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ABSTRACT Comprehensive multimodal psychophysiological measurements and smart data analysis based
on wearable and low-cost technologies could enhance traditional air traffic controller (ATC) selection
process. Many recent studies in neuro-cognitive science and stress resilience illustrated effectiveness of these
multimodal measurements and appropriate metrics in comprehensive assessment of ATCs’ mental states,
such as cognitive workload, cognitive decline, attention deficit, fatigue, emotional and behavioural problems,
etc. Accordingly, this article is focused on innovation efforts in ATC selection protocols based on a set of
comprehensive stimuli and corresponding multimodal psychophysiological measurements. The concept of
enhancement of ATC selection process presented in this article includes complex physiological, oculometric
and speech measurements and appropriate metrics. From these multimodal measurements during specific
stimulation tasks, which include different versions of acoustic startle stimuli, airblasts, semantically relevant
aversive images and sounds, different versions of Stroop tests, visual tracking test, a complex set of
multimodal-multidimensional features is computed as predictors of ATC candidates’ future performance,
like: stress resilience, workload capacity, attention, visual performance, working memory etc. Such cost-
effective, more objective, non-invasive preliminary measurements, lasting no longer than 45 minutes may
have good discriminative power and might be used in ATC selection processes as enhancement of current
selection procedures. Comprehensive analysis of presented multimodal features during different experimen-
tal conditions might also be very useful in selection processes of other stressful professional jobs, like first
responders, pilots, astronauts etc.

INDEX TERMS ATC selection, multimodal physiology, performance assessment, resilience assessment,
cognitive capacity, attention deficit, fatigue, speech and oculometric features.

I. INTRODUCTION
During their operational duties, air traffic controllers (ATCs)
must be capable to perform multiple stressful tasks simulta-
neously, must have good situational awareness which enables
early perception and prediction of potential aircraft colli-
sions with tragic consequences, must make right decisions
under such conditions in a split of second and solve tough
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problems in stressful situations. It means that ATC profes-
sionals should be selected among candidates who are able to
stay calm under the complex cognitive stress and make right
decisions while processing different types of sensory infor-
mation. Therefore, their profession nowadays is regarded as
one of the most stressful occupations, which also requires
outstanding skills and knowledge. ATC selection process is
looking for individuals who can retain high level of attention,
focus, cognitive capabilities, situational awareness and emo-
tional stability under the pressure because potential human
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errors in such situations might cause catastrophic failures
and tragic consequences. Only a few percent of individuals
in the general population possess the required combination
of these traits. This means that ATC professional job is for
individuals with such extensive skills and, therefore, their
selection is extremely interdisciplinary and multidisciplinary
research topic. Therefore, the core of our concept of multi-
modal psychophysiological measurements in ATC selection
is search for individuals who are capable to retain high cog-
nitive capacities and emotional stability during high arousal
emotional excitation within stressful working environment.
These abilities need to be assessed during their selection and
training process to get individuals who are capable to cope
with all aspects of their future professional job. According
to Eurocontrol, ATCs in a recent survey said that they are
unafraid of their work, not nervous about problems they
encounter and able to relax when they need to [1]. Their
rigorous selection process and training enable them to handle
all the problems which they may face, and they are always
supported by their colleagues who are ready to help them.

ATC candidate performance assessment during the selec-
tion process should include the following criteria: good stress
resistance, i.e. abilities to successfully handle stressful air
traffic situations; high cognitive capacities; emotional stabil-
ity; multi-tasking capabilities, i.e. simultaneous processing
of multiple events; efficient real-time reasoning and cor-
rect decision making; good visual perception; good selec-
tive, divided and sustained attention; controllable alertness in
conflicting multi-tasking situations; good spatial orientation
and working memory; good mental arithmetic and logical
reasoning; high physical fitness; vigilance; ability to main-
tain high cognitive processing capabilities after 6 or 8 hours
working hours; high motivation; differentiation of relevant
from irrelevant events; good planning ability and task sorting
according to safety priorities; robust circadian rhythm and
high metabolic resources; fluency in English; team-working
skills within a complex and uncertain environment [2]–[5].
ATC candidates must also undergo a comprehensive medical
examination to be medically eligible for such a tough job. The
selection process of such resilient individuals who have the
mental toughness to withstand the highly stressful job should
minimise drop-out rate during their professional career, later
on. But, traditional ATC selection processes focused on a
variety of self-reports, questionnaires and interviews, pro-
vided by experienced psychologists and ATC instructors,
have well-known limitations related to the intrinsic biases and
subjective human nature. On the contrary, neurophysiological
measurements of the human performance envelope might
detect risky drifts towards safety boundary conditions and
identify invalid dynamic and functional responses [6]. Ideally,
through simultaneous psychological screening and real-time
multimodal measurements based on comprehensive set of
physiological, oculometric and speech features presented in
the article we can better estimate if individual examinee is
telling true or faking, or is exhausted with some complex
cognitive tasks, or is stressed etc. The proposed augmentation

of selection process with our comprehensive relatively short
multimodal psychophysiological measurements can signifi-
cantly improve and enhance traditional selection processes
and protocols. Therefore, our research has been focused on
evaluation of discriminative and predictive power of dif-
ferent stimuli and multimodal features in selection of the
best ATC candidates for further training and education to
get individuals with highest professional standards. Hav-
ing high-performance employees, less absenteeism and less
employee turnover are important goals and objectives, which
could bring new quality and efficiency into organisational
ATC selection process, increasing safety and saving time and
money.

