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ABSTRACT Measurement performance of self-mixing interferometric (SMI) laser sensor can be signifi-
cantly affected due to the presence of noise. In this case, conventional signal enhancement techniques yield
compromised performance due to several limitations which include processing signals in frequency domains
only, relying mainly on first order statistics, loss of important information present in higher frequency band
and handling limited number of noise types. To address these issues, we propose a solution based on using
generative adversarial network, a popular deep learning scheme, to enhance SMI signal corrupted with
different noise types. Thus, taking advantage of the deep networks that can learn arbitrary noise distribution
from large example set, our proposed method trains the deep network model end-to-end, able to process raw
waveforms directly, learn 51 different noise conditions includingwhite noise and amplitudemodulation noise
for 1,140 different types of SMI waveforms made up of 285 different optical feedback coupling factor (C)
values and 4 different line-width enhancement factor α values. The results show that the proposed method is
able to significantly improve the SNR of noisy SM signals on average of 19.49, 16.29, 10.34 dB for weak-,
moderate-, and strong-optical feedback regime signals, respectively. For amplitude modulated SMI signals,
the proposed method has corrected the amplitude modulation with maximum error (using area-under-the-
curve based quantitative analysis) of 0.73% for SMI signals belonging to all optical feedback regimes. Thus,
our proposed method can effectively reduce the noise without distorting the original signal. We believe that
such a unified and precise method leads to enhancement of performance of SMI laser sensors operating
under real-world, noisy conditions.

INDEX TERMS Interferometry laser sensors, self-mixing signal enhancement, vibration measuring laser
sensors, waveform enhancement, generative adversarial network (GAN), signal noise removal, neural
network for signal enhancement.

I. INTRODUCTION
Self-mixing or optical feedback interferometry based laser
diode sensors [1]–[3] are being increasingly used for met-
ric sensing applications due to their low-cost, auto-aligned
and compact nature [4], [5]. Multiple SMI applications
such as micro-displacement measurement [6], measurement
of rotation angles (yaw and pitch) [7], detection of sin-
gle micro-particles in airflow [8], displacement measure-
ment in resonant gyroscopes [9], acquisition of arterial pulse
wave [10], Young’s modulus measurement [11], measure-
ment of rotational speed of servo drives [12], measurement
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of size of Brownian particles [13] and carriers density imag-
ing [14] have been demonstrated. However, the performance
of SMI sensors can significantly degrade due to presence
of various noise sources encountered during real-world,
experimental conditions. For example, accurate measurement
of vibration using conventional laser diode based sensor
becomes a challenge [15].

The experimentally acquired SMI signal can be affected
by white noise, as shown in Figure 1. Various factors con-
tribute white noise to SMI signals such as fluctuations in
temperature, current, and voltage of the laser diode, photo-
diode, and related biasing and amplifying electronic circuits.
In addition to white noise, another factor that distorts the
shape of SMI signal is known as amplitude modulation noise
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FIGURE 1. Experimental self-mixing signal distorted with simple white
noise.

FIGURE 2. Experimental self-mixing signal (SMI). (a) SMI signal distorted
with amplitude modulation noise i.e., amplitude of SMI signal is enclosed
in an envelope. (b) SMI signal distorted with amplitude noise
i.e., variation in amplitude of SMI signal at every instant.

(see Figure 2) [15], caused due to the rough target sur-
face [16]. Furthermore, SMI signals have been reported to be
affected by transient oscillations [17] and lasermode-hopping
as well [20], [21]. Thus, under such conditions, accurate
SMI sensing and measurement are compromised. For exam-
ple, SMI displacement measurement performance is severely
affected, primarily because of difficulty in detecting the white
noise affected SMI fringes whose amplitude also begins to
vary [24]. Various specialized fringe detection methods have
thus been reported to mitigate this situation [25]–[27].

The shape of SMI signals usually varies by changing the
values of coupling factor C and line-width enhancement fac-
tor α [18], therefore, SMI signals have been reported to divide
into three main optical feedback regimes i.e., weak-(0.1 <
C < 1), moderate-(1 < C < 4.6) and strong-optical feedback
regime (C > 4.6) [19]. In order to improve the performance of
SMI laser vibration sensor, various pre-processing techniques
have been presented which should be applied before under-
taking the fringe detection [20]–[23]. However, in general,
these methods are limited to remove only white noise for
specific cases such as weak feedback regime [22], to some
extent, moderate feedback regime [20], [21] but unable to
accurately work for strong feedback regime [20]–[23]. More
importantly, to the best of authors’ knowledge, correction of
SMI signal’s amplitude distortion has not been previously
proposed.

