
SPECIAL SECTION ON DEEP LEARNING: SECURITY AND FORENSICS RESEARCH
ADVANCES AND CHALLENGES

Received November 5, 2019, accepted November 29, 2019, date of publication December 3, 2019,
date of current version December 19, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957429

Feature Selection for Malware Detection Based
on Reinforcement Learning
ZHIYANG FANG , JUNFENG WANG , JIAXUAN GENG , AND XUAN KAN
College of Computer Science, Sichuan University, Chengdu 610065, China

Corresponding author: Junfeng Wang (wangjf@scu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2019QY1404 and Grant
2018YFB0804503, in part by the National Natural Science Foundation of China under Grant U1836103, and in part by the Technology
Research and Development Program of Sichuan, China, under Grant 2017GZDZX0002 and Grant 19ZDZX0024.

ABSTRACT Machine learning based malware detection has been proved great success in the past few
years. Most of the conventional methods are based on supervised learning, which relies on static features
with labels. While selecting static features requires both human expertise and labor. New selections, which
fix features from a wide range, are handcrafted by careful manual experimentation or modified from
existing methods. Despite their success, the static features are still hard to be determined. In this paper,
a Deep Q-learning based Feature Selection Architecture (DQFSA) is introduced to cover the deficiencies
of traditional methods. The proposed architecture automatically selects a small set of highly differentiated
features for malware detection task without human intervention. DQFSA trains an agent through Q-learning
to maximize the expected accuracy of the classifiers on a validation dataset by sequentially interacting with
the features space. The agent, based on an ε-greedy exploration strategy and experience replay, explores a
large but finite space of possible actions and iteratively discovers selections with improved performance on
the learning task. Actions are a set of reasonable choices, which indicate whether a feature is chosen or not.
Extensive experimental results indicate that the proposed DQFSA outperforms existing baseline approaches
for feature selection on malware detection with minimum features, improves the generalization performance
of the learning model and reduces human intervention. More specifically, the proposed architecture’s
underlying representation is robust enough for re-calibrating models to other domains of information
security.

INDEX TERMS Feature selection, malware detection, deep reinforcement learning, Q-learning.

I. INTRODUCTION
Malware is malicious code which designed to compromise
information security by gathering sensitive information from
computer system or making unauthorized access to com-
puter system. The proliferation of malware variants means
that detecting malware is one of the biggest challenges in
information security [1]–[4]. To tackle the malware detection
problem, many researchers invented new methods to pro-
tect computer system. Generally, they characterized training
samples by extracting diverse features from programs files.
Classification algorithms use these features and trained to
complete this task.

Typically, common feature extraction methods mainly
depend on signature [5], format structure [6], raw binary

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhen Qin.

features [7], multi-view features [8] and so on. These afore-
mentioned methods partially capture the distinguishable
information between benign and malicious programs. While
selecting features, a detector constructor may confront the
following challenges:
• the features extracting process can rarely done automat-
ically and mainly based on human experience;

• the extracted features can not comprehensively cover the
key distinguishing characteristics of samples;

• a wide range of indicators can gain better detection
achievement, but lead to redundancy and slow down the
training speed.

The number of possible choices makes the combination space
of features extremely large and hence, infeasible for an
exhaustive manual search.

In this work, a general architecture (DQFSA) using deep
Q-learning to automatically select features for classifying

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 176177

https://orcid.org/0000-0001-6502-8053
https://orcid.org/0000-0003-1699-2270
https://orcid.org/0000-0001-7550-3970
https://orcid.org/0000-0003-4289-8106

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

malware is proposed. The novel Q-learning agent whose goal
is to discover an optimal feature set that performs well on
malware classification without human intervention. The task
of learning agent is to sequentially pick features for amachine
learning model. Furthermore, the classification accuracy of
the given machine learning model is served as reward to
feed to agent for determining proper features. By using the
ε-greedy strategy, agent learns through random exploration
and slowly begins to exploit its findings to select optimal
indicators. Based on priority experience replay [9], the learn-
ing process is accelerated by repeated memory sampling.
This architecture discovers less features automatically for
detection. Detection accuracy is mainly used to access the
performance of this architecture. The results demonstrate that
proposed method competitive against the means that leverage
more features. In this study, the static Windows portable
executable (PE) malicious software are used as the training
samples to validate the proposed DQFSA.

