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ABSTRACT Code comments are a key software component for program comprehension and software
maintainability. High-quality code and comments are urgently needed by data-driven models widely used in
tasks like code summarization. Many existing approaches for assessing the quality of comments are machine
learning based classification algorithms or rely on heuristic rules. These approaches are difficult to capture
the complicated features of text data and are often limited in accuracy, efficiency, and generalization ability.
In this paper, we convert the quality assessment of code comments into a classification problem based on
the multi-input neural network. We summarize the input, the code and comments, into vectors using the
attention-based Bi-LSTM model and the weighted GloVe model, respectively, and concatenate the code
vectors and the comment vectors as the input of the Multiple-Layer Perceptron classifier for the comment
quality assessment. Experimental results show that our approach, in general, outperforms the previous
technique, on both our labeled dataset and the public dataset, with the F1-score of 96.91% and 91.90%,
respectively. Using the training set and the testing set from distinct sources, our approach can still achieve
reasonable performance, which demonstrates its generalization ability.

INDEX TERMS Code comment, source code, multi-input neural network, text classification.

I. INTRODUCTION
Code comments are essential to software systems and can
help developers better understand the code for modifica-
tion or reuse. Previous studies have shown that on average
developers spend around 60% of their time on program com-
prehension activities [1] and the commented code is easier to
understand than the uncommented code [2]. Developers and
users can therefore save a lot of time with code comments.
Code comments also play an important role in software main-
tenance. They provide key information to understand systems
to be maintained [3] and the lack of them can significantly
reduce software maintainability [4].

In recent years, data-driven models in various tasks like
code summarization, code completion, and comment gener-
ation have been analyzed and studied by many researchers.
These models require high-quality code and comments,
to learn knowledge from them. For example, Wong et al. [32]
generate code comments automatically by analyzing existing
software repositories. They use the comments from some
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code segments to describe the other similar code segments.
The quality of the existing comments is important to their
method. Unfortunately, commentsmay be irrelevant or incon-
sistent with the source code they refer to. To this end, an effec-
tive quality assessment approach of comments is of great
importance, and with this approach developers can pick out
high-quality comments and their corresponding code to train
and test data-driven models.

Many assessment approaches of comment quality have
been proposed. Some traditional methods distinguish the
quality of comments by defining various metrics [6], [7],
such as comment consistency, maintainability, readability,
etc. However, the cost of the manual work is always large,
thus for modern systems with growing scale of code com-
ments, these approaches may not be applicable. Machine
learning classifiers have also been used to assess the quality of
code comments [5], [9], [10], [33]. These approaches cannot
achieve high enough accuracy because of the complexity of
the code and comments and the insufficiency of the model
expression ability.

Unlike the general text, comments and code have unique
characteristics that make sentence classification for general
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texts not applicable. First, comments are closely related to the
code. The correlation between the code and comments should
be considered in the quality assessment of comments. How-
ever, the code and comments are the programming language
and the natural language, respectively. The different structural
features and rules of these two languages make it difficult to
capture the correlation of the code and comments. Second, the
words and identifiers introduced in the code and comments
require the domain knowledge to understand. Finally, the lan-
guage forms of the code and comments vary from software
projects due to the using of various programming styles and
preferences. It is crucial to extract the key information from
raw data.

The basic idea in this paper is that we treat the quality
assessment of comments as a classification problem.We use a
classifier to decide if the quality of a snippet of code comment
is reliable. Due to limited public datasets [31], we select the
Java projects uploaded to GitHub before October 2018 and
arrange for three annotators to spend three months in labeling
the method-level code and comments for further model train-
ing and testing. We perform domain-specific data cleaning
techniques to build our dataset from the labeled raw data. For
the code and comments with different data characteristics,
we propose DComment, a Multi-Input Neural Network to
summarize them into vectors based on their characteristics.
We vectorize tokens in the code and comments using the
enhanced GloVe model, which is pretrained with the domain-
specific corpus. For the code, we train a Bi-LSTM model
to summarize the token vectors and introduce the attention
mechanism to focus on the tokens with the important infor-
mation. For comments, we sum up the token vectors as the
comment representations, with the consideration of token
weights. The token weights are calculated based on TF-IDF.
Finally, we feed the code vectors and the comment vectors
into the Multiple-Layer Perceptron (MLP) classifier.

