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ABSTRACT Mapping between gestures and semantics is inherently challenging, especially in the aspect
of defining meaningful gesture semantics that are easy to understand and remember. To address this
challenge, we put forward an intent-driven approach in this paper, which is based on users’ interaction
intent. We implemented a many-to-one flexible mapping between multiple gestures and one semantic object.
We also designed and evaluated a domain-specific gestural input technique for classroom use by considering
the intent of the user. Themain contributions of this work consist of: (1) a mapping betweenmultiple gestures
and one semantics and (2) an intelligent and natural interacting interface model for a three-dimensional (3D)
user interfaces (UIs). The proposed algorithm is evaluated with five frequently used gestures and applied to
the UIs system. The experimental results demonstrate that the gesture-based algorithm performs well and
can substantially reduce the memory loads of the user.

INDEX TERMS Memory load, flexible mapping, interaction intention, gesture command, smart classroom
interface.

I. INTRODUCTION
Human hand gestures provide an important means for
nonverbal interaction, and touchless hand-based gestural
interaction provides users new ways of interacting with com-
puters. A gesture-based smart classroom interface (SCI) sys-
tem enables a teacher in a classroom to directly manipulate
lecturematerials that are shown on a projected display. Teach-
ers can rotate, scale and translate the selected objects on the
screens of the SCI system via free-hand gesture input. This
type ofmanipulation supports operations at a far distance any-
where in the classroom instead of only close to the projected
display. To design an effective SCI, most approaches focus
on building the most commonly used and natural gesture set
and on mapping a gesture to a fixed command. In contrast,
we focus on the recognition reliability for the gestural input
systems. Therefore, two basic problems are highlighted: users
cannot freely choose the gestures, and users do not have
free choice regarding the semantic meaning. In most cases,
the issue of semantic meaning is not addressed because the
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systems are stopped at the recognition stage. One challenge
in designing effective gestural input is to distinguish the
gestures that are expected by the system among all gestures
from the users. It is difficult to create, maintain, and modify
gestural input with a reliable recognition rate and for users
to easily remember the commands. In this work, we designed
and evaluated domain-specific gestural input techniques for
classroom use by considering the object attributes and the
user intent. Current gesture UI (User Interface) imposes a
memory load on the teachers memorizing gesture functions
for manipulation, which distracts their attention from the
content they operate. To address all these issues together, this
paper assumes that the mapping between gestures and seman-
tics is flexible. A flexible mapping (F-M) from multiple
gestures to a single semantic object is designed and evaluated
on common gesture groups. The results demonstrate that the
proposed method substantially reduces the user’s memory
load and outperforms state-of-the-art approaches.

II. RELATED WORKS
Human-computer interaction has regained popularity under
the development of interaction techniques of devices, such as
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tablet PCs, smartphones, and even smart houses [1]. Touch-
less hand-based gestural interaction provides users new ways
of interacting with computers [2], [3]. During gestural inter-
action, several key points are addressed: the performance of
the gesture recognizer, the approaches for defining the map-
ping between gestures and commands, and the user workload.
However, gestures are error-prone, according to Elin [4];
for interacting with the whiteboard, it is most important to
be unselfconscious (so as not to draw the attention of the
participants from their interactions with one another) and to
be fluid (to allow unhindered expression of ideas).

To address the issues that are discussed above, gesture
recognizers are designed to distinguish the gestures. Gestures
can be classified as hand posture (static) [5] and hand move-
ment (dynamic) gestures [6]. Pisharady and Saerbeck [7]
reviewed vision-based hand gesture recognition algorithms
that were reported in the last two decades. The methods that
use RGB and RGB-D cameras are reviewed with quantitative
and qualitative comparisons of algorithms. Ding et al. [8]
proposed an automatic feature extraction method for sim-
ilar gesture recognition that overcomes the confusion that
arises among similar gestures. Liu et al. [9] presented a
novel method for human-computer interaction that is based
on finger motion detection, which can accurately identify
the characteristic quantities of the marked figure and realize
cursor movement and mouse clicking. Zeng et al. [10] pre-
sented an HCI system and discuss its applications in medical
assistance. The hand gesture vocabulary in the system con-
sists of five key hand postures and three compound states,
and its design strategy covers the minimal hand motions,
distraction detection and user-friendly design. Recently, hand
posture and gesture recognitions have utilized neural net-
work approaches [11]. A finger detection algorithm [12]
was proposed for detecting extensional and flexional fingers
via salient hand edges, which are extracted based on the
parallel edge characteristics, and the angular projection is
centered on the wrist position for obtaining the angle, ori-
entation, and length of each finger. This method can directly
extract high-level hand features and estimate hand poses in
real time. Raheja et al. [13] demonstrated the use of two
learning techniques, namely, dynamic time warping (DTW)
and the hidden Markov model (HMM), and compared them
for real-time implementations. Their experimental results
demonstrated that both the DTW and the HMM approaches
realize high classification rates of approximately 90% and
that DTW outperforms the HMM-based approach when time
is constrained. An effective method was proposed in [14]
for encoding a joint’s trajectories to JTMs (joint trajectory
maps), where the motion information can be encoded into
texture patterns, and the convolutional neural networks are
used to exploit the discriminative features for real-time hand
gesture recognition for the MSRC-12 Kinect gesture dataset
(MSRC-12). Recently, Sang et al. [15] used micro dynamic
hand gestures for recognition to realize human–computer
interaction. They proposed a state-transition-based HMM
method and realized a comparable classification accuracy

of 89.38%. Furthermore, to effectively recognize gesture tra-
jectories, Ibaez et al. [16] encoded the movements of the
joints of the hand during a hand gesture as sequences of
characters by utilizing approximate string matching with a
Kinect input device. Recently, Liu et al. [17] constructed a
new dataset of complex hand activities and made it publicly
available, in which the latent structures of complex activities
are shaped by constructing probabilistic interval-based net-
works with temporal dependencies.

Gesture is a ‘meta-stroke’ interpreted as a command.
Kita et al. [18] proposed a syntagmatic rule system based on
inter-coder reliability of segmentation and identification of
movement phase and provided useful guidelines for segment-
ing gestures into phases, whereas they did not take gesture
semantics into consideration. In fact, most methods define
the mapping between gestures and commands based on the
frequency ratio. According to this way, the users are asked to
derive a gesture for each command. Once the gestures are col-
lected from the users, similar gestures for each command are
gathered together based on the physical shapes and motions
of the gestures. Then, one of the gestures with high frequency
for each command is selected. But this method is likely to
neglect the meaningful gestures due to their low frequency.
Hence, Choi et al. [19] developed and verified two hypothe-
ses: (a) users may change their selection after observing other
gestures and (b) a gesture that is derived from only a few
users might be a higher performing gesture. Their experi-
mental results also demonstrate that the frequency could not
guarantee the selected gestures because the users have only
limited sets of gestures in their minds in the first step. Wang
et al. [20] mapped between nine gestures and commands; for
example, ‘MOVE’ is defined by a single fingermovement and
‘SELECTION’ is defined by changing the number of fingers
from one to two. These approaches obey to the rule that the
mapping between gesture and command is one-to-one.

