression layer. If the application is for a categorical
response then the last layer must be a classification layer.
Neurons are in 3D shape in CNN layers. The layers hold the
height, width, and color dimension RGB.

There are several models available for classification and
semantic segmentation. The model structure shall be chosen
properly depending on the use case. There are several things
which should be taken into account. In the case of leather,
these are the size of an image, number of training images,
number of defects and the variation in defects. Usually, deep
learning-based segmentation models are built upon a base
CNN network. Some initial layers of the base network are
used in the encoder, and rest of the segmentation network is
built on top of that. For most of the segmentation models, any
base network can be used.

For classification and semantic segmentation, our first
task is to select an appropriate network. One of the advan-
tages of segmentation is that the classification models can
be used for segmentation we just have to add a decoder
in classification algorithms. A standard model such as
ResNet [33] or VGG [34] is chosen for the base network
usually. ResNet is the model proposed by Microsoft which
got 96.4% accuracy in the ImageNet [35] 2016 competition.
ResNetis used as a pre-trained model for several applications.
ResNet has a large number of layers along with residual
connections which make its training feasible. VGG-16 is the
model proposed by Oxford which got 92.7% accuracy in the
ImageNet 2013 competition. Compared to Resnet it has lesser
layers, hence it is much faster to train. For most of the existing
segmentation benchmarks, VGG does not perform as well
as ResNet in terms of accuracy. GoogleNet aka inception
v3 was ILSVRC-2014 winner [36]. It is a 22-layer model
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FIGURE 9. The general architecture of a convolutional neural network. The image is first subjected to a set of 3-dimensional filters by the
convolutional layers. Subsequently, information is down-sampled through max-pooling layers for effective classification. Finally, a set of
fully-connected layers map the 3-dimensional volume to output nodes for classification.

with an error rate of 6.7%. The main contribution of this
architecture was that the addition of Inception Module which
dramatically reduced the number of parameters. Since some
algorithms are based on contrast some on edges, therefore,
choosing an appropriate algorithm for leather application
(with varying contrast and morphology) is a researchable
problem. There are also limitations on the size of these algo-
rithms. Most algorithms give good accuracy to small image
sizes, which may not be suitable for multiple defect detection
in leather images where the morphology of the defect varies
greatly. Apart from these models, we can also train a custom
network. One of the advantages of using a custom model is
that we can customize it according to our application that is
new to deep neural networks. Some algorithms work for many
applications in which feature morphology is almost similar
among those applications. For such applications, choosing a
model pre-trained on ImageNet is the best choice. For a pre-
trained model, transfer learning is used.

Deep network learning from scratch is typically not feasi-
ble because there are several reasons: a data set of sufficient
size is required (usually not available in case of leather) and
convergence may take too long to be worth the experiments.
In case of the small dataset, starting with pre-trained weights
is often helpful rather than randomly initialized weights.
One of the major transfer learning scenarios is to fine-tune
the weights of a pre-trained network by continuing with the
training process. However, it is not entirely straightforward
to apply this transfer learning technique. To use a pre-trained
network, there are architectural limitations that must be met.
In the case of leather, there are not many pre-trained models
available. Most closely related are fabric defects. We can use
the weights of these models for transfer learning. The dataset
for wet blue leather is not available online. Researchers
working on leather defects usually have small datasets
of 60-80 images. These images are not enough to train a deep
learning model, and not best suited for learning weight from
scratch. One reason not to have a big dataset for leathers is
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that most of the industry is reluctant to share its data with
the researchers. On the other hand, this field is also ignored
by the researchers. For example, in medical fields, there are
many competitions held annually that release large datasets to
work on a certain problem. But in leather, there are no such
competitions. In leather to get a large dataset, there is only
one option that is data augmentation.

Data augmentation is a popular method that has been
demonstrated to aid machine learning models in general and
deep learning architectures specifically; either acting as a
regularizer or to speed-up convergence, thereby avoiding
overfitting and improving generalization capabilities. The
objective of these transformations is to produce more samples
to create a bigger dataset, avoid overfitting, model regular-
ization, keep the equilibrium of each class in the dataset,
and even synthetically generate new samples that are more
representative for the use case or task. Data augmentation
will not only increase the number of images in our dataset
but it will also add variations in the image. Some images
will be zoomed in, zoomed out, have different contrast, etc.
So, the dataset will have more images and the algorithm
trained will also be able to detect most of the images
under different lighting conditions. After data augmentation,
we will get a large dataset with multiple defects on each
image.