We compare DComment with the state-of-the-art previous
work on our labeled dataset and the public dataset [9]. Exper-
iments show that, in general, DComment outperforms previ-
ous approaches over all metrics including precision, recall
and F1-score. DComment achieves the F1-score of 96.91%
on our labeled dataset and 91.90% on the public dataset.
To evaluate the generalization ability of DComment, we con-
duct experiments on DComment with the training data and
the testing data from different sources, and the F1-score
of 85.80% is achieved. The evaluation results demonstrate
that DComment performs well on the new unseen data and
has high generalization ability.

In this paper, we make the first attempt to apply deep
neural networks to the automatic quality assessment of code
comments. Our main contributions are as follows:

• We manually label 2156 method-level code-comment
pairs from Java projects uploaded to GitHub before
October 2018 and establish a public dataset.1

1It is available at https://github.com/wangdeze18/Code-Comment-
Assessment-Dataset.

• We propose a framework for the automatic quality
assessment of code comments, based on the extraction
of the distinct characteristics of the code and comments.

• We evaluate and compare the performance of DCom-
ment against other approaches, using our labeled dataset
and the public dataset. Experimental results show that
DComment achieves the state-of-the-art performance
in comment classification and has high generalization
ability.

The rest of the paper is organized as follows. Section II
presents the related work, Section III introduces our data
preparation process, and Section IV describes our frame-
work DComment and its implementation details, followed
by Section V that presents the evaluation results. Finally,
Section VI concludes the paper.

II. RELATED WORK
A. COMMENT CLASSIFICATION
Previous work can be classified as traditional methods
and machine learning methods. For traditional methods,
Khamis et al. [8] proposed the JavadocMiner tool for ana-
lyzing the quality of Javadoc comments and they used a
set of heuristic rules to determine the quality of comments
according to both the comment content and the consistency
between the code and comments. Tan et al. [11] also targeted
Javadoc, parsing Javadoc comments to infer the properties
of the corresponding code. A random test case was then
generated to identify the inconsistencies between the code
and comments. Based on the hypothesis ‘‘if the code is high
quality, then the comments give a good description of the
code’’, Lawrie et al. [12] used the information retrieval tech-
nique to evaluate the code quality by the cosine similarity
on the vector space model. Padioleau et al. [6] designed a
classification system based on the meaning of the comments.
This semantic analysis is a great breakthrough compared with
previous work, but manual classification is time-consuming
and cannot be widely applied. Wen et al. [7] presented an
empirical study about the co-evolution of the code and com-
ments, and defined a taxonomy that categorized the types of
code-comment inconsistencies fixed by developers.

For machine learning methods, Steidl et al. [5] applied
machine learning methods to evaluate the comments qual-
ity in terms of effectiveness, consistency, completeness, and
usability, and to classify comments into seven high-level
categories. Pascarella and Bacchelli [13] further refined the
Java code comment classification, and designed a Bayesian
classifier to predict the comment categories. Corazza et al. [9]
manually evaluated the consistency of 3636 methods of
three open source softwares, and proposed an SVM clas-
sifier on the vector space model to automatically classify
comments. Liu et al. [10] proposed a machine learning-
based approach that utilized 64 different features to detect
comments that should be updated when the code changes.
Shinyama et al. [30] proposed eleven distinct categories of
code comments and developed a decision-tree based classifier
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that could identify the explanatory comments. Yu et al. [33]
propose a code comment quality assessment approach by
using the aggregation of the basic classification algorithms.
They evaluate comments in terms of their formats, language
forms, contents and relevance with the code. Their methods
do a preliminary study on automatic comment classification,
but the accuracy of these methods can be further improved.
They mainly focus on comment forms, and lack the deep
understanding of code structure and comment semantics dur-
ing the assessment process.

B. DEEP LEARNING FOR SOFTWARE ENGINEERING
Many studies combined software engineering with deep
learning, and applied deep learning to different software arti-
facts. Deep learning has achieved competitive performance
against previous algorithms on many software engineering
tasks like code summarization, code completion, and com-
ment generation.