The widely used hand gestures are limited to a care-
fully selected vocabulary of symbolic gestures that are
mostly used for issuing commands [20]. These methods
require users to remember the vocabularies and the respond-
ing gestures, thereby leading to heavy loads on the users.
Rempel et al. [21] studied 24 professional sign language
interpreters who reported discomfort during using hand ges-
tures which were associated with 47 characters and words
and 33 hand postures. To reduce the memory loads of the
users and to improve recognition speed of the system, many
researchers propose algorithms and approaches for various
application scenarios. Katsuragaw et al. [22] examined the
effects of bi-level thresholding on the workload and accep-
tance of end-users. Researchers [23] conducted a guessabil-
ity study eliciting end-user motion gestures for invoking
commands on a smartphone device and demonstrated that
consensus exists among users on parameters of movement
and on mappings of motion gestures onto commands. They
develop a taxonomy for motion gestures and specify an end-
user-inspired motion gesture set. For the in-vehicle environ-
ment, new interaction techniques are investigated. They aim
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at facilitating interaction with infotainment systems while
driving. The authors in [24] suggest utilizing the steering
wheel as an additional interaction surface. Lai [25] pre-
sented low-complexity algorithms and gestures for reducing
the gesture recognition complexity, and their experimental
results demonstrated that the proposed gesture-based inter-
action is more suitable for controlling real-time computer
systems. A new event-driven service-oriented framework,
namely, GS-CPE was proposed [26] for personalized gesture
recognition. In dialogue, repeated references contain fewer
gestures than initial references. In work [27], the researchers
described three experiments studying the extent to which
gesture reduction is comparable to other forms of linguistic
reduction. Jeanne et al. [28] used a visual metaphor to guide
trainees’ gestures by showing trajectory errors instead of
showing the path to follow. In recent years, interactive train-
ing has been utilized to realize a user-independent application
via on-line supervised training. For example, the work [29]
introduces an on-line training method that is embedded into
the recognition process, is interactively controlled by the
user, and adapts to his/her gestures. An algorithm for flexible
mapping between gestures and semantics is presented for the
first time for reducing the cognitive and operating loads of
the user by using gesture commands [30]. With the same
objective regarding the relationship between semantics and
actions, Eshuis et al. [31] introduced an approach for auto-
matically and flexibly constructing complex, executable com-
positions of semantic services by deriving the links between
semantics and specifying data dependencies among the ser-
vices. According to Kok K. [32], many current gesture func-
tional classification systems are rigid and implicitly assume
that gestures perform only one function at any time, and
they are designed to be open to the potential for complex
multifunctionality of gestural expression and have realized
convergence between ecological and experimental views on
gesture functionality. Their work exploits the observation that
in the same situational context, there exists a many-to-one
mapping between different gestures and the same semantics.
Unfortunately, they fail to provide a mapping from different
gestures to the same semantics.

To the best of our knowledge, few studies have been done
on how to map many gestures to one command or semantics
in the same situational context. In this work, we focus on the
issues of recognition reliability for the gestural input systems,
in other word, the issue of semantic meaning. In contrast
to the state-of-the-art algorithms, this paper assumes that
the mapping between multiple gestures and single command
is flexible and attempts to investigate the flexible mapping
between gestures and semantics.

III. BASIC DEFINITIONS FOR MAPPING BETWEEN
MULTIPLE GESTURES AND SINGLE COMMAND
The basic application objective is the developing an SCI
system in which the teachers can rotate, scale and translate
the selected objects on the screens through free-hand gesture
input. Moreover, the teachers can freely choose the gestures

in SCI system, and the teachers have free choice regarding
the semantic meaning.

A. FLEXIBLE MAPPING
The concept of flexible mapping (F-M) is proposed for
addressing the problem of requiring users to memorize ges-
ture commands in the same interaction scenario. A single
semantic object can be expressed with multiple gestures, that
is to say, in the same scenario there is a many-to-one map-
ping between multiple gestures and single semantic object,
which is called a flexible mapping from many gestures to one
semantic object.

B. CONTEXT-RELATED INTENT
In the proposed algorithm, all object semantic operations are
stored in a set F and all gesture semantics (user intent) are
stored in a set G. To determine the objective of the user’s
gesture input (represented the actual user’s intent from G),
the proposed algorithm determines the operating functions of
the current object and calculates the corresponding gesture
semantic set F based on the usage context. The user’s intent
or the final gesture semantics must be in the intersection of
G and F, or �.
We define the following terms (Definition D_1):
D_1: The interaction intent x of the user’s gesture is in

the intersection of the semantic set G of this gesture and the
semantic set F that is required by the functions of the current
operation object, or � ∈ G ∩ F.

For example, suppose that the semantic set of a gesture
g, namely, ‘Fetching hand’, is the set G = {‘fetch’, ‘scale-
down’} and that the semantic set that corresponds to the func-
tions of the object is F= {‘scale-down’, ‘rotate’, ‘scale-up’}.
Then, the final gesture will be� ∈ G ∩ F= {‘scale-down’}.

C. GESTURE GROUP (GG)
If there is only one semantic object in the intersection set
� ( � ∈ G ∩ F), then this semantic object is the user’s
interaction semantic object. When more than one semantic
object exists in the intersection set �, the users can choose
another gesture for issuing the same command. This decision
is made based on the observation and analysis of many users’
behavioral models.

Assuming that the alternative gesture is g1 and that its
semantic set is G1, in which both G1 and � reflect the user’s
interaction intent. Consequently, the actual interaction intent
must belong to the intersection of the two, and ||�∩G1|| ≤ ||

�||. This process is repeated. Thus, the number of elements in
the intersection set decreases. Eventually, the actual gesture
semantics will be uniquely determined. Therefore,Definition
D_2 is obtained:
D_2: The interaction intent x of the user’s current gesture

g must be in the semantic intersection of all alternative
gestures in GG = {g1, g2,. . . , gm}, or x ∈ ∩si, where si =
semanticset(gi). Here, semanticset(i) refers to the semantic
set of gesture i.
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DefinitionD_2 demonstrates the feasibility of constructing
GG in which alternative gestures are formed for each seman-
tic object in GG.
For example, suppose that we have gestures g1 = ‘grab

with fingers 1 and 2’, g2 = ‘grab with fingers 1, 2 and
3’, and g3 = ‘grab with all 5 fingers’. Their corresponding
semantic sets are as follows: s1 = {‘zoom an object’, ‘close
window’, ‘reduce the volume of sound’}, s2 = {‘zoom an
object’, ‘reduce the illumination of display’}, and s3 = {‘lift
an object’, ‘zoom an object’}. Therefore, x ∈ ∩sk ={‘zoom
an object’}.

