
Received October 31, 2019, accepted November 28, 2019, date of publication December 3, 2019,
date of current version December 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957340

Stochastic Virtual Machine Placement for
Cloud Data Centers Under Resource
Requirement Variations
JUNLONG ZHOU , (Member, IEEE), YI ZHANG , LULU SUN , SISI ZHUANG ,
CHENG TANG , AND JIN SUN , (Member, IEEE)
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Corresponding author: Jin Sun (sunj@njust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61802185 and Grant 61872185, in part
by the Natural Science Foundation of Jiangsu Province of China under Grant BK20180470, in part by the Fundamental Research Funds for
the Central Universities under Grant 30919011233 and Grant 30919011402, in part by the Jiangsu Planned Projects for Postdoctoral
Research Funds under Grant 2019K025, and in part by the Open Research Project of The Hubei Key Laboratory of Intelligent
Geo-Information Processing under Grant KLIGIP-2018A04.

ABSTRACT In cloud computing environment, the optimal placement of virtual machines (VMs) onto
physical servers has been of great importance to improving the resource utilization and energy efficiency
of data centers. In this work, we study the VM placement problem for minimizing the total energy
consumption in a data center under the uncertainty of resource requirements demanded by the VMs. Instead
of using deterministic values to represent the resource requirements, as in most existing placers, we propose
a stochastic placement approach in which the resource requirement variations are modeled as random
variables. We further formulate the uncertainty-aware VM placement problem as a stochastic optimization
model, of which the optimization objective is tominimize the total energy consumed by all physical machines
(PMs). In the presence of varying resource requirements, the optimization model is subject to a probabilistic
constraint on resource overflow probability on each PM (i.e., the probability of demanded CPU/memory
exceeding the maximum capacity the PM can provide). To solve this stochastic optimization problem,
we develop an efficient metaheuristic to seek for an optimized VM placement solution that minimizes the
total energy cost while satisfying the probabilistic resource constraint. Moreover, by incorporating a solution
initialization procedure and a neighborhood search strategy, we can further improve the effectiveness of the
metaheuristic in solution space exploration. Extensive simulations are performed to justify the proposed
approach, in terms of both solution feasibility and energy efficiency. By taking into account the uncertainty
of resource requirements, the stochastic method can achieve more energy-efficient placement solutions
compared with the deterministic VM placement algorithm.

INDEX TERMS Data center, virtual machine placement, energy efficiency, stochastic optimization.

I. INTRODUCTION
Cloud computing has been the popular computing paradigm
that enables users to utilize computing resources from cloud
data centers in a pay-as-you-go manner [1]–[3]. As a result,
more and more users are willing to submit their commer-
cial or scientific applications to cloud computing platforms
for execution, in order to avoid the significant cost of
building private computing environments [4]. To consolidate

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiping Hu .

physical resources and deliver on-demand services, data cen-
ters use virtualization techniques to host multiple virtual
machines (VMs) on a single server or physical machine (PM).
Each VM can act as a complete system to execute the appli-
cations submitted by users independently [5].

VM placement algorithms, which are responsible for the
provisioning of physical resources, are of great importance
to the resource utilization of data centers. When performing
VM placement, it is necessary to guarantee that each PM is
capable of providing sufficient resources (CPU and mem-
ory etc.) to tackle the workload from the VMs placed on

174412 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7734-4077
https://orcid.org/0000-0002-9941-6377
https://orcid.org/0000-0002-9724-3468
https://orcid.org/0000-0002-2414-0839
https://orcid.org/0000-0001-5310-5058
https://orcid.org/0000-0003-4855-2499
https://orcid.org/0000-0002-4952-699X


J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

it [6]. Energy efficiency is another important concern when
determining the VM placement solution. As reported in the
literature, in most data centers over 70% of peak energy are
consumed by idle computing nodes [7], [8]. In other words,
the low utilization of computing resources leads to a signifi-
cant amount of energy wastage. Therefore, the VM placer is
also expected to improve data center’s energy efficiencywhen
executing realistic applications.