Researchers conducted many studies based on code rep-
resentation. Mou et al. [14] used an RNN Encoder-Decoder
model to generate code from natural language user inten-
tions. White et al. [15] applied the RNN language model
to source code files and demonstrated their effectiveness at
a real software engineering task, code suggestion. Gu et al.
[16] proposed a deep neural network, which jointly embedded
code snippets and natural language descriptions into vector
space for code search. In addition to embedding source code,
there are some studies focusing on natural language. Desh-
mukh et al. [17] used neural networks to detect duplicate
bug reports. Yin et al. [18] proposed a method for extracting
aligned code/natural language pairs from the Q&A website,
Stack Overflow. Fucci et al. [19] studied how well modern
text classification approaches can automatically identify the
documentation that contains specific knowledge types. Deep
learning achieves encouraging success in the field of software
engineering for its powerful ability to feature extraction and
learning. In this paper, we try to combine data processing
techniques with end-to-end deep learning methods on the
code and comment artifacts, and design a framework for
automatic quality assessment of comments.

III. DATA PREPARATION
Due to improper programming habits of developers and
code evolution, there are always many problems within the
comments, such as outdated, inconsistent with their cor-
responding code, etc. Moreover, few datasets of method-
level code-comment pairs are currently available. Therefore,
we manually annotate a set of code-comment pairs for train-
ing and evaluation. Fig. 1 shows the overview of our data
preparation process. Next, we introduce the details of the data
preparation process and our labeled dataset.

A. DATA FILTERING
The projects we select were uploaded to GitHub before Octo-
ber 2018 with the tag of ‘‘Java’’. To ensure the reliability
of the code and comments, we only include projects with

FIGURE 1. An overview of the data preparation process.

10 stars or more. In this paper, we focus on method-level
comments, since they are likely to have corresponding code
snippets. We exclude too short comments with less than
4 tokens, because theymay have very limited information and
are not worthy for the learning process of our model.

B. DATA ANNOTATION
Three annotators spend three months annotating the method-
level code and comments of the projects collected from
GitHub to build a labeled dataset. Each comment and its
corresponding code can form a code-comment pair. For each
pair, one annotator independently labels the comment with
the value of non-coherent or coherent, according to the con-
tent of the comment and the correlation of the code and the
comment.

For the same code-comment pair, different annotators may
assign different labels, due to their subjectivity. To solve this
problem, we assign at least two annotators to assess each
code-comment pair.

If the judgments of the annotators differ, we introduce the
kappa index [20] to estimate the agreement. It is a statistical
measure of the consistency of the annotators on a classified
project. The definition of κ is:

κ =
P0 − Pe
1− Pe

(1)

where P0 is the relative observed agreement among annota-
tors, and Pe is the hypothetical probability of chance agree-
ment.

Values greater than 0.75 are considered as a good agree-
ment [21]. If values are lower than 0.75, annotators discuss
the results and find out the reasons for major disagreements.
After discussion and arguments, a common label was given.
Finally, all the comments are given a label.

C. DATA CLEANING
In order to ensure the accuracy of the quality assessment
model, data cleaning must be performed first to remove data
noise. In our research, the code and comments contain vari-
ous identifiers and symbols, such as operators and brackets,
which may not frequently appear in other types of plain text.
Therefore, the data cleaning process in this paper includes
the filtering of special text symbols, word segmentation and
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TABLE 1. Details of the labeled dataset. # Tokens refers to the total number of symbols in a corpus, including tokens, operators, and punctuations. #
Vocabulary refers to the number of distinct tokens in a corpus. # Average length refers to the ratio of tokens to the category number.

vocabulary processing, in addition to the general data prepro-
cessing techniques conducted for the other text.