D. NECESSARY CONDITIONS FOR SHAPING GG
Because the gestures in the same GG are related to a com-
mon semantic object, they should share a common feature.
To investigate the common features, a survey was conducted.
Fifty college students (with an average age of 23 years old)
were invited to answer the questionnaire. Based on the survey
results, the alternative gestures that most participants selected
are regarded as the natural gestures for specified semantics
and are grouped into a single GG.
All gestures in the same GG share the same movement

direction or trajectory. In addition, the users’ operational
experiences in expressing the same or similar semantics
under various interaction scenarios also affect their gesture
selection.

Based on the above experiment, Definition D_3 is formu-
lated:
D_3: The condition for constructing a GG of a semantic

object is that given the same situational context of the inter-
action, the gestures in a GG that share the same semantics
always have the same direction or trajectory of gestures, and
the necessary condition for the gesture set {g1, g2,. . . , gm} to
form a GG is ∩Tra (i) 6= ∅ or ∩Dir (i) 6= ∅ for all gestures
gi ∈ GG. Here, Tra (i) and Dir (i) refer to trajectory and
direction of gesture i ∈ GG.
Definition D_3 expresses that the GG is constructive.
In the above experiment, the following interesting obser-

vations are made:
O_1: In a camera-based gesture-oriented human-

computer interface, if the user forgets the gesture that can
express the requested semantics or his/her gesture operation
does not work, he/she prefers to try another gesture (alterna-
tive gesture) for expressing the same interaction intent.
O_2: A GG can also be constructed based on the user’s

life experience or the user’s operating experience on smart
devices, such as intelligent TVs, smartphones or computers,
which can be transferred to the construction of the GG.

IV. GESTURE-SEMANTIC FLEXIBLE
MAPPING (F-M) ALGORITHM
A. FLEXIBLE MAPPING ALGORITHM
The F-M algorithm is composed of four parts and operates
as follows (FIGURE 1): The first part is error recovery and
self-repair for motor gestures. After a motor gesture has been

recognized, error recognition is performed and errors are
repaired with our proposed algorithm. The second part is
context extraction and representation, with which the gesture
semantics are narrowed down to a smaller set. The third part is
error recovery and self-repair for semantic gestures, and the
last part is interaction application, in which the recognized
gesture semantics are used to manipulate the object in the
interactive scene.

We have implemented a novel motor gesture recognition
method and have used a set of mis-recognition rules to auto-
matically correct errors. The semantics of a motor gesture g
are recognized from the Motor Gesture (MG) dataset. For a
motor gesture, there are always many semantics. To decrease
the mis-recognition probability of the semantics, the context
of the current object O to be manipulated is extracted and
represented using the Semantics Gesture (SG) dataset. After
the object semantic set F and the gesture semantic set G are
obtained, we can narrow the user’s context-related intent via
�← G ∩ F according to Definition D_1. If || �|| = 1 (only
one semantic object exists), then the object O is manipulated
with this unique semantic object in �. Otherwise, GG of
gesture g is constructed according to Definition D_3 and
Observation O_2. According to Observation O_1, alternative
gestures inGG are used to express the same interaction intent.
According to Definition D_2, (a) the user can express the
assumptions that the semantic set of the alternative gesture
is G1, which has the same operational intent as an alter-
native gesture, and (b) the algorithm computes � ← � ∩

G1. Steps (a) and (b) are repeated until ||�|| = 1. If ||
�|| = 1, the semantics of the gesture g are predefined for the
object O.
According to DefinitionD_2, the so-called alternative ges-

ture is defined as follows: if the operating result of the current
gesture is not usable, the user can continue the operation
until another gesture is obtained for performing the same
interaction. All alternative gestures constitute a gesture group
with a common semantic object. The current set of gesture
semantics is repeatedly intersected with the semantic set of
alternative gestures to obtain a smaller set of semantics until
a unique semantic object is obtained.

The MG dataset is composed of two parts: gesture number
and features. The SG dataset is composed of four parts:
gesture number, object number, functions of the object and
gesture semantics of the functions.

According to the above analysis, the proposed F-M algo-
rithm is described in detail as Algorithm 1.

B. EXAMPLE
Assuming that the functions that are applicable to the current
object are scale-up, scale-down, and grasp, that the user’s
current gesture g1 is ‘grasping with five fingers’ and that
the semantic set of gesture g1 is G = {displace, scale-down,
split, grasp}, how does the computer determine which of the
four operations the user wants to apply to the current object?
First, the functions of the current object are converted to
gesture semantics through retrieval of the MG dataset and
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FIGURE 1. Overview of the four parts in the proposed F-M algorithm: (1) Error recovery and self-repairing for motor gestures, (2) Context extraction and
representation, (3) Error recovery and self-repairing for semantics gestures, and (4) Interactive application. The two datasets are designed: Motor Gesture
(MG), Semantics Gesture (SG).

the SG dataset, and the gesture semantics that are required by
the current object are further assumed to be F = {scale-up,
scale-down, rotate, grasp, release}. Second, the intersection
of sets G and F is calculated to be {scale-down, grasp}.
In this case, nothing will be done because ‖�‖ 6= 1. After
the user observes that nothing happens to the object as s/he
makes gesture g1, s/he will naturally try another gesture g2
(which is defined as ‘pinch with thumb and index fingers’) to
manipulate the object. Suppose the semantic set of gesture g2
consists of operations rotate, scale-down, and descend. The
user’s interaction intention should be within the scope of the
intersection of the set {scale-down, grasp} and the set {rotate,
scale-down, descend}, and the user’s operational intention
will be ‘‘scale down’’. As such, the semantic ‘scale-down’ is
exerted on the selected object, which causes it to scale down,
as shown in Figure 2.

The proposed F-M differs from FM [30]. The former
provides many-to-one gesture-to-command mapping while
the latter introduces a flexible mapping from one gesture to
multiple semantics in the same situational context.