Moreover, it worth mentioning that the proposed method
in this paper is not limited to the software with portable
executable format, and furthermore it can be extended to other
sorts of malware. Considering that the advantage—trial-and-
error search—of the reinforcement learning, this DQFSA can
be applied to other selection tasks.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III gives a glance at
the overall framework. Sections IV describes the proposed
DQFSA in details. Section V presents the experimental setup
and numerical simulation results. Section VI concludes the
paper.

II. RELATED WORK
A. FEATURE SELECTION METHODS
In the traditional static malware detection, feature extrac-
tion methods can be roughly divided into signature feature
extraction, format information extraction, unstructured fea-
ture extraction and multiple abstract feature extraction [10].
The signature-based methods had achieved admirable results
as the earliest malware detection technique [5], [11]. These
methods extract some field of the header or calculate an
unique number, which similar to hash code, from a known
malware file. The extracted attributes, usually called signa-
ture features, are stored to the database to verify a new file
malicious or not. However, this technique can never detect
new malware for the novel signature features are the only
basis of discrimination.

According to Peter [12], malware is different from benign
software in static structure characteristics. Some heuristic
detection methods used static structure characteristics as a
part of the features. However, some structural features could
not distinguish benign software andmalware, or even affected
the detection results and speed. Some scholars had proposed a
series methods for the extracting process of malware features.
In the studies [13], the static structured features and some sta-
tistical features of PE files were used as the basic feature set,
and several dimensionality reduction technique were applied

to filter the original features. The detection rate exceeded
99%. Raman et al. [6] divided the characteristics of PE file
into 7 parts and select 7 features from each of these part. The
training was carried out with IBk, J48, J48 Graft, PART, Ran-
dom Forest and Ridor classifier respectively. Finally, under
the J48 classify algorithm, the true positive rate (TP Rate)
reached 98.56% and the false positive rate (FP Rate) reached
5.68%. Recently, Kim et al. [14] extracted totally 87 fea-
tures from the header of PE file. After using a variety of
different classifiers for comparison, a considerable result was
achieved. However, the domain knowledge is needed when
extracting format features for a sample.

Some researchers introduced the unstructured features,
namely the n-grams features, to the malware detection. In the
context of malware detection, n-grams are all substrings of a
larger string. Generally, a string is simply split into substrings
of fixed length N . Many studies [15]–[18] based on n-grams
features shared the same procedure. A file scanned by slide
window to generate the original n-grams features and the
most relevant n-grams features were chosen as the input
of the machine learning algorithms. Numerous experiments
were done to determine a combination of fixed length N ,
the number of n-grams features and classification algorithm.
The results of these experiments indicated that the detection
based on this kind of features are not likely to obtain out-
standing performance. Different from the studies mentioned
above, Raff et al. [19] combined the deep learning method
and the malware detection task, and proposed a LSTM-based
model. They simply extracted n-grams features from the
header of PE file, which latterly acted as the input of the deep
learning model. Finally, the highest accuracy of this model
reached 90%.

Due to the drawbacks of single view features, some
researchers intuitively proposed multi-view features. A rea-
sonable explanation is that the n-grams features and for-
mat features partially capture the distinguishable information
between benign software andmalware. Each types of features
has its own inherent strength and weakness. The more feature
views are used, the comprehensive information of a software
can be presented. In studies [7], [8], [20], the features used
in classifier were extracted from different views. Truth is
that this feature extraction method can obviously improve
detection level.

B. REINFORCEMENT LEARNING
In recent years, reinforcement learning technology has
demonstrated its outstanding capabilities in certain fields. For
instance, methods using deep Q-learning network have been
successful in automatically game-playing [21] and human
level control [22]. In addition, some research [23], [24] cre-
atively applied reinforcement learning methods to the field
of information security. Inspired by the research [25], which
trained a reinforcement learning model to design the archi-
tecture of CNN for the task of image classification, we pre-
viously proposed a DQEAF framework using reinforcement
learning to evade anti-malware engines [26].