We summarize five rules for refining the text information
according to the forms of symbols: 1) Remove the inline
comments with ‘‘//’’, ‘‘/∗’’, or ‘‘∗/’’ in the code. 2) Remove
all Javadoc in comments, such as ‘‘@author’’, ‘‘@param’’,
‘‘@deprecated’’, etc. 3) Remove the contents in comments
like ‘‘Class#method’’. These symbols usually refer to meth-
ods in other classes that are beyond the scope of the method-
level code and comments in this paper. 4) Remove all pairs
of brackets and the content within them from the comments,
because they usually refer to the explanation of words or
phrases and are not helpful to the overall understanding of
the comments. 5) Keep punctuations such as ‘‘{‘‘, ’’}’’, and
‘‘;’’, which contain detailed structural information.

We tokenize the identifiers appearing in the code and com-
ments according to word formation (e.g. snake and camel
case). We also remove the keywords that appear in the code
apart from general stop words, such as ‘‘public’’, ‘‘final’’, and
‘‘static’’, because these words have no real meaning.

D. OUR DATASET
After data cleaning, we build a labeled dataset with
5510 coherent cases and 572 non-coherent cases. Some
descriptive statistics of our dataset is reported in Table 1.
We take the coherent case as positive and the non-coherent
case as negative.

Table 1 suggests that the number of positive samples in the
dataset is approximately ten times that of negative samples.
In the data filtering process, we choose longer comments to
ensure that they are informative. The negative samples are
mainly produced by coding mistakes, copy and paste errors,
and outdated problem during code evolution. The imbalance
of the positive and negative samples poses a challenge to
the classification of comments that we should deal with in
our framework. And the number of the vocabulary, including
some domain-specific words and identifiers, is very large,
which increase the difficulty of learning. Finally, for the
convenience of future research, we make our dataset publicly
available.

IV. FRAMEWORK OF DCOMMENT
To judge the quality of the comments, we propose a comment
assessment frameworkDComment, as shown in Fig. 2. Given
a corpus of the collected code and comments, DComment
vectorizes the code and comments after data preparation,
during which the attention mechanism is applied to extract

FIGURE 2. An overview of our framework DComment.

important information from the code. We then concatenate
the code vectors and the comment vectors and feed them into
the MLP classifier for classification. The following subsec-
tions describe the detailed design of the framework.

A. CODE EMBEDDING
1) THE ENHANCED GLOVE EMBEDDING
Distributed representations [26] have excellent performance
in many tasks, such as sentiment classification, similarity
evaluation, and reading comprehension. To obtain numeric
representations from raw input, we adopt an unsupervised
learning algorithm GloVe [22] to learn the representation of
the code and comments. GloVe maps tokens into a mean-
ingful space where the distance between tokens is related to
the semantic similarity. However, GloVe is a general-purpose
vector representation of tokens trained on enormous general
datasets.

To get the fine-tuned representations for the code and com-
ments, we introduce a simple retrofitting-like extension to the
original GloVe model [23]. We fine-tune the general repre-
sentations on a large corpus of the Java projects fromGitHub,
so that we can synthesize the domain-specific knowledge and
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the general-purpose representations in a way that both repre-
sentations of the code and comments as different language
types are proper and informative.

2) THE Bi-LSTM NEURAL NETWORK
The code contains low-level implementation details using
many tokens to implement the task described by the comment
and therefore the information of the code is very sparse.
To fully exploit the sparse information, we apply the Bidi-
rectional LSTM (Bi-LSTM). Bi-LSTM contains two sub-
networks for the left and right sequence context, which can
capture bilateral semantic dependence in the code. Given a
code snippet S, where S = {v1, v2, . . . ,vNs} is the vector
representation of NS tokens in the code snippet, the hidden
state can be represented as the following equations:

Eht = tanh
(
EW
[
Eht−1;vt

])
, ∀t = 1, . . . ,Ns (2)

←

h t = tanh
(
←

W
[
←

h t+1;vt
])
, ∀t = Ns, . . . , 1 (3)

where vt ∈ Rd is the vector representation of token t, tanh is
the activation function of the Bi-LSTM, EW and

←

W ∈ R2d×d

are thematrices of the trainable parameters of the forward and
backward pass, respectively. We concatenate Eht and

←

h t to get
a representation of the code:

ht =
[
Eht ;

←

h t
]
, ∀t = 1, 2, . . . ,Ns (4)

ht summarizes the forward and backward sequence informa-
tion around token t.