V. GESTURE RECOGNITION
A. GESTURE DATABASE CONSTRUCTION
A polar coordinate system is utilized with the current gesture
feature point as the pole to divide the entire plane evenly
in E directions, whereas the radius is evenly divided into D
parts, so that the whole plane space is divided into U natural
regions. Along the same circle, the area of each region is the
same. Then, the number of points in array sumpoints[M] that
fall in each region is counted. Via this approach, with the
feature point of the current gesture as the pole and the maxi-
mum distance, namely, max distance, as the radius, the plane
space is divided into U regions. The U attribute values of
the ith gesture will constitute a sequence (ai,1, ai,2, . . . , ai,U ).
Therefore, the shape of the image can be described by an
N × U shape matrix (ai,j) (U = 60 in this paper). In ai,j, i
is the ith feature point and j is the jth region out of U regions.
If a coordinate system is established with the ith feature
point as the pole, then the number of points that fall within
the jth region is ai,j. The value of N is the total number of
feature points. This matrix represents the contextual features
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Algorithm 1 F-M Algorithm
1. Recognition, Error Recovery and Self-Repair for Motor
Gestures:
(1) Input a gesture from the Kinect device.
(2) The gesture images are segmented based on depth
information from the background.
(3) Recognize the gesture using the motor gesture recogni-
tion algorithm and obtain the gesture g.
(4) IF the gesture g‘ is mistaken for g, THEN g← g‘.
2. Context Extraction and Representation:
(1) The user selects the operation object O in the scene
using the gesture.
(2) Form GG for g by retrieving the dataset SG.
(3) Retrieve the function set f of the object O from the
dataset SG.
(4) Retrieve the gesture semantic set F of the set f .
3. Recognition, Error Recovery and Self-Repair for
Semantic Gestures
(1) �← F
(2) WHILE (‖�‖ 6= 1) DO
(a) Use step 1, namely, recognition, error recovery and self-
repair for motor gestures, to acquire gesture g ∈ GG.
(b) Retrieve the semantic set G of gesture g from dataset
MG.
(c) �← � ∩ G.
4. Interaction Application:
(1) Apply the semantics in � to object O.
5. If NOT all interactive tasks are accomplished, then Goto
step 1.

of the image shape. The values of this matrix are stored
in a two-dimensional array: FeatureNo[N][U]. If the x- and
y-coordinates of these gesture feature points are both 0, then
all U attribute values of the feature points are set to 0.
Based on the strategy discussed above, the detailed

algorithm for constructing the gesture database is as
Algorithm 2.

B. GESTURE RECOGNITION ALGORITHM THAT IS BASED
ON THE SHAPE CONTEXTUAL FEATURES
The main objective of gesture recognition is to determine
the representative feature and the image similarity descriptor.
In this paper, the feature is extracted based on the shape
context and the distance between features, which is denoted
as χ2, is utilized as the image similarity descriptor. The
gesture recognition algorithm is as follows.

Gesture recognition algorithm based on shape contextual
features Algorithm 3.

C. IMPLICIT INPUT AND DETECTION OF ‘CONFIRMING’
AND ‘CORRECTING’ BEHAVIORS
‘Confirming’ and ‘correcting’ are the two basic operations
in the proposed F-M algorithm, which require the user
to respond to the computer’s feedback. If the computer

Algorithm 2 Construct the Gesture Database
1. Read the video streams of each gesture, and acquire an
image for each gesture g.
2. Count the number of gesture points in each image. Tra-
verse the entire image (black is considered the background
and the gesture points are other points), and record the
coordinates and the number of gesture points.
3. Determine the center of gravity by calculating the ges-
ture points and compute the maximum distance between
the center of gravity and the gesture points.
4. Regard the calculated maximum distance as the max-
imum radius and divide this radius evenly into D parts
for determining D circles. Count the number of gesture
points that fall into each circle and calculate the center
of each circle, which is used as a feature point of the
gesture.
5. Extract the shape contextual features based on the ges-
ture feature points and gesture points. The gesture points at
this time include the gesture points and the gesture feature
points that were counted previously.
6. Write the obtained shape contextual features into a text
file as the gesture database.

interprets the user’s gesture semantics or interaction intent
correctly, then the user can use a gesture that represents the
‘confirming’ semantics to respond; otherwise, the user can
use the gesture with the ‘correcting’ semantics to respond.
We start from the user’s behavioral models to solve this prob-
lem. According to multiple observations, when completing
gesture input, users often maintain the last posture of the
gesture for a period if the computer’s feedback is consistent
with the user’s intent [33], [34]. If the current gesture has
been completed and the gesture posture remains for a period,
then the user is ‘confirming’ the computer’s interpretation.
It is also observed that whenever the user disapproves of the
semantics that are interpreted by the computer, s/he subcon-
sciously moves the gesture toward the left chest, which is
the basis for the perception that the user wants to ‘correct’
the semantics.

D. FPMG-BASED ERROR DETECTION AND REPAIR
First, based on the conclusion above, we set up the feature
pool for mis-recognized gestures (FPMG). This feature pool
consists of two matrices: The first is the matrix P for the
rate of false acceptance, and each element pi,j of this matrix
constructs themodel of the probability distribution for gesture
i being mis-recognized as gesture j. The other is the matrix E
for the error between the features of the target gesture and
the features of the misrecognized gesture, and each element
eij of this matrix constructs a model for the distribution of
the error between the feature of gesture i and the feature
of mis-recognized gesture j. Here, the feature represents the
eigenvector in the final pooling layer of the CNN model
that has been trained. The error between the features of the
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Algorithm 3 Shape-Context-Feature-Based Gesture Recog-
nition Algorithm

1. Take v consecutive image frames from the video stream
as the gesture images to be recognized.
2. Conduct the following operation on each image frame to
be recognized:
(1) Count the number of gesture points in each frame. The
procedures involve traversing the entire image, where a
pixel is considered background if the pixel value is black
and a gesture point otherwise. At the same time, record the
coordinates and the number of gesture points.
(2) If the number of gesture points in a frame is 0, then this
frame is discarded and no additional calculations will be
conducted on this frame. If the number of gesture points is
not 0, calculate the coordinates of the gravity center using
the gesture points and calculate the maximum distance
between the gravity center and the gesture points.
(3) Use the maximum distance as the maximum radius and
divide this radius intoD parts for determiningD concentric
circles. Then, count the center of each circle, which is
utilized as a gesture feature point.
(4) Extract the shape contextual features, the gesture fea-
ture points, and the gesture points.
(5) Calculate the distance between the shape contextual
feature of each gesture feature point and that of all gestures
in the gesture database, namely, χ2.

Cij =
1
2

K∑
k=1

[
hi (k)− hj (k)

]2
hi (k)+ hj (k)

(1)

where hi (k) is the shape contextual feature value of the
ith gesture feature point to be recognized and hj (k) is
the shape contextual feature value of the jth gesture fea-
ture point in the user gesture database. (6) For gesture j,
the matching cost of the kth image is:

djk =
n∑
i=1

Ck
ij (2)

where n is the number of gesture feature points and is the
number of gestures in the gesture database.
3. The matching cost of gesture j is:

Cost(j) = Min
k

{
djk
}

(3)

4. Return the gesture with the lowest matching cost:

Min
j

{
Cost (j)

}
< λ (4)

in which λ is the non-negative experience threshold.

target gesture and the features of the mis-recognized gesture
is defined as:

eij = ‖Feature_Map (i)− Feature_Map (j)‖ (5)

FIGURE 2. Example of the F-M algorithm. The user uses natural gestures
to scale-down the 3D (three dimensional) objects in the interaction scene.

where Feature_Map(i) represents the image eigenvector of
the last pooling layer in the CNN model of gesture i, and the
eigenvector is a one-dimensional vector of the pixels of the
final pooling layer in order from top to bottom and from left
to right.