Proposed cost-effective and non-invasive multimodal mea-
surements and features based on physiological, speech and
oculometric dynamic features have been analysed in this arti-
cle during a variety of stress-inducing stimuli and cognitive
tasks. Design of relevant stimulation paradigms and selec-
tion of specific multimodal output features which provide
reliable predictive information regarding candidates’ train-
ing and on-the-job future performance is an important sci-
entific challenge. Multimodal psychophysiological response
features regularly include: heart rate reaction to stress, heart
rate recovery after stress, heart rate variability, respiratory
sinus arrhythmia, root mean square of the successive heart
beat differences, phasic and tonic components of skin con-
ductance, electromyogram and electrodermal activity based
acoustic startle response, like startle reactivity and startle
habituation and discrimination of startle responses in danger
vs. safety experimental conditions, eye blinks, saccades, fix-
ations, pupil dilation and constriction, voice fundamental fre-
quency, energy, jitter, shimmer, formants, zero-crossing rate,
cepstral coefficients etc. Various manifestations of stress,
cognitive load and fatigue on human biological signals, phys-
iological measures like heart rate variability, visual attention,
saccadic dynamics or pupillary responses is well researched
topic [7]–[9]. Oculometric analyses, i.e. eye movements,
blinking patterns, and pupil diameter changes under various
visual and cognitive tasks may also offer valuable insight
into ATC candidates’ mental capabilities [10]–[12]. A vari-
ety of speech features, like prosodic features, fundamental
frequency, energy etc. computed during different candidates’
mental states and conditions, like stress, cognitive load or
fatigue, might be used as reliable predictors or indicators of
ATC candidates’ performance during their professional life
cycle. These types of speech features affected by phenomena
like stress, fatigue, or cognitive load might be used not only
during selection processes but also during normal or shift
duty operating hours as real-time indicators of their fatigue
or cognitive overload. Such speech features can be used in
real operational environment as prevention tools which can
minimise risks of catastrophic decision-making failures due
to ATC operator’s cognitive overload, fatigue, sleepiness etc.
For example, speech/voice data features have emerged as a
non-invasive, objective measure of stress, fatigue or cogni-
tive overload [13]–[21] and should be extremely valuable
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in applications in which spoken communication is already
extensively used. It should also be noted that speech features
generally remain the most viable approach due to its low-cost
and accessibility amongst the all modalities. Generally, it is
also well known that resilient individuals may have a shorter
startle habituation period than vulnerable ones and may be
less prone to effects of fatigue [22], [23].

Selection of optimised experimental paradigms which
elicit corresponding multimodal features that reflect the
impact of stress or cognitive overload on sympathetic or
parasympathetic activities, autonomic nervous system bal-
ance or autonomic regulatory capacity, is a prerequisite
for efficient multimodal experimentation in ATC selection
process.

The input stimulation tasks and paradigms are usually
related to: well-established generic stressful emotional stim-
uli, like acoustic startle, airblast, semantically relevant aver-
sive images and sounds, fear-potentiated startle, prepulse
inhibition etc.; a variety of cognitive tasks with different
workload intensity, like multiple versions of Stroop test [24]
which induce different levels of cognitive load and divided
attention, e.g. basic Stroop test with different variations that
are more attuned with Virtual Reality Stroop Test [25], or the
Emotional Stroop test [26]; a variety of serious games and
training simulators, etc.

The observed multimodal-multidimensional features vari-
ability and their statistical discriminative power justify
proposed research efforts toward improvements and enhance-
ment of traditional ATC selection process with these meth-
ods. Such comprehensive multimodal stimuli andmultimodal
metrics may have significant relevance especially in applica-
tions in which stress or cognitive overload may have huge
impact on human performance, like among ATCs. This con-
cept in the prediction of individual performance under the
heavy stress should also be very attractive for many other
highly stressful professional occupations, like pilots, first
responders, astronauts, military personnel, etc. Finding the
dominant set of stimulation tasks and multimodal features,
that are the most relevant for differentiating resilient ATC
candidates from vulnerable individuals, is a main objective
of our research, so far [27]–[34].

Finally, many research studies demonstrate the applica-
bility and the effectiveness of such neurophysiological mea-
surements in assessing human mental states such as mental
workload, cognition, emotion, fatigue, attention, vigilance,
cognitive self-control [6], [33], [35]–[41]. As a consequence,
proposed multimodal neurophysiological measurements may
play a key role in future research on the performance of
ATC operators in their working environments. Analyses of
neurophysiological signals and corresponding features have
the potential of providing reliable information about ATC
operators’ mental states, for example, if the operator’s work-
load is exceeding his/her cognitive capacity, or if some kind
of incapacitation is occurring, and can be used as valu-
able predictive information about ATC candidate’s abilities
to cope with such challenges in stressful professional life,

in combination with First European Air Traffic Controller
Selection Test (FEAST) and Dynamic Air Traffic Controller
Radar Test (DART), developed and managed by Eurocontrol
(http://feast-info.eurocontrol.int/).

II. METHODS
Design and development of new tools and methods for
ATC candidates’ performance assessment during the selec-
tion process should reflect the full spectrum of realistic
operational demands by relevant stimuli and tasks. Low-cost
wearable micro-sensors for measurements of the individ-
ual’s multimodal physiological, oculomotor, and speech
reactions [29], [42] have the potential to be used as an aug-
mentation of traditional selection of ATC candidates. Accord-
ingly, the laboratory version of our multimodal system for
their performance assessment during the selection process
enables measurements and analysis of multimodal responses
to specific stressful stimuli and tasks, related to physiological,
oculometric, and speech features [28], [30]–[33], [44], [43]
(Fig. 1).

This experimental research had been approved by the Croa-
tian Air Traffic Control authorities and the Ethical Committee
of the University of Zagreb Faculty of Electrical Engineering
and Computing. Signed informed consent was obtained from
each individual participating in this research. The Croatian
Air Traffic Control selected forty individuals for participation
in our research protocol from the pool of more than one thou-
sand applicants based on educational level, age, cognitive,
perceptual and physical abilities, personality traits, vocational
interests, psychological interviews, performance on simu-
lated exercises etc. These ATC candidates (35 male, 5 female,
mean age 23.97, standard deviation 2.12) underwent the
three-segment multimodal stimulation protocol related to:
• Stress Resilience: a 15-minute stimulation paradigm
for assessment of stress resilience while the candi-
date’s peripheral physiology was continuously recorded,
including ECG, EDA, respiration, and eyeblink EMG
signals;

• Visual Attention and Fatigue: a 10-minute stimulation
paradigm for assessment of visual attention and fatigue
via specific visual tasks, while the candidate’s eyemove-
ments were continuously recorded;

• Cognitive Load: a 7-minute stimulation paradigm for
induction of different levels of cognitive load via estab-
lished cognitive interference tasks that require verbal
responses, while the candidate’s voice signal was con-
tinuously recorded.