A considerable amount of research has been done
regarding VM placement strategies [9]–[11]. Most existing
approaches are based on the assumption that the amount of
physical resources required by each VM is deterministic.
In other words, they fail to take into account the fluctu-
ation of resource requirements, which in general exists in
practical scenarios. When executing realistic applications,
VM workload and consequently the amount of resources
demanded by the VM can be varying under different dynamic
circumstances [12]–[14]. As a result, in the presence of
uncertain resource requirements, deterministic VM place-
ment approaches may degrade the quality of service (QoS)
of data centers. To be more specific, the over provisioning of
physical resources would cause wastage of costly hardware
resources, and the under provisioning of physical resources
would lead to unsatisfactory application performance due to
insufficient resources [15].

To address the above-mentioned limitations in determinis-
tic VM placement algorithms, this paper presents a stochas-
tic approach that takes into account resource requirements
variations to determine uncertainty-aware energy-efficient
placement solutions.1 Instead of using a deterministic value
to represent the resource demand, as in most existing plac-
ers, we model the uncertainty of resource requirements as
random variables, and further formulate the uncertainty-
affected VM placement problem as a stochastic optimization
problem, of which the optimization objective is to mini-
mize the energy consumption of all PMs. Under uncertain
resource requirements, the placement problem is subject to a
probabilistic constraint on the resource overflow probability
(i.e., the probability of demanded CPU/memory exceeding
the maximum capacity the PM can provide). To solve the
resultant optimization model, we propose a particle swam
optimization (PSO)-based metaheuristic algorithm in which
a mapping operator is developed to link each particle with
a placement solution. We further incorporate a solution ini-
tialization procedure and a neighborhood search strategy into
the uncertainty-aware approach, for the purpose of exploring
more energy-efficient VM placement solutions. Below we
summarize the technical contributions of this work:
• We formulate a stochastic VM placement framework
that imposes probabilistic constraints on the resource
utilizations on individual PMs.

• We develop an estimation method to predict the resource
overflow probability on each PMunder resource require-
ment variations.

1The preliminary version of this paper appeared in [16].

• We propose an efficient metaheuristic algorithm to seek
for an optimized VM placement solution that minimizes
the total energy cost while satisfying the probabilistic
resource constraint.

– We design a mapping operator to convert an
individual particle in the swarm into a feasible
VM placement solution.

– We present a solution initialization method to pro-
vide the metaheuristic algorithm with a good start.

– We use a neighborhood search strategy to identify
better solutions in the neighborhood of the obtained
best solution during each iteration.

Extensive simulations are performed to justify the stochastic
placement approach, in terms of both solution feasibility and
energy efficiency. By taking into account the uncertainty
of resource requirements, the proposed method can achieve
more energy-efficient placement solutions compared with
traditional deterministic VM placement algorithms, with a
guaranteed limit of resource overflow probabilities.

The rest of this paper is organized as follows. Section II
surveys existing approaches related to this work. Section III
formulates the stochastic VM placement problem that
involves probabilistic constraints on resource overflow prob-
abilities. Section IV details the method for predicting the
overflow probabilities under resource requirement variations.
Section V presents the metaheuristic algorithm developed
for solving the formulated stochastic problem, followed by
simulation results in Section VI. Conclusions are drawn in
Section VII finally.

II. RELATED WORK
VM placement approaches for cloud data centers have
been intensively studied in recent years. These approaches
aim at finding the optimal mapping from VMs onto
PMs with different objectives, such as maximizing
resource utilization [17]–[19], minimizing energy efficiency
[20]–[22], and improving system performance [23], [24].
In what follows, we specifically discuss those placement
methods that are closely related to this work.

In the literature, VMplacement problems are generally for-
mulated as NP-hard integer programs [25].Manymetaheuris-
tic algorithms are incorporated into existing VM placement
schemes for solution space exploration. For instance, Kana-
gavelu et al. [26] proposes a greedy search-based algorithm
for VMplacement with improved resource usage and reduced
system traffic. Wang et al. [27] presents an energy-efficient
placement algorithm by redefining the coding scheme of
PSO framework, for the purpose of finding an appropri-
ate placement solution with lowest energy consumption.
The VM placement approach in [28] uses a multi-objective
genetic algorithm to jointly optimize resource utilization,
power efficiency and thermal costs. Gao et al. [29] presented
an ant colony optimization (ACO)-based algorithm seeking
for a set of non-dominated solutions to improve resource
utilization as well as energy efficiency. The server and VMs
are mapped to ant colony and food sources, respectively.