3) ATTENTION MECHANISM for code embedding
However, not all tokens contribute equally to the representa-
tion of the code. Hence, we introduce the attention mecha-
nism [24] to extract important tokens and aggregate them to
represent the code.

According to (4), we get a matrix H , where H =

[h1, h2, . . . , hNs ] is the output vectors of Bi-LSTM. Then
we randomly initialize a vector that will be fine-tuned in
the training process and use the softmax function to get the
weight vector as shown in (6). The weight vector represents
the importance of each token in the code. We can get the
weighted sum as the code representation rS by the following
expressions:

M = tanh (H) (5)

α = softmax
(
W TM

)
(6)

rS = HαT (7)

where H ∈ Rd×Ns , W ∈ Rd is the trained parameter vector
andW T is the transpose ofW . α is the weighting factor of H
and its dimension is Ns.

B. COMMENT EMBEDDING
Comments provide a high-level description of the tasks per-
formed by the code. The tokens in comments are informative
and too much processing will lead to the loss of information.

Similar to the code embedding, we apply the enhanced GloVe
method to embed the tokens in the comments, and there
is a corresponding vector for each token. For a comment
with a sequence of tokens, previous studies usually use the
sum or the average of the token vectors to represent the entire
sequence.

In our work, we assign different weights to each token
vector according to the relevance of tokens with the corre-
sponding code. We implement this idea through TF-IDF [25].

Given a data collection D, a comment token ti, and the
corresponding code snippet c, we calculate the weight of ti
in as follows:

wti = fti,c × log
|D|
fti,D

(8)

where fti,c is the number of times that ti appears in c, |D| is
the size of the corpus, and fti,D equals the number of code in
which ti appears in D.
The representation of the comment rC can be calculated in

the following equation:

rc =
NT∑
i=1

wtiti (9)

where NT is the number of the tokens in the comment.

C. CLASSIFICATION
Once we get the representation of the code snippet rS and
the comment rC , we concatenate them as the representation
r = [rS; rC ]. To map the distributed representation to the
sample space and find the correlation between the code and
the comment, we feed the vectors of the representation r
into the MLP classifier and use the sigmoid function to get
the classification results. The loss is calculated by the binary
cross-entropy function, which measures the performance of
a classification model whose output is a probability value
between 0 and 1:

L (θ) = −
[
yilogŷi + (1− yi) log

(
1− ŷi

)]
(10)

where θ denotes the model parameters, yi is the real label
for the i-th class, ŷi is the prediction probability for the i-th
class, and yi, ŷi ∈ [0, 1]. The value of 0 represents the positive
example, and the value of 1 represents the negative sample.

D. DATA IMBALANCE PROCESSING
The number of the positive samples and that of the nega-
tive samples are seriously unbalanced, as shown in Table 1.
To balance the input for our framework, we introduce the
class weight mechanism, by which samples within the class
with smaller amount will be assigned for higher penalty
weights, and vice versa. We set the higher penalty weight
ε = 0.75 to the negative sample class, and the lower penalty
weight 1 − ε = 0.25 to the positive sample class, based on
the ratio of the number of the positive and negative samples.
The loss function then becomes a weighted average, where
the weight of each sample is specified by the penalty weight
of the class it belongs to.
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TABLE 2. Details of the datasets using for training and testing.

TABLE 3. Overall Comparison on two datasets.

We also apply the random under-sampling and over-
sampling to the training set. After resampling, the ratio of the
number of the selected positive samples to that of the selected
negative samples in the training set changes from 9.63:1 to
2.55:1, as shown in Table 2.

V. EXPERIMENTS AND RESULTS
In this section, we conduct experiments to evaluate the per-
formance of our proposed DComment framework.

A. DATASETS
We include two datasets in our experiments. One is our man-
ually labeled dataset from GitHub and the other is a public
dataset provided by Corazza et al. [9]. The public dataset
includes the results of a manual assessment on the coher-
ence between comments and the implementations of 3636
methods, gathered from three open source softwares imple-
mented in Java. We randomly select 20% samples for each
dataset as its testing set, and the rest serves as its training set.
We enhance our training set by resampling. The details of the
datasets are listed in Table 2.