Conventional techniques, such as those utilizing band-
pass filtering to remove white noise, may lead to the loss
of important information present in higher frequency band

FIGURE 3. SMI signal with parameters line-width enhancement factor
α = 4, feedback level factor C = 4 for a moving target. (a) Target vibration
in micrometers. (b) Periodic variation of optical output power (known as
SMI signal).

of SMI signal leading to signal distortion (specifically in
case of moderate- and strong-optical feedback regime) [22].
Moreover, under real-world operating conditions, the optical
feedback regime of SMI signal can change at any instant, and
in each case, the corresponding SMI signal will have different
spectral properties [22]. Therefore, in order to remove white
noise from experimental signals, the conventional techniques
required a continuous adjustment of the noise suppression
filters for each optical feedback regime.

In this paper, a machine learning based solution for SMI
signal enhancement is proposed by recognizing the statistical
nature of white noise and more complex amplitude modula-
tion noise. We have employed generative adversarial network
(GAN) [28] as a generic yet single module to take distorted
SMI signal as input and generate noise- and distortion-free
output without any prior assumption on the type of noise
and optical feedback regime. This enables us to apply a
trained GAN system to denoise the SMI signal such that
the target displacement retrieval with high accuracy can be
subsequently achieved.

II. THEORY OF SMI
A. SMI SIGNAL
The SMI occurs when a portion of emitted laser light reflects
back from a remote target (undergoing displacement D(t))
and couples into the active laser cavity. The re-injected laser
light then interferes with the field inside the laser cavity [29].
This ‘‘self-mixing’’ causes a variation of different laser
parameters including wavelength as well as optical output
power (OOP) as a function of D(t) due to the changes in the
optical path length D0 and the so-called external laser cavity.
In this work, time-varying OOP signal P(t) (acquired using
the built-in photo-diode) is used and is denoted as the SMI
signal, as shown in Figure 3.

Typical setup of a SMI sensing system consists of a
laser source, lens and an external remote target, as shown
in Figure 4. This SMI signal (P(t)) is then fed to signal
acquisition unit and is finally processed by a computer for
the sake of target motion information extraction through SMI
signal (P(t)) [3].
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FIGURE 4. Basic setup of self-mixing interferometry laser vibration
sensing system.

B. DISPLACEMENT RETRIEVAL FROM SMI SIGNAL
The most common and simplest way of retrieving the target
displacement from SMI laser sensor is to use a well-known
theoretical model developed by Lang and Kobayashi in [30]
where the variations of optical output power P(t), acquired
from the laser diode (see Figure 3 (b)) under feedback phase
φf (t), can be written as given in [29].

P(t) = P0(1+ m.cos(φf (t))). (1)

where, feedback phase or rough phase φf (t) can be extracted
by rearranging (1) and the relation between target displace-
ment D(t) and feedback phase φf (t) is given by

φf (t) =
2πD(t)
λf /2

. (2)

Equation (2) cannot be used directly to retrieve the target dis-
placement. In order to do so, smooth phase φf (t) is required
to be estimated. Thus, the laser wavelength under feedback
λf (t) can be found by solving the corresponding laser phase
equation (1)

φ0(t) = φf (t)+ C .sin(φf (t)+ arctan(α)). (3)

However, the optimal estimation of the two key parameters
i.e.,C and α are also required in calculating the smooth phase
φ0(t) [29]. Finally, D(t) can be retrieved by using

φ0(t) =
2πD(t)
λ0/2

. (4)

The parameters in the above equations are summarized
in Table 1.

The relationship of C is given by [29] as

C =
τD

τL
γ
√
1+ α2κext . (5)

C plays an important role in SMI because it directly affects
the shape of the signal and is usually used to classify the
operating optical feedback regime between weak, moderate
and strong optical feedback [19].

In order to retrieve the displacement of remote target by
using SMI laser vibration sensor, it is necessary to further
process the SMI signal by using one of the many existing
signal processing method, for example, phase unwrapping
method (PUM) [4], which helps in retrieving the displace-
ment information of remote target from acquired SMI signal.

TABLE 1. Physical meaning of parameters.

FIGURE 5. Adversarial training of GAN.

However, noisy signal may result in poor phase extraction
and consequently affect the retrieved target displacement.
Therefore, noisy SMI signal must be cleaned before applying
phase unwrapping method to get smooth phase.