Stimulation paradigms and results related to each of the
three segments are described in the following sections. Prior
to exposure of the ATC candidates to all administered stim-
uli and tasks, they were familiarised with the details of the
experimental protocol.

III. STRESS RESILIENCE ASSESSMENT BASED ON
PHYSIOLOGICAL FEATURES
According to the extensive and growing research
literature, stress resilience represents a complex
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FIGURE 1. The laboratory version of the input-output multimodal system for selection performance
assessment IOMS-SPA, adapted from [44] (presented illustration was partially assembled from public
domain/free sources: https://publicdomainvectors.org, http://www.stockunlimited.com).

multimodal-multidimensional and multidisciplinary biologi-
cal, cognitive, emotional and behavioural phenomenonwhich
should be assessed by our cluster of multimodal features.
While it is well-recognized that resilience definitions mostly
include concepts of adversity and positive adaptation [45],
it can be more generally defined as an ability to main-
tain normal psychological, physiological and physical func-
tioning when exposed to extraordinary levels of stress and
trauma [46]. Specifically, definitions that link resilience to the
maintenance of normal functioning are particularly important
to stress resilience prediction in the context of many different
stressful professions. Such definition broadly implies that
stress resilience could be regarded as an important contributor
to operational performance under stress, as well as to healthy,
long and prosperous career in such professional occupations.
Generally compatible with such functional definitions of
resilience is the notion that relates resilience to an ability
to avoid accumulation of allostatic load following exposure
to stress over some limited time horizon, where allostatic
load can be measured via specific multidisciplinary features
in a variety of processes in the human organism that are
homeostatically regulated, relative to normal feature oscil-
lations over time due to circadian rhythms and seasonal
changes [47]. Compatibility of stress resilience definitions
from allostatic-load and functional standpoint is based on
findings that allostatic load contributes to impairments in
cognitive performance as well as overall health over longer
term [48], and might affect performance even in short-term
stressful military training settings [49]. The obtained results
in the previous literature illustrate discriminative power
and predictive potential of several physiological features to

separate resilient individuals from vulnerable ones [22], [23].
Furthermore, in our most recent research [44], the following
physiological features for objectivization of stress resilience
assessment confirmed discriminative power between resilient
and control participants:
• Respiratory sinus arrhythmia (RSA), which measures
heart rate variability (HRV) in phase with inhalation and
exhalation [50]. Higher measure of RSA should indicate
higher resilience to stress.

• Startle reactivity (SR), which measures the strength of
reflexive defensive responding to an aversive uncondi-
tioned stimulus, i.e., abrupt, loud noise [51]. Lower star-
tle reactivity should indicate higher resilience to stress.

• Cardiac allostasis (CA), whichmeasures adaptive reac-
tion to a stressful event, involving a vigorous cardiac
response to stress coupled with a significant cardiac
recovery in the aftermath [52]. Higher cardiac allostasis
should indicate higher resilience to stress.

A. STIMULI PARADIGMS AND TASKS
The stimulation paradigm for stress resilience assessment,
lasting 15 minutes, has been designed to elicit appropriate
physiological responses that are needed for computation of
resilience-related features and included the following blocks:
• Resting block. This block lasts 3 minutes and is pri-
marily used for computation of resting cardiac activity
features, in this work RSA.

• Block of auditory startle (AS) stimuli. This 5-minute
block is used for the elicitation and measurement of
various AS-based features. In this work, it is partic-
ularly important for the assessment of general startle
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FIGURE 2. A schematic overview of the stimulation paradigm used in resilience assessment of ATC
candidates, adapted from [44].

reactivity (SR), but various AS-based features that are
related to habituation and prepulse inhibition (PPI) of
the AS can be analysed as well [44].

• Block of fear-potentiated AS stimuli. This 5-minute
block is divided into 4 phases, where the candidates
are alternately confronted either with words ‘‘danger’’,
written in red, or words for ‘‘no danger’’, written in blue,
on a screen in front of them, and is important for the
assessment of the fear-potentiated startle (FPS) response
and danger vs. safety discrimination (DSD). However,
the threat of composite stimuli (combinations of aversive
250-ms airblasts, loud unpleasant sounds and aversive
pictures [31]) in the ‘‘danger’’ phases cause a strong
cardiac and EDA response [44]. Hence, ECG data from
this block (specifically the ‘‘danger’’ phases) is used
for computation of the ‘‘cardiac reaction’’ part in the
assessment of the CA feature.

• Recovery block. This block lasts 2 minutes and is used
for the assessment of cardiac recovery from laboratory
stress (the ‘‘danger’’ phases of the previous block). ECG
data from this block is used for computation of the
‘‘cardiac recovery’’ part in the assessment of the CA
feature.

Further details regarding the specific phases of the
described paradigm, such as stimulus delivery and

measurement equipment descriptions, would exceed the
scope of this paper, and are described in [44]. Fig. 2 shows
the timeline of the stimulation paradigm for stress
resilience assessment that was used in our experiment.
AS stimuli and sound components of the composite
stimuli were delivered binaurally through headphones
(Sennheiser PC 360 G4ME). Airblasts were directed at
the back of the neck. Visual components of the compos-
ite stimuli and ‘‘danger’’/‘‘no danger’’ instructions were
presented on a screen that was black otherwise. Just
before subject’s enrolment in the experiment, an experi-
menter verbally explained the study procedures to each
participant.