We can detect a false gesture and correct it with FPMG,
and this algorithm is described as follows:

Algorithm 4 Detection and Correction of Error Gestures
Input: (a) gesture i; (b) gesture j.
Output: (a) identification the correction of gesture j;
(b) return the correct value if gesture j is incorrect.
(1) Calculate the feature error e between the gesture image
input and gesture
image j;
(2) Find ei,j in matrix E that most closely approximates e;
(3) If∥∥eij∥∥ < σ1 and

∥∥pij∥∥ < σ2 then return (TRUE, j)
else
return (FALSE, i), and return to step (2).
end if
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FIGURE 3. In our geometry teaching system, a teacher manipulates an object on the big screen using the F-M algorithm.
(a) The hardware structure of the SCI system. (b) The teacher is rotating and scaling three pyramids for students.

VI. EXPERIMENTAL RESULTS AND ANALYSIS
A. THE APPLICATION OF F-M IN GEOMETRY
TEACHING SYSTEM
1) IMPLEMENTATION
Our gesture-based smart classroom interface (SCI) is com-
posed of a computer that is running the F-M-based ges-
ture interface, a projection screen, a projector and a Kinect.
The computer used in this study was equipped with Intel R©

CoreTM 2 Quad CPU 2.66 GHz processor and 4 GB memory.
The 3D geometrical objects on the big screen are manipulated
with free gestures at a distance of 2-2.5 meters from the
Kinect (FIGURE 3).

When the user scales up an object, s/he performs the
gesture ‘release thumb and first finger’ (g1). If there is
no response on the screen, s/he performs the next gesture,
namely, ‘release thumb, first finger and middle finger’ (g2).
If there is still no response on the screen, s/he further performs
another gesture, namely, ‘release five fingers’ (g3). This
process continues until feedback is provided on the screen.
Here, GG = {g1, g2, g3} and the semantic object = ‘Scale-
up the selected object’. This process is independent of the
sequence of g1, g2 and g3, which lowers the user’s memory
workload. Hence, the user need not remember gestures and
their corresponding semantics. Thus, s/he can focus most of
his/her attention on the main task.

Five semantics groups are defined and experimented on for
F-M (as listed in TABLE 1).

The participants were asked to perform operations
in Table 1 using gestures from GG. If the semantic object
of a user’s gesture was not in the set of gesture semantics,
the interface would not respond and would display ‘Invalid
gesture’. If the user wanted to scale-down the current scene,
s/he could use the gesture ‘fetch with 5 fingers’; if the user
forgot the gesture, s/he could use the gesture ‘fetch with
fingers 1 and 2’ or the gesture ‘fetch with fingers 1, 2 and
3’. If an error occurred, the system would restore the scene
back to the status prior to the current operation. Then, the user
was allowed to use an alternative gesture to complete the
operation.

TABLE 1. Definition of the five semantics groups.

2) RESULTS AND ANALYSIS
The experimental results demonstrate that the users did not
need to deliberately memorize gesture commands to success-
fully perform all functions in SCI. The users often chose
gestures for control that were based on their operational
experiences. For example, a user often attempts to use the
‘release 5 fingers’ gesture to scale-up the object. In addition,
when a gesture failed, alternative gestures were explored until
the operation succeeded.

To evaluate the performance of the proposed F-M algo-
rithm, a series of comparison experiments were conducted
between F-M-based gesture recognition and the approach
based on one-to-one mapping between gestures and com-
mands (named GC) [33]. For GC, a gesture is mapped to
one command and a command is mapped to one gesture
compulsorily in the same context.

a: COMPARISON OF THE SUCCESS RATES OF F-M
AND GC WITH UNTRAINED USERS
With a novice user group, we deem an operation successful
if the results of gesture command execution accord with the
expectation or intent of the user. If out of N attempts by
the user to operate the application system there are n single
operations that can successfully complete all the functions,
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FIGURE 4. Averaged performance statistics of the F-M algorithm for the 100 untrained subjects. (a) Failure rate statistics
of single operations for F-M. (b) A group of comparative experiments: Overall success rate comparison between
F-M and GC.

then the success rate is defined as:

α = n/N (6)

One hundred college students volunteered for the study.
They performed the five operations in Table 1. According to
the results, the operation failed to be performed 13, 3, 9, 5,
and 19 times (FIGURE 4(a)). The five basic operations failed
10 times on average. Subsequently, we invited the subjects
to form an experimental group for five experiments on the
success rates of operations with F-M algorithms and GC.
Each test subject independently performed each function of
the F-M algorithm interface (a total of five functions). For the
F-M algorithm, all functions were successfully performed 3,
4, 5, 4, and 3 times on average; for the GC algorithm,

all functions were successfully performed 1, 1, 2, 3, and
2 times (FIGURE 4(b)). In this experiment, the users were
not trained to use the F-M or GC prior to the statistical
experiments. We found that the users were highly capable
of transferring their smartphone operation experience to the
new system.

b: TRAINING DURATIONS FOR SKILLED OPERATORS
Ten college students of ages 19−23 volunteered to partici-
pate in the experiment. They were trained on the F-M-based
system and the results are presented in FIGURE 5. The
correction or recognition rate reached 100% after training for
1minute for thosewith an average age of 22.7, for 1.5minutes
for those with an average age of 21.5, and for 2 minutes
for those with an average age of 19.8. All participants could
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FIGURE 5. Success rate versus training time for five gesture groups (GGs) for 10 college students.

skillfully operate the interface and the older students seemed
to be more efficient at learning our system.

In summary, the F-M algorithm can reduce the level
of effort that is required for completing a task. Moreover,
the implicit error detection and correction and the detection of
‘confirming’ and ‘correcting’ behaviors in the F-M algorithm
effectively reduce the frustration and anxiety of the user that
are caused by possible mis-operations.

B. THE APPLICATION OF F-M IN ROBOT
DEMONSTRATION TEACHING SYSTEM
Chinese tea art can be displayed in a smart teaching system
through human-robot intelligent interaction. In this intelligent
teaching system, the robot can respond to human gesture
commands and cooperate with human to complete the tea
art exhibition. In response to different commands, the robot
enables to perform some basic actions, such as lifting the
teacup, moving the teacup, and pouring the tea, etc. The
main problem of this kind of system is that the robot cannot
always correctly recognize the gesture commands or mis-
understands the user’s intention, therefore interrupting the
interaction between human and robot. This paper presents
an F-M algorithm which enables the human to issue com-
mands to the robot utilizing gestures formed by daily life
experience without memorizing new gesture commands. The
experimental results show that the gesture-control system
based on the proposed F-M algorithm can always make the
robot understand the user’s intention correctly, ensuring a
smooth interaction between human and robot.