Selection of the right algorithm is not the only solution.
There are many other parameters that we need to take care
of as well. Hyper-parameters is one of them. In hyper-
parameters we have learning rate. We need to choose a suit-
able learning rate policy, usually the lower rate is preferred
as the pre-trained weights are comparatively good and there
is no need for drastic change. In custom algorithms, learn-
ing rate selection is a very complex job. Because setting
a learning rate depends on the size of the image, size of
the dataset and hardware (GPU). To overcome this prob-
lem we can use batch normalization. Batch normalization
allows each layer of a network to learn by itself a little
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FIGURE 10. Common loss functions used in deep learning.

bit more independently from the other layers. We can use
higher learning rates because batch normalization makes sure
that no activations gone high or low. And by that, things
that previously could not be trained, will start to be trained.
It reduces overfitting because it also has slight regularization
effects. Therefore, if we use batch normalization we will use
less dropout, which is a good thing because we won’t lose a
lot of information. Global Average Pooling before dense layer
with batch normalization is another good technique that is
used for this purpose. The global average pooling mechanism
computes the mean value for each feature map and supplies
it to a softmax layer. The softmax layer takes each value
and converts it to a probability (with the probability of all
digits summing to 1.0). It removes the flatten layer which
speeds up the training of the model. The elimination of all
these trainable parameters also reduces the tendency for over-
fitting, which needs to be managed in fully connected layers
by the use of dropout.

Loss functions are an important component of any deep
neural net as they evaluate the predictions of the algorithm
on the given data. Together with optimization techniques,
the loss functions enable the net to learn to reduce the pre-
diction error gradually. Loss functions are generally classified
into regression and classification losses given the task at hand.
A few common loss functions are presented in Table 5 and are
also plotted in Figure 10.

L; and L, losses presented here generally belong to the
class of regression losses. They measure the average sum
of absolute differences or the average of squared differences
between the gold standard and predictions. The most common
classification loss functions can be categorized either as hinge
loss (also known as SVM loss) or log loss (also known as
cross-entropy loss). Hinge loss advocates that the score of the
correct category should always be greater than the sum of all
incorrect category scores by some safety margin. Therefore,
it is most notably used for maximum-margin classification
mainly in an SVM framework. Cross-entropy loss provides
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a direct relationship between the predicted probability and the
actual label, increasing as the predicted probability diverges
from the actual label. An important aspect of this is that
the cross-entropy loss heavily penalizes confident but wrong
predictions.

In the case of leather, there are many loss functions which
can be used depending on the number of defects and size
of defects. Tang et al. showed that well-fitted hinge loss can
outperform log loss based networks in typical classification
tasks. Comparing various loss functions under different con-
ditions and provide insights into when and which function can
be used for leather defects is an interesting avenue to explore.
Janocha et. al showed that on the MNIST dataset without
any data augmentation L1 performed better in accuracy [37].
In case of loss function which converges faster hinge? and
hinge? losses are the fastest in training, and once the number
of hidden layers is increased then L2 also gives better results.

Janocha et. al also showed that Cauchy-Schwarz Diver-
gence as the optimization criterion seems to be a consis-
tently better choice than log loss [37]. It performs equally
well or better on both MNIST and CIFAR10 in terms of both
learning speed and the final performance. Table 5 presents a
variety of loss functions that have proven useful in different
settings. But which loss function performs well on leather
is an open-ended problem. Due to the large variation in
morphology and contrast, it may be necessary to look for a
custom loss function that performs well on leather related
problems.

B. RECOMMENDATIONS FOR CHOOSING CNN BASED
ARCHITECTURES FOR LEATHER DEFECT DETECTION

AND CATEGORIZATION

Numerous deep learning-based object detection frameworks
have been proposed to date. These frameworks can be gen-
erally classified into region proposals based methods and
single-shot based detectors. Region proposals based object
detection frameworks have three stages: region proposal
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TABLE 5. List of loss functions employed in deep networks for
classification .