B. MEASUREMENTS AND RESULTS
Biopac MP150 system with all accompanying modality-
specific modules was used for collecting the ECG, EMG,
EDA and respiratory data, at a sampling frequency
of 1000 Hz. Gazepoint GP3 HD eye-tracker was used for
spontaneous blink detection, collecting data at a frequency
of 150 Hz. The synchronisation of the stimulus delivery and
data acquisition hardware was performed by our IOMS-SPA
software. A more detailed description of the hardware of our
laboratory system can be found in [31].
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After pre-processing of physiological signals (inter-beat
interval (IBI) time-series based on the detected QRS com-
plexes, filtered respiratory and EMGdata), 3 selected features
were computed for each ATC candidate in the following way:

• RSA – Four complementary RSA features were cal-
culated from the accordingly processed respiratory
and ECG data collected during the Resting block
(3 minutes at the beginning of the paradigm), includ-
ing: mean peak-to-trough difference in IBI times per
respiratory cycle; time-domain correlation between the
baseline-corrected IBI time series and respiratory sig-
nal; relative HRV spectral power around the breathing
frequency; frequency-domain correlation between HRV
and breathing. These methods have been validated and
explained in detail in [44]. Final RSA estimate for each
candidate is the PCA-based fusion of the four individual
RSA features.

• SR – The first 4 normalised EMG-based AS responses
(Block of auditory startle (AS) stimuli) have been used
for the assessment of SR [44]. The average amplitude
of the EMG responses preceding the spontaneous blinks
during the Resting block is used as a reference.

• CA – We measured cardiac reaction by the reduction
in mean IBI time, and HRV, from baseline to ‘‘danger’’
phases (Block of fear-potentiated AS stimuli), and car-
diac recovery by the increase inmean IBI andHRV, from
‘‘danger’’ to recovery phase (Recovery block). Final CA
estimate for each candidate is the PCA-based fusion of
the four individual cardiac reaction and cardiac recovery
features.

In Fig. 3, we present the two most distinct ATC candidates
concerning each of the three computed features, illustrating
the inter-candidate variability in the three selected features.

The discriminative power of physiological RSA, SR and
CA features, illustrated by inter-candidate variability
in Fig. 3, enables selection of the most resilient individuals
from a group of ATC candidates. Therefore, it is reasonable
to assume that the subset of these 3 features, which were
statistically significant discriminators between resilient and
control group [44], might have applicable predictive power
in ATC selection process.

IV. VISUAL ATTENTION AND FATIGUE ASSESSMENT
BASED ON OCULOMETRIC FEATURES
Healthy oculomotor system is vitally important for the suc-
cess of ATCs in their professional job that require mainte-
nance of high oculomotor capabilities under stress, cognitive
overload and fatigue. Among several different types of eye
movements [53], [54], a few types particularly important
for calculation of relevant oculometric performance features
for ATCs include saccadic and smooth pursuit movements.
Saccadic eye movements abruptly orient the eyes on the
target located in the periphery of the visual field. Velocity
of a saccade cannot be controlled voluntarily and dominantly
depends on the distance of the target from the centre of the

visual field [53]; however, saccade velocity can be impacted
by the direction of saccade [55] and can be slowed down
by fatigue, drugs, or different pathological states [53]. The
smooth-pursuit movements enable the eyes to track smoothly
moving target, i.e. to keep such target in the centre of the
visual field. Beside these types of eye movements, important
quality of healthy oculomotor system is an ability to maintain
the stationary target of interest in the centre of the visual
field, which requires an active fixation system that inhibits
eye movements when stationary target is examined [53].

From the described eye movements a series of oculo-
metric features can be calculated using appropriate eye
tracking technology, like: saccadic peak velocity and accel-
eration, saccadic trajectory deviation, saccadic latency, fix-
ation duration, fixation area etc. Saccadic peak velocity
has been particularly shown to change with varying lev-
els of stress and fatigue [56]. It was proposed to be an
index of arousal based on a review of relevant experimen-
tal evidence [55], which showed that saccadic velocities
can be decreased by lower arousal and increased by higher
arousal. Analyses of more complex eye movements related to
spatio-temporal sequences of saccades, fixations and smooth-
pursuit movements allow the study of the subject’s screen
attention and scan order, which has been used in research
on situational awareness, information-seeking and decision-
making behaviour in stressful occupations, like ATCs and
pilots [57]–[61].

In addition to the eye movements themselves, in occu-
pations requiring high cognitive performance under stress,
like air traffic control, it is also important to observe the
number of blinks per minute and the change of the pupil
diameter. The number of blinks per minute is associated with
learning processes and at least partly modulated by the levels
of dopamine in the brain [62], [63]. Spontaneous blinks occur
due to the physiological need to maintain moisture of the eye-
ball, but their rate of occurrence and duration can be affected
by a variety of factors, for example [64]: visually demanding
tasks can decrease blink rate and higher sympathetic nervous
system activity increases it; blinks of longer duration can
indicate alertness degradation and blinks of shorter duration
are associated with increased visual load; higher blink rate
and long eyelid closurewere shown to be predictors of error in
fatigued pilots. Pupil diameter is controlled by noradrenergic
neurons from the locus coeruleus nucleus [65], [66], which
is a major node that promotes noradrenergic signaling in the
brain during stress response [67] and is involved in regulation
of arousal and autonomic activity [68]. Furthermore, blink
analyses and pupillometry have been used in air traffic control
human factors research, particularly focusing on workload
assessment [35], [40].

Based on the presented literature on the relevance of eye
tracking for air traffic control research, we were focused
on measurement of oculometric features calculated from
the dynamics of gaze patterns, i.e. saccades and fixations,
as well as specific visual attention performance measures,
in response to relatively generic and demanding visual tasks
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FIGURE 3. Visualisation of the inter-candidate variability by the three selected features: RSA (left), SR (middle)
and CA (right). Relevant data for the highest-scoring (top) and lowest-scoring (bottom) candidate are
illustrated. Adapted from [44].

of short duration. Our goal was to test the visual attention
abilities of candidates and to generate fatiguewith stimulation
paradigm lasting up to 10 minutes, which would be efficient
enough for application in selection processes of ATCs.