176178 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 1. DQFSA model structure.

Considering that rarely researches has previously used
reinforcement learning to select features for malware classi-
fication, a reinforcement learning-based model is proposed.
This work focuses on the following points and has made
some improvements: (1) The introduced method automati-
cally selects features for malware detection which greatly
reducesmanual intervention; (2) Less features are determined
to fulfill the detection task compared with other similar work;

III. FRAMEWORK OVERVIEW
As is shown in Figure 1, the proposed DQFSA embodies
three important parts, data set collection and preprocess-
ing part, original feature extraction part and reinforcement
learning-based training part. In the data set collection and pre-
processing part, the malware data comes fromVirusTotal data
set. Our benign samples are collected from the program files
directory of Windows 10 operating system. The raw samples
are proprocessed by data processingmodule to exclude the PE
file which can not be analyzed. The original feature extraction
method mainly focuses on two kinds of features, the format
features of PE file and n-grams features of PE file. Finally,
the feature vectors are used as the input of the reinforcement
learning-based model. The agent chooses some features to
determine a sample malicious or not. Then the environment

feeds the reward, which is the accuracy of classification under
the features selected by agent, back to the agent. After multi-
ple rounds of training, the agent have the ability to choose an
optimal subset of original features that makes the accuracy of
detection task highest.

The reinforcement learning-based model is the key part of
our malware detection model. For each iteration, the agent
begins by sampling features conditioned on a predefined
behavior distribution and the agent’s prior experience. Sub-
sequently, the features are selected to fed to the classifier.
That classifier is then trained on a specific task. The features
and performance, e.g., validation accuracy, are then stored in
the agent’s replay buffer. Finally, the agent uses its memo-
ries to learn about the space of associated features through
Q-learning network. Our goal is to make the proposed rein-
forcement learning-based model select the best feature subset
easily and detect the malware efficiently.

IV. FEATURE SELECTION WITH
REINFORCEMENT LEARNING
For this model, the primary task is to train a learning agent
to sequentially choose features for classification. With the
assumption that a feature performs well in one classification
task should also attribute to the result of another classification

VOLUME 7, 2019 176179

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 1. List of format features.

task, so the feature selection process can be modeled as
a Markov Decision Process. Under the ε-greedy strategy,
the agent sequentially chooses features until it arrives a ter-
mination state. The specifics of DQFSA will be presented in
the rest of this section.

A. THE ENVIRONMENT
The environment is a key element in reinforcement learn-
ing, it represents the external observed by the agent [27].
In DQFSA, the environment is responsible for observing the
selected features from original features and sensitive to each
step of action. The original features are mainly derived from
The format features and bytes n-grams features.

1) FORMAT FEATURES
The PE files under Windows platform share an unified struc-
ture [28]. Generally, the file contains many headers and sev-
eral sections so that the Windows OS knows how to load and
run the executable code. The malware have the same format,
but they do exist some differences in format information.
Therefore, the format information attributes to the accuracy
of detection. The studies [13], [19], [29] used different format
information of PE file to fulfill the detection task. Based on
the research [13], a total of 204 format features are deter-
mined. The details of the selected format features are shown
in Table 1.

2) N-GRAMS FEATURES
For the PE file can also be considered as byte sequences,
some scholars intuitively thought that the malware may have
some similarity in the byte form. In researches [16], [18],
the n-grams features were employed to malware detection.

Inspired by text classification, some researchers thought
some n-grams features have high frequencies in malware,
while it can be rarely detected in the benign software. Accord-
ing to the study [8], the malware detector showed the best
performance when the value of N is set to 4. In addition,
the TF (term frequency)− IDF (inverse document frequency)
measure is commonly used to weight n-grams features and
obtained by multiplying TF and IDF . The definition of TF
according to Equation (1).