To summarize, we need to perform the following signal
processing before applying PUM on SMI signal for the accu-
rate retrieval of displacement from SMI laser sensor. The
first step of signal processing consists of rough estimation
of of φf (t) from P(t) as per (1). Then, the task is to recover
φ0(t) by using φf (t) as mentioned in (3). This is followed
by estimation of C and α parameters. However, to recover
φ0(t) by using φf (t) is a tedious process when P(t) is noisy
as this may lead to incorrect rough estimation of φf (t) which
in turn results in inaccurate recovery of φ0(t) [15]. Hence,
an appropriate pre-processing of P(t) is required in order
to get accurate target displacement. Therefore, we choose a
neural network based technique i.e., GAN [28] to achieve this
task which is discussed in detail in the following section.

III. PROPOSED METHOD
GAN, a deep convolutional neural network, works with a
simple encoder-decoder technique in unsupervised learning
paradigm [31]. GAN has been used in several image gen-
eration, classification and speech enhancement tasks with
promising results on complex data [32]–[34]. Therefore, with
a similar motivation, we have applied GAN to improve the
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FIGURE 6. Architecture of GAN used for SMI signal enhancement.

quality of SMI waveforms corrupted with noise. The pro-
posed system has advantages of quick processing of wave-
forms, works end-to-end on raw data and does not require
explicit feature extraction from data [28], [34]. Moreover,
it learns from various type of SMI signal under different noise
conditions.

A. GAN ARCHITECTURE
The GAN architecture consists of two components, a gen-
erator and a discriminator, denoted by G and D respec-
tively [28]. The network learns to map random noise vector
z and observed SMI signal x to an enhanced output SMI
signal y i.e., G :

{
x, z

}
→ y. Off the two key components,

the generator performs mapping and learns to generate the
enhanced SMI signal ywhile keeping in view those enhanced
SMI signals that must be similar to the observed signals x.
The second key component is discriminator that acts as
a classifier to classify the output y of generator either as
real or fake signal [28]. Both GAN components work together
in an adversarial training fashion where discriminator always
tries to classify the output y coming from the generator as
fake. In contrast, generator updates its parameters and tries to
produce output y such that the discriminator should classify
it as a real signal. As a result of this training in a continuous
feedforward and backpropagation passes, discriminator D
learns to discriminate between the fake and the real signal.
On the other hand, generator G tunes its parameters to gen-
erate output waveform that is closer to the real data [34].
Basic working of adversarial training of GAN is explained
in Figure 5.

In order to achieve this adversarial training, a specific
criterion is chosen in [28], which can be written as

minmaxA(D,G) = E[logD(y)+ E[log(1− D(G(z)))]. (6)

Later on, a new conditioned version of GAN is introduced to
stabilize the system [32], [33]. In conditional GAN, the input
x is added to the above equation and hence becomes

minmaxA(D,G)=E[logD(x, y)]+E[log(1−D(x,G(x, z)))].

(7)

To improve the generated sample of G and training stabi-
lization of GAN, least squares GAN (LSGAN) is developed
in [35] where (7) becomes

minALSGAN (D) =
1
2
E[(D(x, y)−1)2]+

1
2
E[(D(x,G(x, z)))2].

(8)

minALSGAN (G) =
1
2
E[(D(x,G(x, z))− 1)2]. (9)

To get more accurate and realistic results of adversarial com-
ponent, L1 norm is shown to be very effective [35] and is
controlled by a parameter λ. This results in a change in (9) i.e.,

minALSGAN (G)=
1
2
E[(D(x,G(x, z))−1)2]+λ || G(x, z)−z ||

(10)

In order to implement the above described GAN for SMI
signal enhancement problem, we downsample the noisy SMI
signal to 16 kHz, yielding approximately 16,384 samples
per second as followed in [34]. Then, together with the latent
vector z, it is applied toG, which is used to produce enhanced
SMI signal. The architectures of both G and D for this work
are adopted from those in [34].