A. STIMULI PARADIGMS AND TASKS
Eye tracking stimulation paradigm applied to ATC candi-
dates consisted of two types of tasks, alternately arranged
in seven segments. Each segment of the first type of task,
called Reflex Dot Pursuit (RDP), lasted for 1 minute and
was used for the assessment of saccade- and fixation-related
features. This task was motivated by prior research works that
assessed random saccadic eye movements [10], [69]. During
RDP task, the candidate was instructed to track the red dot
as it consecutively appeared across the display at random
locations, whenever the eye tracking system registered that
the candidate’s gaze reached the dot.

Segments of the second type of task, calledMultiple Object
Tracking (MOT), lasted for 2 minutes each and were related
to single and multiple object tracking at three difficulty lev-
els. This task was introduced based on: understanding that
‘‘ATC domain-relevant abilities’’ include breadth of visual
attention [4]; solid literature foundation in the area ofmultiple
object tracking [11], [70]–[72]; and, particularly, evidence
that air-traffic control experts demonstrated better multiple
object tracking performance than novices [73]. MOT task
consisted of tracking 1 or 3 initially highlighted dots from
the total of 8 or 10 dots during their continuous motion, which
included mutual collisions.

Altogether, the experimental paradigm lasted 10 minutes
and consisted of the following segments:

1. RDP task (1 minute);
2. MOT task, difficulty level I (2 minutes) – 8 subtasks

related to tracking 1 dot from the total of 8 dots;

FIGURE 4. RDP and MOT visualisation.

3. RDP task (1 minute);
4. MOT task, difficulty level II (2 minutes) – 8 subtasks

related to tracking 3 adjacent dots from a total of 8 dots;
5. RDP task (1 minute);
6. MOT task, difficulty level III (2 minutes) – 8 subtasks

related to tracking 3 non-adjacent dots from a total
of 10 dots;

7. RDP task (1 minute).
Illustrations of RDP and MOT tasks at different difficulty

levels are presented in Fig. 4.

B. MEASUREMENTS AND RESULTS
Our research efforts related to the oculometric features and
eye gaze dynamic analyses of forty ATC candidates in
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FIGURE 5. Saccadic peak velocities during the first and the last RDP
segment among ATC candidates, sorted into bins depending on the visual
angle.

the selection process has been done with the specialised
eye tracking equipment Gazepoint GP3 HD and stimulation
paradigms related to the described RDP andMOT tasks. Data
acquisition frequency was 150 Hz.

Data collected during the first and last segment of RDP
were compared to see if there exist measurable changes in
oculometric features. In each 1-minute RDP segment, par-
ticipants managed to fixate at over 200 red dots. Initial data
processing consisted of detecting and classifying fixations,
saccades, and valid reflex pursuits. Valid reflex pursuits were
determined by gaze latency, which in the case of reflexive
saccades is between 80 and 250 ms [74]. From pre-processed
data, the following oculometric features were calculated for
each valid reflex pursuit: saccadic peak velocity (SPV), i.e.
maximum velocity calculated as the distance between two
subsequent readings of saccade movement multiplied with
the rate of data acquisition; saccadic peak acceleration (SPA),
i.e. maximum acceleration calculated as the difference of
subsequent saccadic velocities multiplied with the rate of data
acquisition; saccadic trajectory deviation (STD), i.e. mea-
sured trajectory length divided by Euclidian distance between
centres of fixations; fixation area (FA), i.e. the area bounded
by convex hull of all gaze readings within the perimeter of the
gazed dot; fixation duration (FD), i.e duration of subsequent
gaze readings within the perimeter of the gazed dot.

When plotting saccade feature visualisations, saccades
were sorted into bins depending on the visual angle between
subsequent fixations, since it is known that saccadic veloc-
ity cannot be controlled voluntarily, but instead depends on
the visual angle [53]. The following visual angle bins were
applied: P1〈0◦ 10◦〉, P2〈10◦ 15◦〉, P3〈15◦ 20◦〉, P4〈20◦ 25◦〉,
P5〈25◦ 35◦〉.
Fig. 5 shows distributions of SPV for ATC candidates.

On each violin plot, 25th-50th-75th percentiles are marked
with horizontal white lines. It can be generally seen that dis-
tribution of SPV7, i.e. saccadic peak velocity during the last,
7th, segment of the paradigm, is a few percent lower compared
to saccadic peak velocity distribution from the beginning of

the experiment, i.e. during the 1st segment (SPV1). At the
bottom of each violin plot, it is shown how much the SPV
is reduced from the beginning to the end of experiment per
bin, expressed as a percentage. Similar results were obtained
for saccadic peak acceleration, which is expected since it is a
derivative of SPV, while the remaining three features did not
show any notable differences between the first and the last
RDP segment.

MOT results for each of the 3 difficulty levels were
scored separately while keeping track of correct and incorrect
answers. Distribution of correct answers for ATC candidates
in Fig. 6 shows that ATC candidates’ accuracy decreases and
variance of the scores increases with the higher task difficulty.

FIGURE 6. Histogram of ATC candidates’ correct answers for the
3 difficulty levels of MOT.

During both RDP and MOT, a change in pupil diameter
was measured in order to index stress experienced by the
candidates. Based on results presented in Table 1, accuracy
of ATC candidates on MOT ‘difficulty level II’ segment was
negatively correlated with the average pupil diameter during
MOT ‘difficulty level II’ segment (PD4) normalised by the
average pupil diameter before MOT segments, i.e. during the
initial RDP segment of the stimulation paradigm (PD1) (p <

0.01). Analogous results were obtained for performance of
ATC candidates on theMOT ‘difficulty level III’ segment and
normalised average pupil diameter during MOT ‘difficulty

TABLE 1. Correlations between the number of correct answers on
specific MOT segments and in total (i.e. performance indices) and the
corresponding normalised average pupil diameters (i.e. stress indices),
among ATC candidates.
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level III’ segment, i.e. PD6/PD1 (p< 0.02), as well as for total
MOT performance and normalised average pupil diameter
after all MOT segments, i.e. PD7/PD1 (p < 0.01). These
results indicate that ATC candidates were experiencing higher
stress, i.e. pupil dilation, with a decrease in their performance
on the MOT.