VOLUME 7, 2019 174413



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

The VM placement solution is modeled as a pheromone trail
in the ACO framework. During each iteration, all solutions
are evaluated, and the best solutions among them will be used
in the next iteration.

There have been several attempts to cope with the
VM placement problem in the presence of resource require-
ment variations. Chaisiri et al. [30] presents a two-stage
optimization approach for the VM placement problem suf-
fering the uncertainty of on-demand resources. This approach
divides the resource provisioning procedure into reservation
phase, utilization phase, and on-demand phase. At the first
stage, a preliminary placement solution is explored to specify
the resource provisioned in reservation phase. At the sec-
ond stage, the provisioning of on-demand resources is finely
tuned for both phases. However, the VM placement solution
at each stage is determined by a deterministic optimization
procedure. Thus, this approach is not a purely stochastic opti-
mization procedure that incorporates probabilistic constraints
into the VM placement framework. Chen et al. [20] proposes
a feasibility-driven VM placement method that takes into
account uncertain resource requirements. This method starts
with generating an uncertainty-unware placement solution,
then uses a sampling-based method to evaluate the feasibility
of placement solution under random variations of resource
requirements. Driven by the evaluated feasibility, the associ-
ated parameters in the uncertainty-unaware placement prob-
lem will be updated and the placement solution is tuned.
This procedure is iterated until the feasibility requirement is
satisfied. The main drawback of this method is that it relies
on a random sampling procedure to evaluate each placement
solution’s feasibility, which is time-consuming, especially for
large-scale placement problems.

Different from above-mentioned uncertainty-aware place-
ment approaches, the stochastic method proposed is this work
explicitly incorporates probabilistic constraints on resource
overflow probabilities into the optimization framework.More
importantly, our method is not sampling-based, since we use
an analytical model to evaluate the overflow probabilities
on individuals PMs. An effective metaheuristic algorithm
consisting of several key strategies is developed to solve this
stochastic VM placement problem.

Our previous work [16] tackles the same VM place-
ment problem under resource requirement variations as in
this work, and proposes a metaheuristic algorithm based
on the PSO strategy to find a solution to the stochastic
VM placement problem. However, the PSO-based algorithm
is not globally optimal, and can be easily trapped in local
optima during the search procedure. To enhance the effec-
tiveness of the metaheuristic in solution space exploration,
in this extended work, we incorporate a solution initial-
ization procedure to obtain a good initial solution for the
metaheuristic algorithm, and employs a neighborhood search
strategy to further improve the quality of the best solution
explored during each iteration. As will be demonstrated
in experimental results, compared with our previous work,
the quality of the uncertainty-aware placement solution has

been considerably improved by incorporating the above-
mentioned new strategies.

III. PROBLEM FORMULATION
In this section, we first discuss the traditional deterministic
VM placement problem for minimizing the energy consump-
tion of the data center. With the consideration of uncertain
resource requirements, we further formulate the optimization
model for the stochastic VM placement problem that involves
probabilistic resource constraints.

A. DETERMINISTIC VM PLACEMENT
We assume a data center consisting of a cluster of PMs and
a set of VMs running applications submitted by cloud users.
Each PM can host multiple VMs, and each VM demands a
certain amount of computing resources (CPU and memory)
provided by the PM [16]. The goal of VM placement is
to determine the optimal VM-to-PM mapping relations that
leads to the lowest energy consumption. In addition, each PM
can afford sufficient CPU and memory resources demanded
by all the VMs placed on it.

Let n and k denote the number of VMs to be placed and the
number of available PMs, respectively. We further use cij and
mij to represent the amounts of CPU and memory demands if
VM i is placed on PM j. For the sake of simplicity, cij and mij
are normalized to the maximum CPU and memory resources
PM j can provide. In other words, cij and mij are percentage
values within [0, 1].

We use a vector of binary variables xij’s to represent the
VM placement solution, i.e.,

X = [x1, x2, · · ·, xn]T , (1)

where each element xi ∈ {1, 2, · · ·, k} indicates the index of
PM that the i-th VM should be placed on. The vector of xi
values represents a feasible placement solution indicating the
mapping of all VMs onto PMs. We further introduce a set of
auxiliary variables to formulate the VM placement problem
for minimizing energy cost. Let Aij denote the mapping rela-
tionship between VM i and PM j, i.e.,

Aij =

{
1, if xi = j.
0, otherwise.