Twenty volunteers of ages 20-25 were invited to participate
in the experiment and asked to perform the same seman-
tics ‘‘Would you please have a cup of Chinese tea?’’. Each
volunteer used the gesture in GG = {fetch with 5 fingers;
fetch with fingers 1 and 2; fetch with fingers 1, 2 and 3} to
control the Pepper Robot to fetch a teacup (Figure 6). The task
was repeated 10 times for each volunteer and the number of
alternative gestures was counted. Here, alternative gestures

FIGURE 6. Screens hots of F-M algorithm runs in our Pepper Robot
demonstration teaching system. (a) a volunteer was issuing a
command using hand gesture. (b) The robot was fetching a
teacup for the volunteer.

refer to the gestures in GG. For example, if the robot failed
to respond to the gesture command from a volunteer, the
volunteer should use an alternative gesture in GG to repeat
this process until the command is correctly identified by
robot. We further defined the ratio of the alternative gestures
as follows:

βm = rm/M (7)

in whichM represents the repeated times of the tasks, and rm
refers to the number of the fact that the alternative gestures
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FIGURE 7. Screens hots of F-M algorithm runs in this study. (a)–(b): In the
same interaction scenario, the user used an alternative gesture to handle
the issue of forgetting gestures. (c): Experimental scenarios.

used during theM repeated tasks ism. The detailed statistical
results of rm for each volunteer are shown in Table 2.

For the twenty volunteers, the βm on average were cal-
culated by the former formula (7), and it turned out that

TABLE 2. The times rm that the alternative gestures were use. in our
f-M-based robot demonstration teaching system.

βm=0 = 68%, βm=1 = 20%, βm≥2 = 12%, which showed
a fact that alternative gesture is used with a probability
of 32%. The experimental results also demonstrate that the
proposed gesture-based F-M algorithm works well in our
robot demonstration teaching system and can substantially
reduce the memory loads of the user.

C. USER STUDY
A comparative experiment was conducted to determine
whether or not the interface could reduce the cognitive and
operation loads. Volunteers were invited to participate in the
experiment. Each participant performed the required inter-
action functions using the F-M and GC algorithms inde-
pendently and repeated the operation ten times using each
algorithm.

The participants were asked to perform operations, such
as zooming in and zooming out of a cube in a 3D scene
using natural gestures and were required to use the same
type of gesture to perform rotation of, enclosing of, and
zooming in on the cube in the same context (Figure 7). If the
semantic object of the user’s gesture (e.g., ‘‘Ok gesture’’)
was not in the set of gesture semantics that were required by
the cube’s function set, the cube would not respond and the
interface would display ‘‘Invalid gesture’’ (Figure 6a). If the
user wanted to zoom in on the cube in the current scene,
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FIGURE 8. Comparison of the cognitive load and the usability test for F-M and GC. 1-Mental demand. 2-Physical demand.
3–Temporal demand. 4-Performance. 5-Effort. 6-Frustration. 7-Convenience. 8-Joviality. 9-Workability. (a) For group #1.
(b) For group #2. (c) For group #3.
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TABLE 3. For the three groups, the distribution parameters (µ, δ) of F-M for the nine evaluation indicators are compared with GC in detail.

he/she could use the gesture ‘‘open all fingers of a fist’’;
if the user forgot the gesture, he/she could use the gesture
‘‘release fingers 1 and 2’’ to enlarge the cube (Figure 6b).
If the gesture was still misunderstood by the system, he/she
could use the gesture ‘‘release 1, 2 and 3 fingers’’. When an
error (in the case of mis-operations, e.g., if the gesture was
not in the gesture database or was a misunderstood gesture)
occurred, the system restored the scene back to the status
prior to the current operation and the user was allowed to
use an alternative gesture to complete the operation. The
experimental results demonstrated that the user essentially
did not need to learn or deliberately memorize any gesture
command to successfully achieve all the functions for con-
trolling the cube. We observed that the users often chose to
initially use gestures for control based on their experience.
For example, the users often attempted to use the ‘‘release
5 fingers’’ gesture to enlarge the cube. If this method failed,
they would often use another gesture to enlarge the object.
In addition, if a gesture failed, alternative gestures would be
explored until the operation succeeded.

The volunteers were divided in three groups according to
age: Group #1 was composed of the 100 pupils of ages 10-17
(average age 15.3), group #2 was composed of 110 college
students of ages 19-24 (average age 22.7), and group #3 was
composed of 30 teachers of ages 35-43 (average age 40.9).
For each volunteer, the task is to enlarge the cube and to shrink
it, without prior training, using F-M and GC. Each volunteer
was allowed to attempt the task 10 times.

For each group, the operation was averagely scored using
the NASA Task Load Index (NASA-TLX) [35] evaluation
indicators on a five-point scale. The NASA-TLXwas utilized
to quantitatively analyze and evaluate the load on users
in terms of mental demand (MD), physical demand (PD),
temporal demand (TD), operating performance (OP), effort
(E) and degree of frustration (DF). After finishing her/his
task, each volunteer was asked to independently provide
scores for the NASA-TLX index. Then, the evaluations of

the corresponding indicators were averaged. In addition,
each volunteer was requested to evaluate the joviality (J),
convenience (C), and workability (W) of F-M and GC.
Joviality describes the degree of amusement the user feels,
convenience describes the quality of being suitable for the
user’s objectives, and workability describes the extent to
which the initialization approach is feasible. The results
of the quantitative comparative experiments are presented
in Figure 8. Based on user experiences and questionnaires,
we used the Gaussian distribution x ∼N(µ, δ2) to analyze the
evaluation index x. Here, µ and δ denote the mean and mean
variance, respectively. The distributions of the nine indicators
for F-M andGC are shown in Table 2. For example, in Table 3,
MDF−M

∼N(2, 0.432) and MDGC
∼N(4.5, 1.032).

It is figured out from Table 2 that, compared with GC, for
the group #1, the average user load of F-M is reduced by
46.22%, and the valuation indicators, joviality, convenience
and workability, are increased by 50%, 29.73%, and 56.67%
respectively. For the group #2, the average user load of F-M
is reduced by 56.25%, and the valuation indicators, joviality,
convenience and workability, are increased by 100%, 135%,
and 25.64% respectively. For the group #3, the average user
load of F-M is reduced by 63.82%, and the valuation indica-
tors, joviality, convenience and workability, are increased by
150%, 66.67%, and 35.14% respectively.

An interesting finding is that group #3 has the largest
reduction in the user load for F-M, whereas group #2 has
the highest evaluation in terms of the three indicators,
namely, joviality, convenience and workability, out of the
three groups. Moreover, almost all experiment volunteers
believed that no additional memory load or operational
load will be imposed on users in the F-M-based interactive
system.