A selected experimental paradigm based on RDP task for
analysis of saccadic eye movements and MOT task for anal-
ysis of multiple-object tracking requires high visual atten-
tion and overall oculomotor performance. Such compact
10-minute paradigm has demonstrated dominantly fatigue
effects on oculometric SPV feature of ATC candidates,
as well as variance in accuracy of their object-tracking
visual attention strategies which depends on the tracking
task difficulty. These results represent desirable properties
of the paradigm for its fine-tuning and further application
and validation within ATC selection processes. MOT perfor-
mance analyses, particularly on the most challenging task
segment that required simultaneous tracking of 3 dots out
of 10 points, illustrate that the highest performing ATC candi-
dates exhibit considerably superior object-tracking accuracy
than the lowest-performing candidates, since the accuracies
range from 20% to 80%. Additionally, the results obtained on
correlations of normalised pupil diameter feature PD7/PD1
with total MOT performance (Table 1) suggest that ATC
candidates experienced higher stress when making more mis-
takes during MOT, likely due to pressure of competing for
an attractive job. Altogether, based on the obtained results,
the following three features are applicable in future ATC
selection processes: average SPV reduction from the first to
the last segment (SPVrd), MOT performance during difficulty
level III (MOTIII), and normalised pupil diameter PD7/PD1.
The first two features are also mutually uncorrelated in our
sample of ATC candidates, suggesting that each of these
features should represent relatively independent source of
information regarding candidates in future ATC selection
processes.

V. COGNITIVE LOAD ASSESSMENT BASED ON
SPEECH FEATURES
Speech production is a process which depends on a complex
interaction between central and peripheral nervous system
innervating around 90-120 muscles. Brain regions vital for
speech productions are related to: Broca’s area; Premotor
cortex; Wernicke’s area; Angular gyrus, etc. [75]. Broca’s
area, by the premotor cortex, sends nerve impulses to all
muscles involved in speech production. The most promi-
nent among them are the vocal cords that will either con-
tract or relax. Simultaneously, the respiratory muscles will
compress the lungs, and a current of air will flow over the
vocal cords. Following the vocal cords, air flows through
the rest of the vocal tract, ending with the lips. The vocal
tract can be represented by a system with a specific fre-
quency response that defines the characteristics of the pro-
duced sound based on its shape, length, thermal capacity, etc.
Specific sounds are a result of various small perturbations

in the air fluctuation that produces a unique frequency
response for the vocal cord excitation signal coming from
the lower portions of the speech production system. These
types of perturbations are affected by states like stress,
fatigue, cognitive load or physical exertion and are, therefore,
highly relevant for our research related to the ATC selection
process.

Cognitive load is defined as ‘‘the load imposed on one’s
cognitive system when performing a particular task’’ [76].
It means that cognitive overload can be considered as
a type of stress, according to the definition of stress:
‘‘psycho-physiological state characterised by subjective
strain, dysfunctional physiological activity and deterioration
of performance’’ [20]. Cognitive overload can be caused
by different factors, such as variations of alertness, mental
fatigue, mental effort, complexity of the task, attentional
variations and drowsiness. In the context of ATC selection
process cognitive load and its effects on speech features have
already been researched [15]–[18], [19]. In our cognitive load
experiment, we apply different versions of Stroop test, which
have also been used in the context of selection and training of
ATCs, e.g. in the analysis of ATC trainees’ cognitive control
strategies [77]. ATC trainees exhibited higher Stroop test per-
formance, i.e. reduced cognitive interference, in comparison
to the control group.

Most of the research into the effects of cognitive load on
speech are related to classification of speaker cognitive load
from spoken utterances or identification of speech features
that show meaningful variation under varying cognitive load
conditions. Some of the earliest papers in the field, like [78]
and [79], discuss these effects under experimental conditions,
like arithmetic and visual tracking tasks. Cognitive load clas-
sification using speech/voice data has emerged lately along-
side the more widespread use of machine learning methods
in the late 2000s. Most of the papers on the topic follow
the same procedure, they present novel handmade speech
features as extensions of basic speech analysis feature sets,
use them for classification of cognitive load in a particular
dataset, and finally present the improvements in classifier
scores when using the presented features. Some of the first
papers that used such a framework [80], [81] present Gaussian
Mixture Modelling of cognitive load of reading comprehen-
sion tasks and Stroop task variations using basic prosodic and
cepstral features. These results were later extended by addi-
tional speech features, namely: spectral centroid frequency
and amplitude [82], cepstral peak prominence and harmonic-
to-noise ratio [83] and vowel formant trajectory-based fea-
tures [84]. More lately, a comparative analysis of various
machine learningmethods and speech feature sets for classifi-
cation of cognitive load induced by different Stroop test vari-
ations was conducted [85]. Based on the presented literature,
our research on speech physiological reactions during ATC
selection process is focused on the impact of cognitive-load-
induced sympathetic activity on verbal responses to Stroop
tasks, from which a comprehensive set of speech features is
computed.
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A. STIMULI PARADIGMS AND TASKS
The experimental paradigm applied in the ATC selection
process was based on three variations of the Stroop test: Batch
Stroop tasks, Time-constrained Stroop tasks and Divided
attention Stroop tasks. In all three variants, the Stroop tasks
used six colours (black, blue, green, yellow, red and orange)
and the experimental stimuli were delivered on a computer
screen. All the Stroop test variations were based on verbal
task answers which enabled us to analyse the cognitive load
and its effects on the participants’ speech. The experimen-
tal paradigm was 7 minutes long and consisted of 5 main
parts:

• Baseline reading task. This 1-minute block was used
to produce sufficient speech/voice data for any required
data normalisations or post-paradigm analyses (see the
last block of the paradigm). The participants had to read
a generic text.