The working principle of G in the GAN resembles an
autoencoder as shown in Figure 6. In encoding stage,
the noisy input SMI signal of size 16, 384× 1 is compressed
to 8 × 1, 024 when it passes through 22 one-dimensional
convolutional layers with filter width of 31 and stride of 2
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followed by parametric rectified linear units (PReLUs) [34].
Here, the latent vector z of size 8 × 1, 024 sampled from a
normal distribution N (0,I ) is concatenated with the thought
vector C . This concatenated vector is then passed to the
decoding stage. The decoder architecture D is basically in
reverse to that of generator with the same number of filter
layers and filter width. However, it uses two input channels
made up of 16, 384 samples and virtual batch-norm [37]
before LeakyReLU nonlinearities with α = 0.3. The last
activation layer is composed of one-dimensional convolution
layer with a single filter of width 1. Therefore, it results in a
reduced number of parameters from 8 × 1, 024 = 8, 129 to
8 × 1 = 8 for fully-connected final classification layer [34].
In order to achieve stabilization, strided layers are used in G
rather than other pooling approaches [31] and additionally,
skip connections are utilized within D, where each layer in
encoding stage is connected to its corresponding layer in
decoding stage. Skip connections helps in avoiding the com-
pression at the middle stage of the model and pass the fine-
grain information of SMI signal such as phase and alignment
to the decoder, resulting in improved performance.

In training GAN, values of some other hyperparameter are
required to be selected based on cross-validation for optimum
performance. We selected λ for loss function to be 90, learn-
ing rate for both D and G networks is chosen to be 0.002,
total number of epochs is set to 63 with batch size of 50.
In training phase, our algorithm uses the sliding window to
extract the chunks of SMI signal of 1s duration for every
0.5s shift i.e., each window contains 16,384 samples with
50% overlap with adjacent window. However, during testing
the window without overlap is used for whole length of SMI
signal, a scheme followed in [34].

Training GAN architecture requires large dataset contain-
ing SMI signals. We divided our dataset into two subsets:
1) training set and 2) test set. The training set is further split
into two more components i.e., noisy training set containing
noise-free data and clean training set, which comprises the
same signal but corrupted with noise. For training the GAN,
both noisy and clean training sets are fed to the network
as shown in Figure 7. Similarly, the test set is also divided
into two categories known as noisy test set and clean test
set, which also acts as ground truth. In order to test the
performance, the noisy test set is applied to the GAN as input.
Subsequently, the ground truth waveforms in clean test set are
then comparedwith the output of GAN (filtered data) and gets
the error signal which helps in judging the performance of the
proposed system.

Our proposed system is developed in Tensorflow version
1.1.0rc1. Some other packages include Python 3.5, Numpy
1.12.1, Scipy 0.18.1, Toml 0.9.2, CUDA 8.0 and CuDNN
v5.1 are also used.

IV. DATASET
In order to validate the proposed method we have perform
various simulations under different noise conditions. In this
work, two types of cases based on two noise conditions are

FIGURE 7. Data preparation for GAN (a) Training phase (b) Testing phase.

addressed, first is white noise and the other is amplitude
modulation noise.

For additive white noise removal, the large simulated
dataset is prepared for training and testing the GAN model.
The training dataset consist of 5,400 while testing dataset
contain 80 examples of SMI signals. To introduce variation
in the dataset, we choose different combinations of C , α and
SNR. The parameter C ranges from [0 to 10], α ranges from
[3 to 7] and SNR was taken with values [30, 27, 25, 23,
20, 17, 15, 13, 10] dBs. Therefore, these three parameters
contributes with 150, 4 and 9 different values to constitute
150 × 4 × 9 = 5, 400 SMI signal examples. For preparing
test dataset, we considered 10 different values of C , 2 values
for α and 4 different SNR values in the range of [29, 21, 14,
9] dBs to make a total of 10× 2× 4 = 80 SMI signals.
In order to remove the amplitude modulation noise from

SMI signal, we separately train and test the GAN model on
dataset which consists of SMI signals distorted with ampli-
tude modulation noise. Thus, a simulated dataset of SMI
signals (with 5,670 training and 392 test examples) distorted
with amplitude modulation noise is prepared. Various type
of amplitude modulation tones are generated in simulation
and then integrated with the original SMI signals in order to
mimic the practical scenario. For training dataset, we choose
135 different values ofC which range from [0 to 10], α = 4.5
and 6 different SNR values of [25, 23, 20, 17,15,13] dBs with
7 various type of amplitude modulation tones. This sums up
to 135 × 1 × 6 × 7 = 5, 670 SMI signals. On the other
hand, test dataset is made up of 14 different values of C ,
α = 4.5, 4 different SNR values of 11, 16, 19, and 24 dBs
and 7 various type of amplitude modulation tones to create a
total of 14× 1× 4× 7 = 392 SMI signals

V. RESULTS
A. REMOVAL OF WHITE NOISE
The GAN is first trained on simulated training dataset
of 5,400 SMI signals and then the model is tested on the sim-
ulated test dataset of 80 SMI signals. In this case, the results
in terms of SNR quantification are presented in Table 2 and
Table 3. The scores shows that the proposed system proves
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TABLE 2. Quantitative analysis of GAN performance in terms of SNR for
SMI signals with fixed α = 4.5 distorted with additive white noise.