Compared with the GC-based interface, success in using
the F-M-based interface to complete the interaction task
mainly depends on the user’s past operating experience
and this interface almost eliminates the need for users to
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memorize gesture commands or operatingmethods or gesture
order in aGG. There are similarities among the gestures in the
GG. It is easy to transition from one gesture to another ges-
ture, thereby decreasing the physical efforts that are required
by the user. The required time depends on the degree of
proficiency with the operation and the correction rate of
mis-operations. Consequently, the F-M algorithm ensures a
lower time requirement. Using the F-M interface, users are
not required to employ gestures with which they are not
familiar or that are dificult to perform. In addition, the error
correction strategies accord with cognitive-behavioral prin-
ciples. For example, in the same context, gestures ‘release
5 fingers’ and ‘release fingers 1 and 2’ could define
the same semantic object, namely, ‘Scale-up an object’.
As such, users could flexibly select different gestures based
on their life experiences for expressing the same interaction
intent.

VII. CONCLUSION AND FUTURE WORK
With the application background of the SCI system that
is based on gesture sensing and interaction, which aims at
flexibly mapping from many gestures to one semantic object
under the same situational context, this paper makes the fol-
lowing main contributions. (a) A flexible mapping algorithm,
namely, F-M between multiple gestures and one semantic
object under the same situational context, is proposed. (b) It
is demonstrated that the proposed F-M algorithm substan-
tially reduces the user’s memory loads. (c) An intent-driven
approach is presented for F-M.

A flexible mapping between multiple gestures and one
semantic object is proposed based on the observation
that multiple gestures for an interaction can represent the
same interaction intent under the same situational context.
A method is presented for establishing a gesture group
(GG) based on the behavioral models of the user by utiliz-
ing multiple gestures to express the same semantics in the
same interaction scenario. An intelligent and natural inter-
action interface model for 3D platforms has been imple-
mented. The performance and cognitive mechanism of the
F-M between the users’ gestures and interaction seman-
tics have been evaluated with five frequently used gestures
and applied to the SCI system. It is demonstrated that the
proposed F-M algorithm substantially reduces the user’s
memory loads.

There exist limitations in this work. The one issue is that we
neglected ethical context surrounding because of no ethical
comity is available at our institution. Another one is that we
overlook the relationship between many-to-one gesture-to-
command mapping and user intentions.

In our future work, we will consider fusing the continu-
ous production of gestures, signs and speech such that the
computer will locate the potentially meaning-bearing phases
in the continuous production and understand the user’s inten-
tions [18], [34], [36] and upon which build more smart many-
to-one gesture-to-command flexible mapping models and
algorithms.

REFERENCES
[1] R. D. Vatavu and I. A. Zaiti, ‘‘Leap gestures for TV: Insights from an

elicitation study,’’ in Proc. ACM Int. Conf. Interact. Experiences TV
Online Video, 2014, pp. 131–138.

[2] B. Sumak, M. Pusnik, M. Hericko, and A. Sorgo, ‘‘Differences between
prospective, existing, and former users of interactive whiteboards on
external factors affecting their adoption, usage and abandonment,’’ Com-
put. Hum. Behav., vol. 72, pp. 733–756, Jul. 2017.

[3] X. Yin and M. Xie, ‘‘Finger identification and hand posture recog-
nition for human–robot interaction,’’ Image Vis. Comput., vol. 25,
pp. 1291–1300, Aug. 2007.

[4] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz, ‘‘Tivoli:
An electronic whiteboard for informal workgroup meetings,’’ in Proc.
Readings Hum. Comput. Interact., Jan. 1995, pp. 509–516.

[5] D. Y. Huang, W. C. Hu, and S. H. Chang, ‘‘Gabor filter-based hand-pose
angle estimation for hand gesture recognition under varying illumina-
tion,’’ Expert Syst. Appl., vol. 38, no. 5, pp. 6031–6042, 2011.

[6] J. F. Hessam, M. Zancanaro, M. Kavakli, and M. Billinghurst, ‘‘Towards
optimization ofmid-air gestures for in-vehicle interactions,’’ inProc. 29th
Austral. Conf. Comput.-Hum. Interact., 2017, pp. 126–134.

[7] P. K. Pisharady and M. Saerbeck, ‘‘Recent methods and databases in
vision-based hand gesture recognition: A review,’’ Comput. Vis. Image
Understand., vol. 141, no. 5, pp. 152–165, Dec. 2015.

[8] Z. Ding, Y. Chen, Y. L. Chen, and X. Wu, ‘‘Similar hand gesture recog-
nition by automatically extracting distinctive features,’’ Int. J. Control
Autom. Syst., vol. 15, pp. 1770–1778, Jun. 2017.

[9] Y. Liu, L. Tang, K. Song, S. Wang, and J. Lin, ‘‘A multicolored vision-
based gesture interaction system,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Theory Eng. (ICACTE), vol. 2, 2010, p. V2-281.

[10] J. Zeng, Y. Sun, and F. Wang, ‘‘A natural hand gesture system for
intelligent human-computer interaction and medical assistance,’’ in Proc.
3rd Global Congr. Intell. Syst. (GCIS), Nov. 2012, pp. 382–385.

[11] C. Oz and M. C. Leu, ‘‘Human-computer interaction system with artifi-
cial neural network using motion tracker and data glove,’’ in Proc. Int.
Conf. Pattern Recognit. Mach. Intell. Berlin, Germany: Springer, 2005,
pp. 280–286.

[12] Y. Zhou, G. Jiang, and Y. Lin, A Novel Finger and Hand Pose Estimation
Technique for Real-Time Hand Gesture Recognition. Amsterdam, The
Netherlands: Elsevier Science, 2016.

[13] J. L. Raheja, M. Minhas, D. Prashanth, T. Shah, and A. Chaudhary,
‘‘Robust gesture recognition using kinect: A comparison between DTW
and HMM,’’ Optik, vol. 126, nos. 11–12, pp. 1098–1104, Jun. 2015.

[14] P. Wang, Z. Li, Y. Hou, and W. Li, ‘‘Action recognition based on joint
trajectory maps using convolutional neural networks,’’ in Proc. ACM
Multimedia Conf., 2016, pp. 102–106.

[15] Y. Sang, L. Shi, and Y. Liu, ‘‘Micro hand gesture recognition system using
ultrasonic active sensing,’’ IEEE Access, vol. 6, pp. 49339–49347, 2018.

[16] R. Ibaez, L. Soria, A. Teyseyre, G. Rodriguez, and M. Campo, ‘‘Approxi-
mate string matching: A lightweight approach to recognize gestures with
Kinect,’’ Pattern Recognit., vol. 62, pp. 73–86, 2017.