Name Equation Symbol
L, loss Iy —»pl, Ly
L, loss ly = 3 £
log (cross entropy) loss -, vY log E(p) log
squared log loss -3, y? log E(p)]2 log?

hinge loss [38] -2 max(0, 3 — §Upl)) hinge

squared hinge loss -3, max(0,3 —9Wp)? | hinge?

cubed hinge loss -3, max(0, 3 —§@Dp@)* || hinge®
>, E(pW))y)

Cauchy-Schwarz divergence [39] —logW
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FIGURE 11. Desired output of the defect detection and classification
stage. The strain highlighted by a bluish bounding box is a mechanical
defect. The warble defect highlighted by a yellow bounding box is a minor
defect and generally ignored specifically in New Zealand leather.

generation module, a convolutional neural network as a
feature extractor and a classification plus regression mod-
ule for generating multiple classes and bounding boxes.
A few popular region proposal based methods which are dis-
cussed here for application to leather defect detection include
R-CNN [40], Fast-RCNN [41] and Faster-RCNN [42].
In contrast to region proposal based networks, single-shot
based detectors are one-step and directly map image regions
to bounding boxes and corresponding class probabili-
ties based on global classification/regression, thus having
reduced training and inference times. A few single shot detec-
tors ranging from pioneers to recent ones are discussed here
according to a leather defect detection perspective. The prob-
lem of leather defect detection and classification is depicted
with the help of a representative example in Figure 11. For
a leather sample, we are interested to effectively localize all
leather defects and recognize their type simultaneously. The
desired output of our defect detection framework is shown
in Figure 11 for a representative leather sample that includes
three categories of defects, namely; cut, shear and wart.
Important parameters that must be considered for the
leather defect detection and classification task are image
resolution, the scale of defects and the variations in defects.
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Leather images are usually high in resolution and resizing
them for computational efficiency is not always viable as
some of the defects occur at a tiny scale. The variation
of defects in terms of shape, texture, color, and contrast is
another important aspect which requires rich feature repre-
sentations to cater for all variations. Therefore, the architec-
tures for leather defect detection must be designed carefully
in light of these important parameters.

Region proposal based networks may not be able to
tackle high-resolution leather images due to their consid-
erable latencies at training and test stages. These networks
also may not be robust against defects of various shapes
and scales, due to their object-oriented region proposal
computation strategy. The baseline object detector R-CNN
proposed by Girshick et al. was demonstrated to capture
rich feature representations for a wide variety of object
categories, however, the following reasons limit its adapt-
ability to the leather defect detection and classification prob-
lem [40]. R-CNN either warps or crop region proposals to
make the objects of interest (i.e., leather defects in our case)
equally sized [40]. These operations might cause geomet-
ric distortions of the leather defect or part of the defect
to be cropped, thus affecting detection and classification
accuracies. Also, the selective search methods for object
proposals employed in R-CNN promotes only larger candi-
date regions, which is not suitable to detect leather defects
that are at a very small scale [43]. Due to the parame-
ter heavy CNN used by the R-CNN (i.e., VGG16 [34]),
it takes 47s/image on a GPU at the test stage. Therefore, it is
not a viable option for high-resolution leather images. Fast
R-CNN is better than R-CNN in terms of the reduced train
and test times, which is achieved through feature sharing
during training [43]. However, the region proposal pipeline
of Fast R-CNN is similar to R-CNN, which limits its appli-
cation in the leather defect detection task. The Faster R-CNN
improves upon the region proposal problem of R-CNN and
Fast R-CNN by introducing a fully convolutional Region
Proposal Network (RPN) [42]. The RPN produces better
proposals as compared with the former region proposal
based methods, however, it is not robust against extreme
scales or shapes. To customize region proposal based methods
for leather defect classification, the region proposal frame-
work must be adapted as per the scale and shape of the leather
defects. The region proposal based architectures may also
require optimization to tackle high-resolution images.

Single-shot based detectors can tackle higher resolution
images when compared to the region proposal based net-
works, owing to their reduced pipeline. They might also be
able to better handle the scale and shape variations. The
pioneering work You Only Look Once (YOLO) divides the
image into an S x S grid, where each grid cell predicts
bounding boxes and corresponding confidence scores [44].
This scheme may allow YOLO to detect leather defects at
multiple scales depending upon the grid size S. However,
YOLO is not robust at detecting groups of small objects such
as pinholes or a group of warts and also fails to generalize
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objects with unusual aspect ratios, which is a common fea-
ture of leather defects. The Single Shot MultiBox Detector
(SSD) on the other hand can handle objects with various
sizes (defects in our case) by using anchor boxes with various
aspect ratios and fusing predictions from feature maps of
various resolutions [45]. The single-shot detector may also
be tuned to detect small defects by adopting a better feature
extractor, adding context through deconvolution layers with
skip connections and better network structure [46]. Finally,
RetinaNet is also worth investigating for leather defect detec-
tion due to its ability to handle higher resolution images and
detect defects at multiple scales and shapes as compared with
the rest of the detectors. The mentioned capabilities of the
RetinaNet may be attributed solely to its feature pyramid
network [47].