B. EVALUATION METRICS AND BASELINES
We adopt three classical metrics, namely precision, recall,
and F1-score [29], for the measurement of the comment clas-
sification. We compare DComment with the state-of-the-
art work [9]. To validate the effectiveness of our comment
classification framework, we also compare DComment with
some variations, in which we replace the components of
DCommentwith other deep learning methods and embedding
methods.

We list the evaluation baselines as follows:
• SVC: The Support Vector Classification is used in the

work of Corazza et al., and Radial Basis Function Gaus-
sian kernel is set.

• TBM (TF-IDF + Bi-LSTM + MLP): To evaluate the
effectiveness of the pretrained embedding, we use TF-

IDF to vectorize the code and comments instead of
GloVe.

• GCM (GloVe + CNN +MLP): We compare Bi-LSTM
with CNN in code embedding, which has achieved
excellent performance in text processing [27], [28].

• GBM (GloVe + Bi-LSTM + MLP): We adapt DCom-
ment to apply Bi-LSTM for both the code and com-
ments, to verify the intuition that treating the code and
comments in different ways is more suitable for our task.

C. EXPERIMENTAL CONFIGURATION
For the embedding process, we set the vector length of the
code and the comments to 160 and 16, respectively. In the
training process, we set the number of Bi-LSTM hidden units
to 128. The batch size is set to 32 and the number of epochs
is set to 50. We select the sigmoid function as the activation
function and RMSProp as the optimizer. The learning rate is
set to 0.25.

D. EXPERIMENTAL RESULTS
1) COMPARISON WITH BASELINES
We compare the performance of DComment and the base-
lines. As shown in Table 3,DComment outperforms the other
approaches in terms of recall and F1-score. Although DCom-
ment is slightly lower in accuracy than GCM, DComment
outperforms these baselines in most cases and is stable on dis-
tinct metrics. Our approach gets the best recall performance
of 96.84% on our labeled dataset, which outperforms the
previous work SVC, TBM, and GCM, by the value of 3.26%,
4.16%, and 4.69%, respectively.DComment achieves the best
F1-score of 96.91%, which is slightly lower than that of
GCM, but it is still comparable. The findings on the dataset
provided by Corazza et al.[9] are similar, and DComment
is still the overall winner in performance. The recall and
F1-score ofDComment reach to 89.71% and 94.21%, respec-
tively.
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According to the comparison of TBM and DComment,
we can observe that GloVe performs better than TF-IDF in
vector representation, which indicates that taking the con-
textual semantics into consideration may be better than only
considering word frequency in vector representation.

The performance of SVC is lower than the other
approaches in most metrics. In these baselines, SVC is the
only approach that uses the traditional machine learning
classifier for comment classification, and the others apply
deep neural network models in classification. It indicates the
potential advantage of deep neural network models in com-
ment classification, compared to traditional machine learning
based methods.

Recently, some researchers have introduced CNN into the
NLP field [27], [28] for classification and other tasks. In our
experiments, GCM, which uses CNN as a component for
code embedding, obtains relatively good performance, espe-
cially in the precision metrics. This finding shows that CNN
may have advantages in extracting latent features and text
classification. However, the overall performance of GCM is
still lower than that of our approach.

We also find that DComment performs better than GBM
over all metrics. The main difference between GBM and
DComment is that GBM processes the code and comments
in the same way, using the general Bi-LSTM model. The
improvement in the performance of DComment suggests that
treating the code and comments differently with the consid-
eration of their different characteristics may be a sound way
to better accomplish the comment classification task.

2) IMPACT OF PRE-TRAINING STRATEGIES
This section investigates whether different pre-training strate-
gies affect the overall performance of DComment and the
baselines.We train the global vectors for token representation
with two pre-training strategies, respectively. For the general-
purpose pre-training strategy, we use the general pre-trained
vectors [22] as the global vectors. For the domain-specific
pre-training strategy, we tune the general pre-trained vectors
on a large corpus of Java projects from GitHub utilizing
Mittens [23].