(2)

Let Bj further denote the status of the corresponding PM j.
Bj is 0 if no VM is placed on PM j, and on the other hand,
Bj is 1 as long as one VM has been placed on this PM.
Consequently, Bj can be expressed as

Bj =

0, if
n∑
i=1

Aij = 0.

1, otherwise.

(3)

Note that Aij and Bj are dependent on decision variables xi’s.
For each placement solution to be evaluated, the Aij and Bj
values can be uniquely determined.

Following the energy model in [20], [31], the energy con-
sumption of each PM is composed of a static part and a

174414 VOLUME 7, 2019



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

dynamic part. The static energy is a constant value as long
as the PM is turned on. The dynamic energy, however, has
a roughly linear dependency upon the PM’s CPU utilization.
Hence, the energy cost of the j-th PM can be estimated by

E jPM = Estat,j + λ ·
∑

i
cij, (4)

where Estat,j is the PM’s static energy cost, cij denotes the
amount of CPU resource occupied by each VM hosted by
this PM, and λ is a constant coefficient implying the linear
dependency of dynamic power upon CPU utilization. The
total energy of the data center can be calculated by summing
over all individual PMs’ energy costs, that is

Etotal =
k∑
j=1

E jPM. (5)

If a PM hosts at least one VM, its energy cost can be further
expressed in terms of the variables defined previously as

E jPM =
k∑
j=1

(Aij · λ · cij)+ Bj · Estat,j. (6)

We consider CPU and memory resource limits in the
VM placement framework. Each PM’s CPU utilization by all
VMs placed on it cannot exceed an upper bound, in order to
avoid CPU overflow on the PM, i.e.,

n∑
i=1

(Aij · cij) ≤ Cj, ∀ 1 ≤ j ≤ k, (7)

where Cj is maximum amount of CPU utilization by all VMs
on PM j. Similarly, we have the following memory resource
constraint for each PM:

n∑
i=1

(Aij · mij) ≤ Mj, ∀ 1 ≤ j ≤ k, (8)

where Mj is the memory resource capacity of PM j. To sum-
marize, the deterministic VM placement is formulated as an
integer program (IP) to find the optimal mapping vector X
that minimizes the total energy consumption while satisfying
the resource constraints for all individual PMs.

B. STOCHASTIC VM PLACEMENT
In the deterministic VMplacementmodel, the CPU andmem-
ory requirements are assumed to be constant values. How-
ever, when the data center is executing realistic applications,
the amount of physical resources required by each VM may
have dynamic variations due to the varying workload
assigned onto the VM. Failing to take into account resource
requirement variations may cause over provisioning or under
provisioning of hardware resources [15], [16]. if hardware
resources are overly provisioned, an energy overhead would
be incurred. More importantly, if hardware resources are
conservatively provisioned, CPU or memory overflow may
happen on the PMs, which would in turn deteriorate the QoS
of the data center in executing cloud user applications.

We use an illustrative example to demonstrate the impor-
tance of stochastic VM placement in the presence of varying

resource requirements. Assume that there are three VMs to
be placed. The CPU and memory requirements for VM1,
VM2, and VM3 on PM1 are (40%, 30%), (40%, 30%), and
(30%, 30%), respectively. The resource limit is set as 90%
for CPU and memory resources. In deterministic placement
framework, since PM1 cannot provide sufficient amount of
CPU resource, one more PM has to be turned on to host all
three VMs. Assume that the CPU requirement of VM1 drops
from 40% to 30% at runtime. In this scenario, the CPU
resource on PM1 is sufficient to host all three VMs, and
the original placement solution cause over provisioning of
physical resources. We further assume that all three VMs are
placed on PM1 to save energy cost, however, the memory
requirement of VM2 increases by 10% at a subsequent time
point. This variation in memory requirement would cause
memory overflow on PM1, incurring VMmigration and con-
siderable operational cost.