C. RECOMMENDATIONS FOR DEEP LEARNING BASED
SEMANTIC SEGMENTATION FOR LEATHER

DEFECT ANALYSIS

For grading hides, more information about defects is required
as sufficed by the detection and classification pipeline. This
information includes various modalities such as the area of
the defect, total area of the hide covered by the defects and
distance of the defects from the perimeter of the skin. For
the precise computation of this information, we need accurate
semantic segmentation of all defects to pixel-level accuracy.
The desired output of the segmentation and defect analysis
module is depicted by a representative example in Figure 12,
which can be effectively utilized for leather quality grading.

FIGURE 12. Desired output of the defect analysis module with relevant
area and distance measurements.

Fully convolutional networks (FCNs) have recently
exhibited excellent progress in semantic segmentation in
applications ranging from real-world scenes, medical image
segmentation and industrial defect inspection. Here, we only
review representative FCNs which may be suited to leather
defect segmentation. A few important considerations for
designing FCNs for leather defect segmentation include the
ability of the architecture to tackle high-resolution leather
images, ability to handle defects at multiple scales including
tiny defects and an ability to capture accurate shape informa-
tion of the defects.
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1) HIGH-RESOLUTION LEATHER IMAGES

for most FCNs designed for semantic segmentation such as
the work of Long ef al. [48] or encoder-decoder architec-
tures such as SegNet [49], the memory requirements of their
backbone architectures determine the image resolution that
they can support. There exists a trade-off between accuracy
and resource requirements. For instance, ResNet-152, when
employed as the backbone, may result in improved accuracy
as compared to ResNet-50 [33]. However, this improved
accuracy will be achieved at the cost of ~2 times the memory
requirements, which can further scale up with the resolution
of the leather images. On the contrary, the U-Net architecture
proposed by Ronneberger et al. [50] for high-resolution med-
ical image segmentation is a good contender for leather defect
segmentation. Its tiling strategy and a relatively compact
architecture make it suitable for high-resolution images while
keeping the memory requirements at a low end.

The more recent methods such as the DeepLab based net-
works [51]-[53] are memory heavy as they employ the likes
of VGG16 [34] or ResNets as their backbone architectures.
However, they can still cope with high-resolution images
and therefore can be adapted to the task of leather defect
segmentation.

2) MULTISCALE LEATHER DEFECTS AND

SHAPE INFORMATION

are other important considerations for leather defect seg-
mentation. For leather segmentation, SegNet can be adapted
to preserve shape information through skip connections for
robust segmentation, however, its ability to handle defects
at multiple scales must be improved for practical use [49].
Contrarily, U-Net can be adapted to handle defects at multiple
scales and can be modified to preserve shape information as
well as [50]. The DeepLab based architectures [51] are spe-
cialized in capturing multiscale information and preserving
shape information. Specifically the work of Chen ef al. [54]
(based on DeepLab) can be investigated for boundary/shape
preservation of defects and the recent work of Chen et al. [55]
can be adapted to obtain scale-aware pixel-level accurate
segmentation of leather defects.

D. GUIDELINES FOR DEEP NEURAL NETWORKS BASED
MULTICLASS LEATHER GRADE CLASSIFICATION

According to Section I, multiclass classification is required
for leather quality grading given the feature matrix from the
image analysis module. This implies that the accuracy of the
grading stage depends upon the information extracted about
the defects in the detection, segmentation and image analysis
stages. Consequently, the design and complexity of the mul-
ticlass classification stage depends upon the robustness of the
previous steps in the pipeline. A wide variety of deep learning
architectures exist in literature that have been successfully
applied in similar problems and can be easily adapted for
the task at hand. However, it is vital to mention here that
the multiclass classification based deep network for leather
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FIGURE 13. A timeline of recent progress in deep learning for visual defect inspection. The cited methods depict representative methods on
the subject. It can be observed that there is a growing trend in deep learning-based solutions for visual defect inspection. The methods
published in recent two years (2017,2018) are greater than double the number of works published till 2016. Based on this healthy trend, more
deep learning-based automated inspection systems are expected for the surveillance industry in the near future.

quality grading must be able to effectively utilize information
from multiple expert human graders, which might enable
it to match or surpass human level performance. This is a
researchable problem and needs investigation. The rest of
this subsection is dedicated to reviewing recent CNN-based
models that are employed for multiclass classification in
visual defect screening applications. The success of these
methods in highly related tasks may promote their potential
application for multiclass classification based leather quality
grading.