TABLE 3. Quantitative analysis of GAN performance in terms of SNR for
SMI signals with fixed α = 6.5 distorted with additive white noise.

FIGURE 8. Results of denoising of SMI signal distorted with simple white
noisy for weak feedback regime with C = 0.02, α = 6.5 and SNR = 9 dB.
(a) Noisy SMI Signal. (b) Filtered SMI signal after passing through GAN.
(c) Ground truth. (d) Error signal i.e., difference between filtered and
ground truth SMI signal.

to be beneficial for improving the SNR in SMI signals as
it is successful in reducing noise for all feedback regimes.
However, with increasing the value of C from weak to
stronger feedback regime, the performance is comparatively
degraded. The proposed network performed well not only
for weak feedback regime but also for moderate and strong
feedback regimes, which is a complex case in the previous
works [21], [22]. Figure 8, 9 and 10 depicts the perfor-
mance in terms of signal representation for weak, moderate
and strong feedback regimes respectively. It is evident that
additive white noise in SMI signals is significantly reduced
and sharp transitions in each fringe remain unchanged when
compared with the ground truth. The results are shown for

FIGURE 9. Results of denoising of SMI signal distorted with simple white
noisy for moderate feedback regime with C = 3, α = 4.5 and SNR = 9 dB.
(a) Noisy SMI Signal. (b) Filtered SMI signal after passing through GAN.
(c) Ground truth. (d) Error signal.

FIGURE 10. Results of denoising of SMI signal distorted with simple
white noisy for strong feedback regime C = 9.75, α = 4.5 and SNR =

14 dB. (a) Noisy SMI Signal. (b) Filtered SMI signal after passing through
GAN. (c) Ground truth. (d) Error signal.

FIGURE 11. Results of denoising of SMI signal distorted with amplitude
modulation and white noise for weak feedback regime with C = 0.33,
α = 4.5 and SNR = 24 dB. (a) Noisy SMI Signal. (b) Filtered SMI signal
after passing through GAN. (c) Ground truth. (d) Error signal.

various C , α and SNR values. More importantly, in compari-
son to the previous work, our proposed method is performing
superior in many ways, for example, for weak and moderate
feedback regime, the error plots in Figure 8(d) and Figure 9(d)
have far less amplitude as compare to the one reported in [21].
Also, the SMI signal in our case is contaminated with more
noise, having SNR = 9 dB as compare to 20 dB in [21].
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FIGURE 12. Results of denoising of SMI signal distorted with amplitude
modulation and white noise for moderate feedback regime C = 1.01,
α = 4.5 and SNR = 19 dB. (a) Noisy SMI Signal. (b) Filtered SMI signal
after passing through GAN. (c) Ground truth. (d) Error signal.

FIGURE 13. Results of denoising of SMI signal distorted with amplitude
modulation and white noise for strong feedback regime C = 6.8 α = 4.5
and SNR = 11 dB. (a) Noisy SMI Signal. (b) Filtered SMI signal after
passing through GAN. (c) Ground truth. (d) Error signal.

Moreover, [21], [22] are unable to denoise the SMI signals
that lies in strong feedback regime. In contrast, our proposed
method can handle this challenge even in the presence of
higher noise with SNR = 14 dB as shown in Figure 10.

B. REMOVAL OF AMPLITUDE MODULATION NOISE
As mentioned earlier, SMI signals are contaminated with
many types of noises in which one of themost complex case is
the corruption with amplitude modulation noises. This results
in a poor retrieval of target displacement. Therefore, it is
imperative to achieve reasonable SMI signal enhancement in
this case.

The evaluation scale for modulation denoising using the
proposed system is chosen to be area under the curve (AUC)
instead of SNR because our aim is to check the extent of
demodulation achieved by the GAN. AUC of the modulated
signal is always less than the AUC of the filtered and the
ground truth SMI signal as shown in Figure 14. In order to
find AUC, modulated SMI signal is first divided in two part
from zero baseline i.e., into positive and negative cycles. The
trapezoidal rule is then applied to calculate the overall AUC
by adding the value of positive cycle with the absolute value
of negative cycle. Same steps are followed to find the AUC

FIGURE 14. Area under the curve (AUC) for SMI signal with parameter
C = 0.33, α = 4.5 SNR = 24 dB (a) AUC = 6,603 for amplitude modulated
SMI signal (b) AUC = 9,578 for filtered SMI signal.