Fig. 3 shows the performance of GCM, GBM, and DCom-
ment with different pre-training strategies. The performance
differences between general purpose and domain-specific
pre-training strategies are minimal over three metrics. Over-
all, approaches with domain-specific pre-training strategy
slightly outperform approaches with general purpose pre-
training strategy and the improvement is limited considering
the cost of obtaining a corpus and computing embeddings.

3) THE GENERALIZATION ABILITY OF DCOMMENT
Moreover, we assess the generalization ability ofDComment.
We randomly split our labeled dataset by 4:1 into the

training set and the testing set. Then we train DComment
using the training set and the whole public dataset [9] to

2It is available at agile.csc.ncsu.edu/SEMaterials/tutorials/coffee maker/.

FIGURE 3. Comparison of different approaches with different pre-training
strategies.

FIGURE 4. The validation method of the generalization ability.

obtain two classifiers. Finally, we use the testing set from
our labeled dataset to compare the performance of the two
classifiers trained on different training sets.

Fig. 4 shows an overview of our validation method.
We observe that F1-score drops from 96.91% to 85.80%
when we change the training set from our dataset to the
public dataset. A possible reason is that there are intent
factors such as code style that affects the performance of
DComment. When we train and test DComment on the same
dataset, DComment is easy to learn special features unique
to the dataset, while these features may lead to overfitting.
However, our approach still reaches high performance in the
experiment of different datasets, indicating high generaliza-
tion ability over data.

4) ATTENTION VISUALIZATION
In this section, we validate whether the attention mechanism
works in our framework DComment. We choose a coherent
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TABLE 4. An example of the coherent code-comment pair.2

FIGURE 5. The visualization of attention weights on tokens in the code
input.

example of the code-comment pair as shown in Table 4. The
raw code and comment of the method is in the top half of
the table, and the code after data cleaning is shown in the
bottom. For simplification, we ignore punctuations in this
example.

Fig. 5 shows the attention weights of tokens in the code
input. The tokens with higher weights are more important and
informative. In this example, ‘‘recipe’’ and ‘‘select’’ are given
higher weights. On the contrary, the weights of ‘‘system’’,
‘‘user’’ and ‘‘format’’ are close to zero. According to the con-
text in Table 4, we find that the word ‘‘ recipe’’ and ‘‘ select’’
are meaningful indeed, and are closely related to the task
the comment describes. However, the word ‘‘system’’ and
‘‘format’’ are meaningless and cannot help understand the
important tokens and embed informative code vectors. The
experiment suggests that the attention mechanism can help
us capture the relevance between the code and the comment
and embed informative code vectors.

E. COMPARISON WITH GENERAL SENTENCE
CLASSIFICATION
Although the code and comments are significantly differ-
ent from plain text, sentence classification for general texts
may be used for comment assessment. To illustrate its per-
formance, we run the state-of-the-art sentence classification
model SciBERT [39] on the public dataset. The data, model
and results are publicly available.3

The accuracy and F1-score of SciBERT are 83.33% and
80.96%, respectively, which are significantly lower than the
results of our model DComment. It does not perform well
in the area of comment assessment. According to the com-
parison of SciBERT and our model, specific data processing
techniques and model architecture design for the code and
comments seem to be necessary.

VI. CONCLUSION
In this paper, we describe amulti-input neural network frame-
work DComment for the automatic comment assessment.
DComment vectorizes the tokens in the code and comments
using the enhanced GloVe model, which is fine-tuned on
the domain-specific corpus. We train a Bi-LSTM model
to summarize the token vectors of code and introduce the
attention mechanism to focus on the tokens with important
information. For comments, we sum up the token vectors
as the comment representations, with the consideration of
tokenweights, which are calculated based on TF-IDF. Finally,
we feed the code vectors and the comment vectors into
the MLP classifier. Experiments on two datasets of code-
comment pairs show that DComment outperforms the pre-
vious work and several variations of deep neural networks
significantly by adapting the model to different characteris-
tics of the code and comments, and has high generalization
performance over data from different sources.

For the future, we plan to include more information in
DComment, such as API patterns and improve the general-
ization ability of DComment for different types of languages.
Our ultimate goal is to create a large, public, and high-quality
code-comment corpus supporting software engineering tasks
such as code summarization, code completion, and comment
generation.
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