In Figure 13 and Table 6, we compile recent methods
that employ deep neural networks for visual inspection in
related applications for both defect detection and multiclass
classification. Here, we are interested in methods proposed
for multiclass classification of defects, therefore, we only
provide details of those models in this section. It can be
observed that there is an increasing trend in the number
of methods that employ CNNs for automated inspection in
various applications. The increasing number of publications
in 2016-2018 is a clear indication of the success of CNN
based methods in machine vision applications for automated
inspection.

Dorafshan et al. performed transfer learning on con-
crete images using AlexNet [72] for crack inspection [56].
Their method comprehensively outperformed traditional
edge detectors on cracks of all types. Gopalkrishnan et al.
employed a truncated version of the VGG16 architecture and
performed transfer learning on pavement images for crack
detection [57]. The features generated by the CNN were
classified using various machine learning classifiers, where
the best performance was achieved by a single layer neural
network classifier (VGG-16 DCNN). Chen and Jahanshahi
dealt with the very important subject of crack detection on
nuclear reactor surfaces [58]. They proposed a CNN based
architecture with a Naive Bayes based data fusion scheme.
Additionally, a novel data fusion scheme was proposed
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for multi-frame data aggregation from nuclear inspection
videos.

Ferguson et al. examined how to use various CNN archi-
tectures to localize casting defects in X-ray images [62]. The
authors employed a defect classification model on a sequence
of defective pictures to categorize various types of defects and
then used a sliding window method to develop a localization
model. Weimer et al. investigated a new paradigm that exam-
ined Convolutional Neural Networks (CNN) design config-
urations and the impact of various hyperparameter settings
on the accuracy of the results of defect detection [63]. Psuj
proposed a CNN based method for defect categorization in
steel elements [66]. Specifically, rectangular-shaped artificial
defects were employed to evaluate the efficacy on the method
of steel elements. Masci et al. employed a Max-Pooling CNN
approach for supervised steel defect classification tasks with
7 defects [68]. A 7% error rate was obtained.

Ren et al. proposed a general approach requiring a small
amount of training data for automated surface inspection [69].
Transfer learning is employed on a pre-trained DeCaf model
to generate features which are classified by a multino-
mial logistic regression classifier for defect categorization.
Feng et al. proposed a binary defect identification (injuri-
ous or non-injurious) method from magnetic flux leakage
(MFL) images based on a CNN [70]. Unlike prior approaches,
instead of the MFL measurement features, this technique is
fed by the MFL images. To demonstrate the efficiency of
the suggested model, the authors use real MFL data gathered
from experimental pipelines.

VI. DATA

In the literature, many studies evaluate the detection of leather
defects. It should be noted that different studies use contrast-
ing datasets and possibly distinct parameter settings. Nelore
and Hereford cattle (Brazil) is a dataset with 50 images of wet
blue leather pieces. Amorim et al. used this dataset in their
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TABLE 6. CNN based methods for defect inspection targeting different applications. The training information along with architectural information is
provided. Here ‘S’ is the number of training images; column represents subimages, where ‘P’ stands for image patches. The details of the baseline
architecture employed are also presented. The techniques presented in this Table can be generally categorized into the following applications: crack
detection, fabric defect detection, industrial defect detection, and steel defect detection. Also, each method can be categorized either as a fully

convolutional (Fully Conv) network or a classical convolutional based network.

Sr. # Model Pub Year | Number of Training Images | Pre-trained Model | Fully Conv Application
1 DCNN, [56] CBM 2018 12809 (S) AlexNet
2 DCNN_TL, [57] CBM 2017 760 VGGI16 Crack Detection
3 NB-CNN, [58] TIE 2018 5326 (P) — X
4 MSCDAE, [59] Sensors 2018 — — v
Fabric Defect Detection
5 FCSDA, [60] TASE 2016 2600 (P) — v
6 SSD, [61] TIM 2018 6371 VGG16, YOLO v
7 XnetV2, [62] ICBD 2017 23760 (P) ResNet-101 [33] X
Industrial Defect Detection
8 DII, [63] CIRP Annals 2016 1,299,200 — X
9 FCN-SDI, [64] ICCVS 2017 720 R-CNN v
10 DCNN-L, [65] IJCNN 2016 22408 (S) — X
11 DMTL, [66] TITS 2016 62500 (S) — v
Steel Defect Detection
12 DCNN-DND, [67] Sensors 2018 — — X
13 MPCNN, [68] IJCNN 2012 2281 — X
14 Decaf+MLR, [69] TC 2017 — DeCAF X
15 CNNMFL, [70] TIM 2016 25650 — X Miscellenous
16 DFRCNN, [71] CACIE 2017 2366 Fast R-CNN v