TABLE 4. Quantitative analysis of GAN performance in terms of area
under the curve (AUC) for SMI signals distorted with amplitude
modulation noise.

for filtered and ground truth SMI signal. We have evaluate
this scale on different test SMI signals and lists the numerical
result in Table 4. The % error (E) between demodulation
achieved (DA) and demodulation required (DR) in last col-
umn of Table 4 shows the high accuracy of our proposed
technique as it has corrected the amplitude modulation with
maximum error of 0.73% for SMI signals belonging to all
feedback regimes.

Figure 11, 12 and 13 show some examples of SMI signal
denoising with weak, moderate and strong feedback regimes
respectively. For case of weak feedback regime, Figure 11(a)
shows the amplitude of noisy SMI signal distorted by a
modulation envelope. This modulated signal is then rectified
after passing through the GAN and amplitude of spikes can
be seen in Figure 11(b), which approach the maxima [−1, 1]
without distorting the original shape of the signal. As a result,
the corresponding error signal with insignificant amplitude
is observed. In the case of more challenging moderate and
strong feedback regimes, the amplitude distortion can be seen
at every instant as shown in Figure 12(a) and Figure 13(a).
However, favourable results with minimum error can still be
obtained using GAN denoising as depicted in Figure 12(b, d)
and Figure 13(b, d). To the best of our knowledge such
cases were not analyzed in previous studies. Therefore, our
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FIGURE 15. Schematic diagram for the experimental setup of the proposed method.

proposedmethod successfully solves the moderate and strong
feedback regime signals distorted with additive white noise as
well as signals distorted with amplitude modulation noise.

C. DENOISING EXPERIMENTAL SIGNAL
To validate the effectiveness of our proposed method, we also
report the results on actual SMI signals acquired in the lab-
oratory. In the experimental setup, a loud speaker is used
as moving target that is driven by simple sine wave with a
constant frequency. The laser diode model DL-7140 is used,
which is biased with a DC current of 90 mA and operated at
room temperature (25◦C).
The experimental configuration is outlined and explained

in Figure 15. In the first step, the noisy SMI signal corrupted
with white and amplitude modulation distortion is acquired
via photo diode (PD), the noisy signal is then amplified
by using transimpedance amplifier and passed through the
data acquisition unit. The amplified noisy SMI signal is then
applied to the GAN. At this stage, the pre-trained GAN yields
a noise-free SMI signal which is further processed using the
phase unwrapping technique to get a smooth phase signal.
The denoising/rectification result of experimental SMI signal
is shown in Figure 16. The top plot in Figure 16 shows the
SMI signal corrupted with amplitude modulation as well as
additive white noise and its denoised version is shown in the
bottom plot. The result shows that white noise and modu-
lation effects are significantly diminished while keeping the
shape of the transition of fringes unchanged. On quantitative
analysis in terms of AUC, we have found that the proposed
method has improved the AUC= 6,591 (for noisy SMI signal
in top plot of Figure 16) to AUC = 9,119 (for denoised SMI
signal in bottom plot of Figure 16), which indicates the high
accuracy of the proposed method.

FIGURE 16. Experimentally acquired SMI signal in laboratory (a) Signal
distorted with amplitude modulation as well as white additive noise.
(b) Denoised signal using GAN.

VI. CONCLUSION
In this work, we have proposed a new pre-processing tech-
nique to enhance the quality of SMI signal corrupted with
white and amplitude modulation noise in all major optical
feedback regimes (weak, moderate and strong). The pro-
posed method works end-to-end directly on raw SMI data
and implemented within a generative adversarial framework.
Since the model works as an encoder-decoder hierarchy with
fully convolutional structure, it can quickly process the SMI
signal segments to remove noise without introducing any
artifacts in the rectified signals. Results indicate that the pro-
posed method has provided on average improvement in SNR
of 19.49, 16.29, 10.34 dB for weak, moderate and strong opti-
cal feedback regime SMI signals respectively. For amplitude
modulated SMI signals, the proposed method has corrected
the amplitude modulation with maximum error (using area-
under-the-curve based quantitative analysis) of 0.73% for
all optical feedback regimes. GAN-based denoising of SMI
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signals is effective and successful as the system learns the
statistical pattern of various noises and avoids the use of
conventional signal processing approaches which compro-
mise on their performance for every new distortion example.
Hence, using GAN, we can improve the performance of SMI
sensor, which directly depends on the quality of the SMI
signal.
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