TF =
ni,j∑
k nk,j

(1)

where ni,j is the number of occurrences of specific n-grams in
jth sample and

∑
k nk,j represents the number of occurrences

of all n-grams in jth sample. The IDF is defined as

IDFi = log
|D|

|j : ti ∈ dj|
(2)

where |D| is the total number of samples and |j : ti ∈ dj| is
the number of samples which contain a specific n-grams. The
intuition of IDF lies on that if the number of samples which
contain feature ti is small, i.e., the value of IDF is quite large,
the feature ti may contribute to classification result. In order
to prevent the excessive features from affecting the efficiency
of training, we counted theDF (document frequency) of each
feature. The DF is defined as the number of samples which
contain a specific n-grams. We filtered a specific n-gram fea-
ture out if itsDF value is quite small, for it does not contribute
to the detection result. The proposed method selects 400 n-
grams features with the highest DF value.

Figure 2 shows the entire process of original feature extrac-
tion intuitively.

176180 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 2. The process of original features.

B. THE ACTION SPACE
The action space represents a set of actions that the agent can
choose from, which is similar to all the responses reacted by
human to a certain stimulus from the outside world [30]. The
action space in the proposed framework can be defined as:

{a : a ∈ N ∧ a ≤ |F |} (3)

where N represents all the alternative original features to be
selected and a termination state to be selected. |F | represent
the index of the action which selects the final terminal action.
When a < |F |, action ameans to set the element with index a
in the environment state to 1. When a = |F |, action a means
that the agent stops the selection procedure. In other words,
the environment is instructed to enter the termination state.

Each time the agent observes the state from the current
environment, it immediately takes an allowable action from
the action space based on a given strategy.
• (1) We restrict the agent from taking certain actions
to both limit the state-action space and make learning
feasible.

• (2) We allow the agent to terminate a path at any
point, i.e., it may choose a termination state from any
non-termination state.

• (3) If the agent takes action a before, the action a is not
allowed to be taken any longer, i.e., one feature can not
be selected twice.

By restricting the range of features (consisting of 1 × 604
dimensional), the agent is left with a finite but large space

of associated features to search from. The agent continu-
ously searches for actions based on the strategy by means
of loop until it finds a legal action and then indicates to the
environment.

C. THE REWARD
The reward mechanism of reinforcement learning distin-
guishes it from supervised learning. It will only give feedback
to the agent a positive or negative evaluation, rather than tell
the agent what the correct action is [27]. It must represent
the changes that the environment has made after the agent
performs the corresponding action in the current state, and the
gap between the target. In this case, the target can be specif-
ically defined as selecting a set of features which maximizes
the detection accuracy.

When the agent performs an action and acts on the envi-
ronment, the environment gets a new state. According to
the current state, the environment picks the features up and
feeds to the classifier. Consequently, the classifier screens
the corresponding features from the samples to fulfill the
classification task. As with most classification problems,
the evaluation criterion is the classification accuracy of each
model. Accordingly, the accuracy of classifier is served as
reward. During the training phase of classifier, the 10-fold
cross-validation is used.

D. THE TRAINING PROCEDURE
The training process is illustrated in Training Algo-
rithm (Algorithm 1) integrated with Testing Algorithm
(Algorithm 2) to generate models with an efficient selection
of discriminative indicators.

Exploration and exploitation policy are common used in
the reinforcement learning algorithm, which allows themodel
to gain more from the training process [31]. Exploration
refers to random choice of features to explore more possi-
bilities. Exploitation is the choice of the best feature that has
been selected to improve the model. Here ε−greedy policy is
employed, which practices a random action with a probability
ε and selects the most valuable action with a probability 1−ε
otherwise. The value of ε decreases from 1.0 to 0.3 in steps
during training epochs progress according to Equation (4).
Where n is the current training step and N is the total number
of training steps.

εn = 1.0−
n
N

(4)

In DQFSA, the agent is set to explore half of max epochs
in order to make agent explore as much as possible and
promote the performance of agent. Equation (5) is introduced
for enabling the agent to explore according to the strategy
mentioned above

εdecay_steps = z ∗ N/2 (5)

where εdecay_steps represents how many steps it takes for
epsilon to decrease and z is the number of maximum
features.