• Batch Stroop tasks. The batch variant of the Stroop test
lasted for 1 minute and consisted of 6 batches of 10 tasks
(each task remained on the computer screen for 10 sec-
onds). In three of the batches, the colour words and the
font colours in which they were written were congruent,
while in the other three they were incongruent.

• Time-constrained Stroop tasks. This block lasted
for 1.5 minutes. In this variant of the Stroop test,
90 consecutive tasks were exchanged on the screen
in 0.75-1 second intervals, while the congruent-
incongruent conditions were randomised.

• Divided attention Stroop tasks. This variant of Stroop
test lasted for 2.5 minutes and consisted of 6 blocks
of 20 tasks. The task schedule was similar to the
time-constrained Stroop tasks, but with consecutive
tasks exchanging on the screen in 1.25-second inter-
vals. This Stroop test was accompanied by the auditory
stimuli counting task. Two types of auditory stimuli
(high and low tone) were administered through the head-
phones, and the participants’ task was to count the high
tones. After each block of 20 Stroop tasks, the partici-
pants were required to say the number of high tones they
counted in the current block.

• Reading task at the end. At the end of the paradigm,
the participants had to read the same text from the begin-
ning of the paradigm. This allowed for the analysis of the
effects of the experimental paradigm on the participants’
speech features.

On the basis of these tasks, we can estimate performance-
basedmeasures of perceptual and processing speed, cognitive
inhibition, and divided and selective attention (multi-tasking
capabilities), which are generally relevant for the ATC pro-
fession [4]. All the Stroop test variations were based on
verbal task answers which additionally enables us to perform
speech-based analyses of individual mental states like cogni-
tive load/overload. The Stroop task was used in such a context
in a number of previous papers, both in ATC samples and
military applications [16], [17], [19], [83], [84], [86], [87].

The task answers were recorded using the built-in headset
microphone (Sennheiser PC 360 G4ME). Visualisation of the
whole speech-based Stroop paradigm can be seen in Fig. 7.

B. MEASUREMENTS AND RESULTS
After the design of an appropriate stimulation paradigm
(Fig. 7) and ATC candidate data collection, speech-based
analysis includes the following steps: segmentation of
answer utterances; extraction of Low-Level-Descriptive sig-
nals (LLDs) from the segmented utterances; computation of
statistical features over the extracted LLDs of segmented
utterances, e.g. 10th and 90th centiles, arithmetic mean,
median, standard deviation, minimum and maximum etc.;
labelling the computed statistical features; performing the
appropriate statistical analysis and inference.

LLDs are continuous signals computed/estimated by using
signal processing techniques (spectral and cepstral analy-
sis, autocorrelation analysis, etc.) that aim to describe vocal
source and vocal tract behaviour for specific recorded speech
utterances. For example, F0 is an estimate of the base har-
monic that the vibrating vocal cords are producing during
vocalisation; the RMS is a signal-processing-based estimate
of the energy of the sound pressure produced at the lips during
vocalisation and recorded by the microphone. LLDs like
the formant frequencies (F1-F4) or Mel Frequency Cepstral
Coefficients (MFCCs) aim to describe the spectral and cep-
stral behaviour of the recorded utterances. All LLD extraction
was performed by using the openSMILE feature extraction
tool [88] which is a standard research and industry tool. The
systemwas used in a configuration with the Extended Geneva
Minimalistic Acoustic Parameter Set for Voice Research
and Affective Computing (eGeMAPS) [89] which is also a
high-performing standard set of LLDs, widely used in affec-
tive research of speech.

To identify the features that significantly discriminate
between the two Stroop conditions (congruent vs. incongru-
ent), we have used linear mixed effects models (LMEM),
which were used in our previous research on speech features
of acoustic startle responses [32]. The LMEMs enabled us
to model individual feature variations over the two Stroop
conditions, taking into account the three Stroop task types,
the sex of the participants and inter-subject variability. The
fitted LMEM models were then tested using the F test for
all features that exhibit statistically significant differences
(p<0.01) between the two Stroop conditions.

A total of 26 features exhibited statistically significant
differences between the two Stroop conditions. Among the
identified features, three groups are most prominent:
• features related to voice intensity, e.g. statistic function-
als of voice loudness (perceived RMS voice energy) like
loudness mean and median, 20th and 80th percentiles
and several others

• features related to the spectral characteristic of speech,
e.g. F0, formant amplitudes (prominent peaks in the
spectral characteristic) in relation to F0, spectral flux,
MFCCs, jitter, etc.
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FIGURE 7. Visualisation of the ATC cognitive load Stroop-based paradigm with all its main parts. The colour
words and instructions were written in Croatian.

• prosodic features related to speech rate/speed, e.g.
number of voiced segments per second and mean
voiced/unvoiced segment lengths in seconds.

A significant proportion of the identified features
is already known to be related to sympathetic activ-
ity [16], [17], [19], [86], [87], [83], [84]. For example, F0 and
loudness are expected to rise in the cases of heightened
sympathetic activity [31], with changes in the whole spectral
composition ‘‘shifting’’ to higher values.

To illustrate the inter-candidate variance in the speech-
based measure of induced cognitive load, we have chosen
loudness_mean, due to its ease of interpretability and the
consistent presence of various statistical descriptives of the
loudness LLD in the final set of 26 features. The induced
cognitive load for each candidate was represented by the
loudness_mean difference (LMD) feature: calculated as the
difference between the average value of loudness_mean
across the incongruent Stroop condition (higher cognitive
load) and the average value of loudness_mean across the
congruent Stroop condition (lower cognitive load). The cor-
responding distribution (histogram) is shown in Fig. 8.