research [18]. There is another dataset from the DTCOURO
project [73]. This dataset is part of a scientific research and
technological development project, DTCOURO, that envis-
ages the development of a computer-based, fully automated
system for the classification and grading of rawhide and
leather in bovine animals. One of the objectives of the
DTCOURO project is to propose and provide comparative
studies of pre-processing, feature extraction, feature selec-
tion, segmentation, and classification techniques. Table 7
presents the details of the various datasets employed by
previous methods for leather defect detection. It can be
observed that apart from the DTCOURO dataset, all other
datasets are relatively small thus limiting extensive evalua-
tion of the developed algorithms. Also, despite developments
in the field, unavailability of datasets is a major hindrance
in progress in this field. As presented in Table 7, none
of the studies make their data publicly available for com-
parative evaluation of algorithms and benchmarking. This
urges a need for the development of a sufficiently large
publicly available dataset for comparative evaluation and to
test the generalization ability of the methods. To address
this issue, we are in the process of constructing a large
database of wet blue leather images for defect classifi-
cation and quality grading. The dataset will be publicly
available for benchmarking and comparative evaluation of
algorithms.

VOLUME 7, 2019

Data collection is the most significant component of
this study, as there is no dataset for leather defects avail-
able. Liong er al. used a six-axis desktop robotic arm,
a high-resolution camera, 3d printed plastic parts and a non-
flickering LED light source [74]. Bong et al. set up an image-
grabbing scheme [75]. The grabbing system consists of a
bracket used to hold a camera and a light source. The fabric
is spread over the table under the bracket. The camera is
combined with a finite aperture lens for focusing the image.
Unfortunately, in the real workspace, the corresponding point
in the image and the optical center of the camera are not
collinear. These are some of the techniques that people usu-
ally use. Almost everyone used an HD camera to collect
images. In the leather industry, the material continues to
move and needs to be inspected for defects. In situations
where ongoing material needs to be checked for faults, line-
scan cameras will usually provide a better alternative than
traditional techniques. Despite this, people frequently harbor
reservations about deploying line-scan cameras; reservations
that usually emerge from the inadequate experience with this
technique of inspection. This often leads to circumstances in
which users of image processing often tend to use familiar
area scan technology even when the use of line scan cameras
makes more sense for a certain application. But the fact is that
line scan cameras provide a cost-effective way to generate
high-resolution images and to make them available on generic
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TABLE 7. Details of the datasets employed by previous studies for leather defect detection.

Sr. # Authors Model Dataset(s) Employed Number of Images Publicly Available
1 R. Viana et. al [13] LIBSVM DTCOURO 14722 X
2 M. Jawahar et. al [10] WSF+WCF Custom 700 X
3 C. Kwak et. al [23] Decision tree Custom 140 X
4 L. Jian et. al [15] FFN decision tree Custom 200 X
5 M. Jawahar et. al [32] ANN Custom 90 X
6 P. Villar et. al [16] NN Custom 1769 X
7 R.F. Perieraet. al [17] MLP Custom 1874 X
8 H. Pistori et. al [12] KNN DTCOURO 2000 X
9 H. Pistori et. al [18] Attribute reduction Nelore and Hereford Tannery, Brazil 2000 X
10 C. Yehet. al [22] Custom Various tanneries of Taiwan 170 X
11 C.Yehet. al [14] Digital Image Processing Custom 178 X
PC platforms for evaluation software whose performance
P P Actual = Yes Actual = No
continues to grow.
(7]
VIl. EVALUATION MEASURES o
Many performance measures are widely used in the fields Il
of machine learning, knowledge discovery and data mining. ‘§ True Positive False Positive
They are primarily used for two purposes. First, they are fé
used as criteria to compare and evaluate machine learning o
algorithms. Traditionally, a range of measures, such as accu- a
racy, precision, recall, F-measure, and so on are adopted as 2
criteria to evaluate the performance of information systems. M
For example, in classification tasks, accuracy is defined as the "8 False Neg ative True Negative
percentage of objects that are correctly classified. It measures ']
the classification performance of a learning algorithm. In the g
last two decades, accuracy was the most frequently used a

measure in algorithm performance evaluation. In information
retrieval, precision and recall are two traditional measures
that are used to evaluate the query quality. In recent years,
AUC has emerged as another popular measure in machine
learning.