VOLUME 7, 2019 176181

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

Algorithm 1 Training Algorithm
1: Initialize Memory M to capacity S
2: Initialize two identical networks, action-value Q and

target-value Q̂,
with random weights θ and weights θ̂ = θ respectively

3: for episode = 1 to N do
4: Initialize s0 state array as zero vector of length 604
5: for t = 1 to z do
6: With probability ε using equation (4) select a ran-

dom action at or choose at = argmaxa Q(st , a; θ)

7: Transform st by action at to st+1
observe reward rt+1

8: Store transition (st , at , rt+1, st+1) with priority
9: Every U step reset θ̂ = θ
10: if done then
11: break
12: end if
13: end for
14: if episode mod EVALUATE_INTERVAL == 0 then
15: Run Testing Algorithm and get classification accu-

racy CA
16: Store Q and Q̂ to a new model m
17: if CA >MAX_ACC then
18: break
19: end if
20: end if
21: end for

Algorithm 2 Testing Algorithm
1: Initialize classification accuracy CA = 0
2: for i = 1 to z do
3: Compute Q̂ and choose at = argmaxa Q̂(st , a; θ̂)
4: Transform st by action at to st+1

observe reward rt+1
5: if done then
6: break
7: end if
8: end for
9: Compute the value of CA
10: return CA

During the entire training process (starting at ε = 1.0),
we maintain a replay dictionary which stores (1) the selected
features and (2) classification accuracy, for all of the sampled
features. If a set of features that has already been trained
is re-sampled, it is not re-trained, but instead the previously
found validation accuracy is presented to the agent. Inspired
by prioritized experience replay [9], our framework takes the
priority of transitions into consideration and transitions with
high classification accuracy can be replayed more frequently.
This strategy gives the agent more opportunities to learn to
select better features, rather than just limits to the initial

learning experience. Figure 3 shows the Markov Decision
Process for feature selection.

V. PERFORMANCE EVALUATION
A. EXPERIMENT SETUP
The Double Deep Q-learning Network used in proposed
method have less training parameters, while it has other
specific parameters to set. The detail description and setting
of parameters are shown in Table 2. During training phase,
the discount factor is defined as 1, because the same actions
always lead to the same reward, i.e., the order of feature
selection does not affect the accuracy.

All the experiments carried out in NVIDIA DGX Sta-
tion with an Intel Xeon E5-2698 (2.2GHz), GPU is Tesla
V100. We used python 3.7.3 to preprocess the sample,
Scikit-learn 0.21.2 to build machine learning based classifier,
Chainerrl 0.7.0 to build double deep Q-learning network. The
evaluation criterion of the model is accuracy (AUC).

Source codes of the Q-learning neural network, the mal-
ware binary feature extraction, framework details and suc-
cessfully trained model based on chainerrl are available at
https://github.com/fanmcgrady/select-features.

B. DATASET DESCRIPTION AND PREPROCESSING
The PE files used in this experiment are divided into benign
and malicious categories. Benign PE files come from the Pro-
gram Files directories inWindows 10 operating system, total-
ing 10152, and malicious files from the VirusTotal dataset
for a total of 12371. Considering the stability and robustness
of subsequent experiments, all the samples are parsed and
those who can not be analyzed will be filtered out. Finally,
about 12146 malicious samples and 9057 benign samples are
remained after this procedure.

The data used in the experiment are characterized by the
original features and their labels (benign or malicious), so the
samples need to convert to vectors before sent to the rein-
forcement learning model. A python-based pefile toolkit is
used for analyzing PE files. We used this toolkit to implement
a python script. The job of this script is to extract the original
format features of samples. For the parts that are not included
in the file (such as some files lack some sections), all the
features of this part are denoted by 0. Once a sample are
screened, one 1× 204 dimensional vector will be created.