The psychometric Stroop test performance-based features
extracted from the Time-constrained Stroop tasks were: the
average reaction time for the congruent condition (directly

FIGURE 8. Distribution of the LMD measure of sympathetic arousal
induced by cognitive load.

measures perceptive speed); the average reaction time for the
incongruent Stroop tasks (measures both perceptive speed
and cognitive inhibition); the difference in average reac-
tion times between the incongruent and congruent Stroop
tasks (measures cognitive inhibition); and relative error rate
feature STtc: ratio of incorrect responses vs. total number
of individual Stroop tasks. The psychometric Stroop test
performance-based feature STda extracted from the Divided
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FIGURE 9. Distributions of task performance metrics for the
Time-constrained Stroop tasks (STtc, left) and the high tone counting
during Divided attention Stroop tasks (STda, right).

attention Stroop tasks was a mean absolute relative error
of the candidates’ responses in the high tone counting task.
Illustration of task evaluation metrics for both the Divided
attention Stroop tasks and Time-constrained Stroop tasks can
be seen in Fig. 9 which shows that the feature distributions
are particularly suited for identification of low-performing
candidates, due to the pronounced positive skewness in both
distributions.

From the set of speech features whichwere extracted, rank-
ing of the candidates can be even intuitively interpreted, e.g.,
for a normally distributed sample of response times to Stroop
tasks, participants with lower response times can be regarded
as superior to those with higher response times. In the context
of speech features responses to cognitive overload as a type
of stress [16], [19], [86], [87], participants with lower LMD
are exhibiting either lower sympathetic responses, or higher
parasympathetic responses, or better balance of autonomic
nervous system. Such individuals would be better suited for
inherently highly stressful jobs, like pilots, ATCs etc.

Finally, we have to stress that speech data are more readily
available than peripheral physiology since many practical
applications in aviation already use speech communication
systems. Therefore, we do believe that speech research in the
context of selection process may have significant potential.

VI. DISCUSSION
High performance of ATC candidates requires extraordinary
cognitive and emotional human potential, which might be
assessed by proposed clusters of different multimodal fea-
tures presented in this article. In this paper, we selected a set
of 3 × 3 multimodal physiological, oculometric and speech
features as tools and means for ATC candidates’ performance
evaluation and selection. Radar chart in Fig. 10 illustrates
candidates’ variability within multimodal and multidimen-
sional performance space, which is spanned by 9 selected
axes for evaluation of ATC candidates, related to stress
resilience, visual attention and fatigue, as well as cognitive
load. 3×3 multimodal radar chart includes: 3 features, RSA,
SR and CA, for stress resilience assessment based on phys-
iological measurements; 3 features, SPVrd, PD7/PD1, and

MOTIII for visual attention and fatigue assessment based on
oculometric measurements; 3 features, LMD, STtc, and STda,
for cognitive load assessment based on speechmeasurements.
Thick line connects medians on each axis, shaded area repre-
sents interquartile range of each feature, while the endpoints
of each axis correspond to the minimum and maximum value
of the respective feature in our sample of ATC candidates.
Outer values of each axis on the radar chart are associated
with better ATC performance. Proposed 3 × 3 multimodal
metrics integrated with FEAST/DART & AT-SAT can be
used as enhancement of standardised ATC selection process.
Such integration can minimise the attrition/drop-out rate of
selectedATC candidates in future selection processes. Specif-
ically, better performing ATC candidates should have higher
RSA and CA features, lower SR, SPVrd, PD7/PD1 and LMD
features, higher MOTIII scoring and lower relative errors STtc
and STda than the rest of the group. This was the first time,
to the best of our knowledge, that such integrated multi-
modal psychophysiological assessment has been applied in
the ATC selection process. Applied stimulation paradigms
are low-cost and relatively short, less than 45 minutes. Pro-
posed multidimensional ATC performance space emphasises
the importance of combining different multimodal features
in enhancing performance predictive power, i.e. any single
feature in assessment of complex human behavioural perfor-
mance is a relatively weak predictor, what underscores the
need to carefully combine multimodal features in the ATC
selection process. Therefore, the need to combine different
multimodal features is logical step forward in enhancement of
ATC selection protocols, in order to minimise relatively high
attrition rates during the training period before full ATC qual-
ification, which can reach and exceed 30% in both civilian
and military settings [3], [90], [91]. Proposed multimodal and
multidimensional ATC performance space and its extensions
with the most pertinent bio-neuro-psycho-social features
should be an important step forward to comprehensive multi-
disciplinary selection process, which has to take into account
discriminative power of each feature and its cost. Prospective
research based on machine learning and data-driven integra-
tion of various features, which has potential to discriminate
high- vs. low-performing ATC candidates, deserves addi-
tional efforts. Features selection and classification based on
machine learning, as opposed to statistical methods, that are
mostly used in related work, would explore more complex
interactions between various features in a highly non-linear
manner associated with the outcome performance. Addi-
tionally, how we label data needs particular attention, like
fuzzy logic labelling along hierarchical data chain, including:
stress resilience (‘‘high’’, ‘‘medium’’, ‘‘low’’), visual atten-
tion (‘‘high’’, ‘‘medium’’, ‘‘low’’) and cognitive capacities
(‘‘high’’, ‘‘medium’’, ‘‘low’’), as well as overall on-the-job
performance (‘‘high’’, ‘‘medium’’, ‘‘low’’). This labelling
process requires longitudinal prospective research years after
the initial measurement but could provide highly valuable
insight into the predictive power of the proposed approach.
Proposed physiological, oculometric and speech features
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FIGURE 10. 3 × 3 multimodal performance assessment radar chart.

could be combined with different psychological question-
naires, like The Connor-Davidson Resilience scale (CD-
RISC) [92], State-Trait Anxiety Inventory (STAI) [93], Beck
Depression Inventory (BDI) [94] etc., as well as domain
expert assessments, to enhance the quality of ATC selection
process.

Finally, the presented concept of technologically assisted
ATC selection process using multimodal features during
different experimental conditions might also strengthen the
quality of future selection process of other stressful occupa-
tions like first responders, civilian and military pilots, astro-
nauts and military personnel.
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