A. CONFUSION MATRIX
A confusion matrix is a table that shows the agreement of
the actual values and predicted values for a classification
method in a numerical format. As it quantifies the errors
obtained by the predictions of classification methods, it is
also referred to as an error matrix. A pictorial representation
of a confusion matrix is presented in Figure 14. Four key
components of the confusion matrix with reference to leather
defect classification are defined as:
o True Positive (TP): When a defected leather sample is
predicted as defected by the model.
o True Negative (TN): When a leather sample without
any defects is predicted as non-defected by the model.
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FIGURE 14. Confusion matrix.

o False Negative (FN): When defects were present in
leather but the model predicted it as non-defective; it is
also called as a Type 2 error.

« False Positive (FP): When the leather sample was non-
defective but the model predicted it as defective; it is also
known as a Type 1 error.

B. ACCURACY

Accuracy is a statistical measure of how often the prediction
made by the classifier correctly identifies a condition. It is the
ratio of the number of correct predictions to the total number
of predictions, given as:

TP + TN
TP+ TN +FP+FN’

®)

Accuracy =
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C. LOG LOSS, LOGARITHMIC LOSS OR CROSS

ENTROPY LOSS

Log loss, or logarithmic loss, provides more specific details
to the classifier. Generally, if the output is a numerical prob-
ability rather than a class label, then it is possible to use
a log or logarithmic loss. Log-loss is a ‘“‘soft” accuracy
measurement that embodies the idea of probabilistic trust.
Mathematical equation of log-loss for a binary classifier is
given in equation 9

N

Liog = —}V ;yi log(py) + (1 = y)log(1 = p), ~ (9)
where Lo is the log-loss, p; is the likelihood that the i-th
observation is of class ¢ and y; is the label in question that is
either O or 1. Since y; is either O or 1, either the right or the left
part to the addition is selected for an instance. Log-loss can
be defined as the cross-entropy between the distribution of
the true labels and the predictions, and it is strongly linked to
what is known as relative entropy. Entropy measures some-
thing’s unpredictability. Cross-entropy includes true distri-
bution entropy and extra unpredictability when assuming a
distribution different from the true distribution. So, log-loss
is an information-theoretical metric for measuring ‘‘extra
noise” that is added due to a predictor as opposed to the true
labels. We maximize the classifier’s accuracy by minimizing
Cross-entropy.

D. RECEIVER OPERATING CHARACTERISTICS (ROC) AND
AREA UNDER THE ROC CURVE (AUC)

ROC curve is a graph that shows the performance of a
classification model at various classification thresholds. It is
essentially a plot between the true positive rate (TPR) and
false-positive rate (FPR).

o True Positive Rate(TPR) is the proportion of the pos-
itive data points correctly predicted to all the actual
positive data points. It is also referred to as recall. Higher
TPR means we will have less positive data points that
will be misclassified.

« False Positive Rate(FPR) is the proportion of the neg-
ative data points falsely predicted as positive to all
the actual negative data points. Higher FPR implies
that more negative data points have been classified
incorrectly.

AUC is the area below the ROC curve. The ROC curve
shows the classifier’s sensitivity by plotting the rate of actual
positive to the false positive. In other words, as we allow
more and more false positives to be obtained, it shows how
many true positives can be obtained. The perfect classifier
that does not make any mistakes would hit a true positive
rate of 100 percent immediately without incurring any false
positives - this practically never happens.

Although ROC curve provides detailed information about
the classifier’s behavior, but it is difficult to quickly compare
multiple ROC curves. In particular, if some sort of automatic
hyper-parameter tuning mechanism were used, instead of
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a graph requiring visual inspection, the machine would need
a quantifiable score. The AUC is one way of summarizing
the ROC curve into a single number, making the comparisons
of multiple ROC curves simple. Higher values of AUC are
better.

E. PRECISION-RECALL

Precision and recall are two distinct metrics but often they
are used together. Precision answers the question, “Out of the
items that the ranker/classifier predicted to be relevant, how
many are truly relevant?”” While, recall answers the question,
“Out of all the items that are truly relevant, how many are
found by the ranker/classifier?”’