Another python script is used for extracting byte 4-grams
features. The steps of extraction process are listed as fol-
lowed. Firstly, the PE files are converted to hexadecimal
files which could be used for generate byte subsequence.
Secondly, the slide window method is introduced to handle
hexadecimal files to produce 4-grams features, e.g., if the
hexadecimal sequence are "4D5A90", the 4-grams byte fea-
tures screened by slide window are "4D5A", "D5A9" and
"5A90". The DF criterion is used to select 400 4-grams
features which have highest DF value. The script eventually
generate a 1 × 400 dimensional vector for each sample, and
it is extended to the format feature vector. Finally, the label

176182 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 3. Markov decision process for feature selection.

TABLE 2. Major parameter setting in the training algorithm.

of sample is appended to the joint vector, 1 for malware and
0 for benign software. For the convenience of training, a CSV
format file is created to save the original features and the label
of each sample. In this CSV file, one line represent a sample,
which is a 1× 605 dimensional vector.

C. RESULTS
1) COMPARISON WITH DIFFERENT CLASSIFIERS
In order to demonstrate the performance of DQFSA convinc-
ingly, we conducted a series of comparative experiments to
find the combination of least possible features and classifiers.
As is shown in Figure 4 to 8, the vertical axis represents the
classification accuracy, the horizontal axis represents the max

number of features selected by reinforcement learning-based
algorithm for the detection. More precisely, for the pur-
pose of making learning procedure efficient and meaningful,
the number of features selected by agent is limited from
5 to 15. The accuracy of using all features is also denoted
as a reference.

It can be seen from Figure 4 to 8, when the number of
selected feature is small, the accuracy is only about 96%.
As the number of selected features increases, the accuracy can
be gradually improved. Finally, each classifier can achieve the
highest accuracy, exceeds 99%,when using about 11 features.

In addition, on the given dataset, the combination of KNN
classifier with 11 features selected was the best combina-
tion out of the other combinations tried. Compared with the

VOLUME 7, 2019 176183

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 3. Evaluation details with different classifiers.

FIGURE 4. Accuracy of models with KNN.

FIGURE 5. Accuracy of models with DecisionTree.

experiments base on using all features, an optimal minimum
feature set is automatically determined by DQFSA to fulfill
the detection task and achieve a competitive performance.
Namely, the proposed method has certain practicability and
feasibility. The details of evaluation are shown in Table 3.
In Table 5, we present the top five models’ features details
selected by DQFSA, along with their prediction accuracy
gained on the validation dataset.

FIGURE 6. Accuracy of models with RandomForest.

FIGURE 7. Accuracy of models with Naive Bayes.

2) COMPARISON WITH RELATED WORK
In the experimentsmentioned above, ourmethod shows better
capacity on different classifiers. In order to make a compre-
hensive comparison between the proposed DQFSA and tradi-
tional methods, this work conduct a comparative experiment
base on the same dataset. According to Raman et al. [6],
Bai et al. [13], Kim et al. [14], researchers have leveraged
relevant detection features for the task of classification.

The number of features and detection performance corre-
sponding to each methodology are shown in Table 4.

176184 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

TABLE 4. Comparison with related work.

TABLE 5. Feature selection details of our top 5 models.

As it can be seen in Table 4, some classifiers achieve a
higher accuracy with fewer features. Further more, due to

the reduction of features, the time for extracting features and
training is shorter.

VOLUME 7, 2019 176185

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

FIGURE 8. Accuracy of models with SVM.

Our framework is compared against the related work men-
tioned above and enhance the accuracy of validation dataset
by using KNN, SVM and Naive Bayes classifiers. The results
demonstrate that reinforcement learning can be applied to
malware detection with further improved performance com-
pared to traditional methods.

VI. CONCLUSION
This paper proposed an architecture named DQFSA using
reinforcement learning to implement feature selection task.
The highly differentiated features selected can be fed to
supervised-learning algorithms to classify malware. The core
component of DQFSA is an AI agent, which is constantly
interacting with samples feature space without human inter-
vention. The agent could choose optimal sequences of rea-
sonable features deliberately by deep reinforcement learn-
ing, which aims to maximize the accuracy of detection.
Experiments show that the proposed DQFSA discovers fea-
tures for malware detection competitive against the base-
line means that use more features. In the future work,
we will apply our framework to other selection tasks, for
the advantage—trial-and-error search—of the reinforcement
learning.