[17] L. Liu, S. Wang, B. Hu, Q. Qiong, J. Wen, and D. S. Rosenblum,
‘‘Learning structures of interval-based Bayesian networks in probabilis-
tic generative model for human complex activity recognition,’’ Pattern
Recognit., vol. 81, pp. 545–561, Sep. 2018.

[18] S. Kita and G. I. V. D. H. H. Van, ‘‘Movement phases in signs and co-
speech gestures, and their transcription by human coders,’’ in Gesture
and Sign Language in Human-Computer Interaction (Lecture Notes in
Computer Science), vol. 1371, I. Wachsmuth and M. Fröhlich, Eds.
Berlin, Germany: Springer, 1998, pp. 23–35.

[19] E. Choi, S. Kwon, D. Lee, H. Lee, and K. C. Min, ‘‘Towards successful
user interactionwith systems: Focusing on user-derived gestures for smart
home systems,’’ Appl. Ergonom., vol. 45, no. 4, pp. 1196–1207, 2014.

[20] K. Wang, B. Xiao, J. Xia, D. Li, and W. Luo, ‘‘A real-time vision-based
hand gesture interaction system for virtual EAST,’’ Fusion Eng. Des.,
vol. 112, pp. 829–834, Nov. 2016.

[21] D. Rempel, M. J. Camilleri, and D. L. Lee, ‘‘The design of hand
gestures for human–computer interaction: Lessons from sign lan-
guage interpreters,’’ Int. J. Hum. Comput. Stud., vol. 72, pp. 728–735,
Oct./Nov. 2014.

[22] K. Katsuragawa, A. Kamal, and E. Lank, ‘‘Effect of motion-gesture
recognizer error pattern on user workload and behavior,’’ in Proc. Int.
Conf. Intell. User Interfaces, 2017, pp. 439–449.

179530 VOLUME 7, 2019



S. Feng et al.: Many-to-One Gesture-to-Command Flexible Mapping Approach for Smart Teaching Interface Interaction

[23] J. Ruiz, Y. Li, and E. Lank, ‘‘User-defined motion gestures for mobile
interaction,’’ in Proc. Sigchi Conf. Hum. Factors Comput. Syst., 2011,
pp. 197–206.

[24] D. Kern, P. Marshall, M. Pfei er, V. Gruhn, and A. Schmidt, ‘‘Gestural
interaction on the steering wheel: Reducing the visual demand,’’ in Proc.
SIGCHI Conf. Hum. Factors Comput. Syst., 2011, pp. 483–492.

[25] C. H. Lai, ‘‘A fast gesture recognition scheme for real-time human-
machine interaction systems,’’ in Proc. Int. Conf. Technol. Appl. Artif.
Intell., Nov. 2011, pp. 212–217.

[26] Y. Lou, W. U. Wenjun, R. D. Vatavu, and W. T. Tsai, ‘‘Personalized
gesture interactions for cyber-physical smart-home environments,’’ Sci.
China, vol. 60, Oct. 2017.

[27] M. Hoetjes, R. Koolen, M. Goudbeek, E. Krahmer, and M. Swerts,
‘‘Reduction in gesture during the production of repeated references,’’
J. Memory Lang., vols. 79–80, pp. 1–17, Feb./Apr. 2015.

[28] F. Jeanne, Y. Soullard, A. Oker, and I. Thouvenin, ‘‘EBAGG: Error-based
assistance for gesture guidance in virtual environments,’’ in Proc. IEEE
Int. Conf. Adv. Learn. Technol., Jul. 2017, pp. 472–476.

[29] A. Licsár and T. Szirányi, ‘‘User-adaptive hand gesture recogni-
tion system with interactive training,’’ Image Vis. Comput., vol. 23,
pp. 1102–1114, Nov. 2005.

[30] Z. Feng, B. Yang, T. Xu, X. Yang, W. Xie, C. Ai, and Z. Chen, ‘‘FM:
Flexible mapping from one gesture to multiple semantics,’’ Inf. Sci.,
vol. 467, pp. 654–669, Feb. 2018.

[31] R. Eshuis and N. Mehandjiev, ‘‘Flexible construction of executable ser-
vice compositions from reusable semantic knowledge,’’ ACMTrans. Web,
vol. 10, no. 1, pp. 1–27, 2016.

[32] K. Kok, K. Bergmann, and A. Cienki, ‘‘Mapping out the multifunction-
ality of speakers,’’ Gesture, vol. 15, no. 1, pp. 37–59, 2016.

[33] Z. Feng, B. Yang, Y. Li, Y. Zheng, X. Zhao, J. Yin, and Q. Meng, ‘‘Real-
time oriented behavior-driven 3D freehand tracking for direct interac-
tion,’’ Pattern Recognit., vol. 46, no. 2, pp. 590–608, 2013.

[34] K. Sun, Z. Feng, C. Ai, Y. Li, J. Wei, X. Yang, X. Guo, H. Liu, Y. Han,
and Y. Zhao, ‘‘An intelligent discovery and error correction algorithm for
misunderstanding gesture based on probabilistic statistics model,’’ Int.
J. Performability Eng., vol. 14, no. 1, pp. 89–100, 2018.

[35] E. R. Muth, J. D. Moss, P. J. Rosopa, J. N. Salley, and A. D. Walker,
‘‘Respiratory sinus arrhythmia as a measure of cognitive workload,’’ Int.
J. Psychophysiol., vol. 83, no. 1, pp. 96–101, 2012.

[36] K. Wang, Z. Feng, J. Li, and R. Han, ‘‘A structural design and interaction
algorithm of smart microscope embedded on virtual and real fusion
technologies,’’ IEEE Access, vol. 7, pp. 152088–152102, 2019, doi: 10.
1109/ACCESS.2019.2945330.

SHICHANG FENG is currently pursuing the
master’s degree with the School of Informat-
ics, Xiamen University. His main research inter-
ests include human–computer interaction and 3D
vision.

ZHIQUAN FENG received the master’s degree
from Northwestern Polytechnical University,
China, in 1995, and the Ph.D. degree from the
Computer Science and Engineering Department,
Shandong University, in 2006. He is currently a
Professor with the School of Information Science
and Engineering, University of Jinan. He has
published more than 50 articles on international
journals, national journals, and conferences in
recent years. His research interests include human

hand tracking/recognition/interaction, virtual reality, human–computer inter-
action, and image processing.

LIUJUAN CAO is currently an Associate Pro-
fessor with the School of Informatics, Xiamen
University, China. Her current research interests
include image understanding and image process-
ing. She has published more than 30 articles,
including Elsevier Information Science, Neuro-
computing, and Signal Processing, and the IEEE
International Conference on Computer Vision and
Pattern Recognition and International Joint Con-
ference on Artificial Intelligence.

VOLUME 7, 2019 179531

http://dx.doi.org/10.1109/ACCESS.2019.2945330
http://dx.doi.org/10.1109/ACCESS.2019.2945330