Mathematically, precision and recall are defined as

.. TP
Precision = ——,
TP + FP
TP
Recall = ———. (10)
TP + FN

VIil. DISCUSSIONS

So far, we have discussed the image analysis based solutions
for leather defect inspection, their advantages and shortcom-
ings and the need for deep learning methods for generic visual
defect inspection. In this section, we discuss the various
challenges that exist in design and deployment of convolu-
tional neural network (CNN) based solutions for automated
leather defect inspection. Furthermore, we shed some light on
how these challenges can be transformed into opportunities,
leading to future research directions in this field.

A. CHALLENGES AND OPPORTUNITIES

A noteworthy challenge for CNN based solutions is the
scarcity of publicly available data for training CNN’s. The
unavailability of data can potentially hinder the progress
of deep learning-based solutions in this important field of
research. Another important aspect related to the above dis-
cussion is that limited data exists that can quantify leather
quality based on the observed defects. This potentially
important information for the design of such systems is also
confined to domain experts and is available in the closed
boundaries of the very industries that are in the leather busi-
ness. Last but not least, an inherent problem at the technical
end is to handle leather samples that exhibit a high degree
of variance in terms of the defects they contain. We can
summarize the above points to list the following challenges
that may hinder the progress of deep learning methods in this
scintillating field of research.

o how to collect ample data and capture all the defect
variations for robust training of convolutional neural
networks?

o how to define a quantitative measure for leather quality
based on observed defects?

o how to deal with data samples having a high degree of
variance in terms of defects (detecting several defects
simultaneously)?
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Fortuitously, we can turn these challenges into opportuni-
ties for future research. Specifically, we can leverage effective
data augmentation techniques for ample data generation and
develop automated annotation methods. Devise automated
methods for quantification of leather quality and research
design/development of CNN based solutions for simultane-
ous multi-defect inspection. In the coming section, we pro-
vide potential future research directions for handling these
challenges.

B. FUTURE RESEARCH DIRECTIONS

1) DATA AUGMENTATION

For automatic data generation, an important direction of
future research will be to devise unique data augmentation
methods for data generation. Also, it will be vital to develop
automated annotation methods for facilitating weakly super-
vised learning as manual annotation would not be feasible on
such a big scale.

2) QUANTIFYING LEATHER QUALITY

Provided ample grading data from domain experts, there is a
need to design methods that can interpolate on that data and
learn to quantify leather quality. This problem can be solved
with effective data augmentation techniques, and especially
generative adversarial networks may prove to be quite useful
for this problem, due to their recent success in similar set-
tings [76]. According to this proposal, the generator network
generates a rating for the leather quality, where the discrimi-
nator network attempts to discriminate it in terms of whether
it is from the human expert or the generator network.

3) SIMULTANEOUS DEFECT INSPECTION

To counter the challenge of simultaneous multi-defect detec-
tion, it is vital to resort to CNNs, owing to their inherent
capabilities and success in recent literature. CNN’s are an
inherent choice for simultaneous detection of multi-class cat-
egories, which is considered a fact after their triumph on large
scale data having thousands of classes. Hence, the design
and development of CNN based machine vision systems for
robust visual inspection of leather and hides is an important
future research direction.

For challenging cases, where a leather sample contains
several different types of a defect having a high degree of vari-
ability, the traditional CNN based methods may not obtain the
best results. For industrially applicable deep learning in such
scenarios, the problem of defect detection may be decoupled
from the problem of leather quality grading. This can be
achieved through an ensemble of CNNs.

IX. CONCLUSION

This paper presented a methodical and detailed review on
machine vision for leather defect inspection and grading.
A detailed review of the image analysis based leather defect
inspection methods that generally belong to the class of
heuristic or basic machine learning techniques was presented.
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Owing to the recent success of deep learning methods in
various related intelligent applications, deep learning archi-
tectures tailored to image classification, detection and seg-
mentation are discussed. A detailed review of the role of
deep learning methods in general visual inspection appli-
cations was presented, where recent CNN architectures are
classified and compared. The recent triumph of CNN based
methods for general defect inspection is a driver for their
application in leather defect detection/classification. Also,
these CNN architectures can act as a source of guidelines
for the design and development of novel solutions for leather
defect inspection.

In this work, we highlighted the challenges that exist in the
design and development of CNN based solutions for leather
defect inspection, where ample training data, quantification
of leather quality and high variability of defects are some of
the greatest challenges. We also presented research directions
for fellow researchers that should be investigated in the future
to overcome these challenges and enable advancements in
this very important area of research.
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