REFERENCES
[1] D. Ucci, L. Aniello, and R. Baldoni, ‘‘Survey on the usage of machine

learning techniques for malware analysis,’’Comput. Secur., vol. 81, 2017.
[2] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, ‘‘Machine-

learning aided static malware analysis: A survey and tutorial,’’ in Cyber
Threat Intelligence. Berlin, Germany: Springer, 2018, pp. 7–45.

[3] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, ‘‘Survey on malware detec-
tion methods,’’ in Proc. 3rd Hackers’ Workshop Comput. Internet Secur.
(IITKHACK), Mar. 2009, pp. 74–79.

[4] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, ‘‘A survey on
heuristic malware detection techniques,’’ in Proc. 5th Conf. Inf. Knowl.
Technol., May 2013, pp. 113–120.

[5] R.W. Lo, K. N. Levitt, and R. A. Olsson, ‘‘MCF: Amalicious code filter,’’
Comput. Secur., vol. 14, no. 6, pp. 541–566, 1995.

[6] K. Raman, ‘‘Selecting features to classify malware,’’ InfoSec Southwest,
to be published.

[7] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection
using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[8] J. Bai and J. Wang, ‘‘Improving malware detection using multi-
view ensemble learning,’’ Secur. Commun. Netw., vol. 9, no. 17,
pp. 4227–4241, 2016.

[9] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experi-
ence replay,’’ 2015, arXiv:1511.05952. [Online]. Available: https://arxiv.
org/abs/1511.05952

[10] H. El Merabet and A. Hajraoui, ‘‘A survey of malware detection tech-
niques based on machine learning,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 1, pp. 366–373, 2019.

[11] J. O. Kephart, ‘‘Automatic extraction of computer virus signatures,’’
in Proc. 4th Virus Bull. Int. Conf., Abingdon, England, 1994,
pp. 178–184.

[12] P. Szőr, The Art of Computer Virus Research and Defense. Upper Saddle
River, NJ, USA: Pearson Education, 2005.

[13] J. Bai, J. Wang, and G. Zou, ‘‘A malware detection scheme based
on mining format information,’’ Sci. World J., vol. 2014, Jun. 2014,
Art. no. 260905.

[14] S. Kim, ‘‘PE header analysis for malware detection,’’ M.S. thesis, 2018,
vol. 624.

[15] J. Z. Kolter and M. A. Maloof, ‘‘Learning to detect malicious executables
in the wild,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2004, pp. 470–478.

[16] D. K. S. Reddy and A. K. Pujari, ‘‘N-gram analysis for computer
virus detection,’’ J. Comput. Virology, vol. 2, no. 3, pp. 231–239,
Dec. 2006.

[17] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer, ‘‘Apply-
ingmachine learning techniques for detection of malicious code in
networktraffic,’’ in Proc. Annu. Conf. Artif. Intell. Berlin, Germany:
Springer, 2007, pp. 44–50.

[18] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, ‘‘N-grams-based
file signatures for malware detection,’’ in Proc. ICEIS, vol. 2, May 2009,
pp. 317–320.

[19] E. Raff, J. Sylvester, and C. Nicholas, ‘‘Learning the pe header, malware
detection with minimal domain knowledge,’’ in Proc. 10th ACM Work-
shop Artif. Intell. Secur. AISec, Nov. 2017, pp. 121–132.

[20] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, ‘‘Data miningmethods
for detection of new malicious executables,’’ in Proc. IEEE Symp. Secur.
Privacy. S&P, May 2000, pp. 38–49.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing atari with deep reinforcement
learning,’’ 2013, arXiv:1312.5602. [Online]. Available: https://arxiv.
org/abs/1312.5602

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level
control through deep reinforcement learning,’’ Nature, vol. 518,
no. 7540, p. 529, 2015.

[23] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, ‘‘Learn-
ing to evade static PE machine learning malware models via rein-
forcement learning,’’ 2018, arXiv:1801.08917. [Online]. Available:
https://arxiv.org/abs/1801.08917

[24] C. Wu, J. Shi, Y. Yang, and W. Li, ‘‘Enhancing machine learn-
ing based malware detection model by reinforcement learning,’’ in
Proc. 8th Int. Conf. Commun. Netw. Secur. ICCNS, Nov. 2018,
pp. 74–78.

[25] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ 2016arXiv:1611.02167.
[Online]. Available: https://arxiv.org/abs/1611.02167

[26] Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, ‘‘Evading anti-
malware engines with deep reinforcement learning,’’ IEEE Access, vol. 7,
pp. 48867–48879, 2019.

[27] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction.
Cambridge, MA, USA: MIT Press, 2018.

[28] M. Pietrek, ‘‘Inside windows-an in-depth look into the win32 portable
executable file format,’’ MSDN Mag., vol. 17, no. 2, pp. 1–4, 2002.

[29] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, ‘‘PE-Miner:
Mining structural information to detect malicious executables in real-
time,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection, 2009,
pp. 121–141.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 2, no. 4. Cambridge, MA, USA: MIT Press, 1998.

[31] M. Coggan, ‘‘Exploration and exploitation in reinforcement learning,’’
CRA-W DMP Project at Comput. Sci., McGill Univ., Montreal, QC,
Canada, Tech. Rep., 2004.

176186 VOLUME 7, 2019

Z. Fang et al.: Feature Selection for Malware Detection Based on Reinforcement Learning

ZHIYANG FANG received the M.S. degree in
computer science and technology from Sichuan
University, Chengdu, Sichuan, in 2009, where he
is currently pursuing the Ph.D. degree in com-
puter science and technology. He is currently
involved in research work on information security.
His research interest includes software security.

JUNFENG WANG received the M.S. degree
in computer application technology from the
Chongqing University of Posts and Telecommu-
nications, Chongqing, in 2001, and the Ph.D.
degree in computer science from the Univer-
sity of Electronic Science and Technology of
China, Chengdu, in 2004. From July 2004 to
August 2006, he held a postdoctoral position at
the Institute of Software, Chinese Academy of
Sciences. Since August 2006, he has been a Pro-

fessor with the College of Computer Science and the School of Aeronautics
and Astronautics, Sichuan University. His recent research interests include
network and information security, spatial information networks, and data
mining. He is currently serving as an Associate Editor for IEEE ACCESS,
the IEEE INTERNET of THINGS, and Security and Communication Networks.

JIAXUAN GENG received the bachelor’s degree
in computer science and technology from the
Chongqing University of Posts and Telecommu-
nications, Chongqing, in 2018. He is currently
pursuing the M.S. degree in computer science
and technology with Sichuan University, China.
He is expected to get the degree, in 2021.
His research interests include software security
and cybersecurity.

XUAN KAN received the M.S. degree in com-
puter science and technology from Sichuan
University, Sichuan, in 2017. She is currently
involved in research work on information security.
Her research interest includes software security.

VOLUME 7, 2019 176187

	INTRODUCTION
	RELATED WORK
	FEATURE SELECTION METHODS
	REINFORCEMENT LEARNING

	FRAMEWORK OVERVIEW
	FEATURE SELECTION WITH REINFORCEMENT LEARNING
	THE ENVIRONMENT
	FORMAT FEATURES
	N-GRAMS FEATURES

	THE ACTION SPACE
	THE REWARD
	THE TRAINING PROCEDURE

	PERFORMANCE EVALUATION
	EXPERIMENT SETUP
	DATASET DESCRIPTION AND PREPROCESSING
	RESULTS
	COMPARISON WITH DIFFERENT CLASSIFIERS
	COMPARISON WITH RELATED WORK

	CONCLUSION
	REFERENCES
	Biographies
	ZHIYANG FANG
	JUNFENG WANG
	JIAXUAN GENG
	XUAN KAN