In what follows, we present the stochastic version of
VM placement framework that takes into account the uncer-
tainty of resource requirements. To be specific, we assume
the resource requirement for each VM is a random variable
rather than a deterministic value. For a better interpretation,
we use c̃ij and m̃ij to represent the uncertain CPU and mem-
ory requirements. Affected by this uncertainty, the CPU and
memory demand by VMs become variational as well. During
VM placement procedure, it is possible that the resource
requirement may exceed the resource limit due to these varia-
tions. To cope with this situation, we replace the deterministic
resource constraints in Eqs. (7) and (8) by the corresponding
probabilistic constraints [16]. For this reason, we define α and
β to denote the CPU and memory overflow probabilities on
PM j, respectively, indicating the probabilities that CPU and
memory requirements exceed the PM’s resource capacities:

OFcj = Prob

{
n∑
i=1

(Aij · c̃ij) > Cj

}
, (9)

OFmj = Prob

{
n∑
i=1

(Aij · m̃ij) > Mj

}
. (10)

The proposed stochastic VM placement framework aims
at determining the most appropriate placement solution such
that the energy consumed by all PMs is minimized, and for
each PM the resource overflow feasibility under resource
requirement variations is guaranteed to be lower than a upper
bound limit. We summarize below the complete optimization
model for this problem:

minimize Etotal =
k∑
j=1

E jPM (11)

subject to Prob

{
n∑
i=1

(Aij · c̃ij) > Cj

}
≤ αmax (12)

Prob

{
n∑
i=1

(Aij · m̃ij) > Mj

}
≤ βmax (13)

VOLUME 7, 2019 174415



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

where αmax and βmax are two pre-specified threshold values
for CPU and memory overflow probabilities on each PM,
respectively. It is required that the placement solution not only
minimizes the total energy consumption, but also satisfies
the probabilistic resource constraints under resources require-
ment variations. Due to the existence of the probabilistic
constraints in Eqs. (12) and (13), the stochastic placement
problem studied in this work is a complicated stochastic
optimization model.

IV. PREDICTION OF OVERFLOW PROBABILITIES
A essential step in the stochastic VM placement frame-
work is to predict the resource overflow probabilities for a
given VM placement solution. Use the constraint for CPU
overflow probability for example. Assume that the vary-
ing CPU resource requirement obeys a normal distribution
c̃ij ∼ N

(
µcij, (σ

c
ij)

2
)
. Following the probability theory [32],

the total CPU utilization of PM j, i.e.,
∑n

i=1(Aij · c̃ij), is also
a random variable subject to a normal distribution, of which
the mean value and variance are given by

ηjc =

n∑
i=1

(Aij · µij), (14)

(
γ jc

)2
=

n∑
i=1

(
Aij · σ cij

)2
. (15)

We define a new variable Zj=
∑n

i=1(Aij·c̃ij)−η
j
c

γ
j
c

to transform the

normally distributed CPU utilization into a standard normal
variable. Accordingly, the CPU overflow probability can be
expressed as

Prob

{
n∑
i=1

(Aij · c̃ij) > Cj

}

= Prob
{ n∑
i=1

(Aij · c̃ij)− η
j
c

γ
j
c

>
Cj − η

j
c

γ
j
c

}
= 1− Prob

{
Zj ≤

Cj − η
j
c

γ
j
c

}
. (16)

Since the transformed variable Zj in Eq. (16) follows the
standard normal distribution, the CPU overflow probability
on PM j can be calculated by

OF jc = Prob

{
Zj >

Cj−η
j
c

γ
j
c

}
= 1− φ

(
Cj−η

j
c

γ
j
c

)
, (17)

where φ(z) is the cumulative distribution function of a stan-
dard normal variable, and is given by

φ(z) = Prob {Z ≤ z} =
∫ z

−∞

1
√
2π

exp
{
−
1
2
z2
}
. (18)

Therefore, we can obtain the CPU overflow probability by
calculating the cumulative probability of a standard normal
variable in Eq. (17). On the other hand, the memory overflow

Algorithm 1 Prediction of Overflow Probabilities
Input: i) a placement solution X ;

ii) overflow probability limits αmax and βmax;
Output: CPU overflow probabilities OFc and memory

overflow probabilities OFm on all PMs;
1 initialize OFc as a zero vector;
2 initialize OFm as a zero vector;
3 determine Aij values according to X ;
4 determine Bj values according to Aij values;
5 for j = 1 to k do
6 set UC ← 0 ; /* CPU utilization */
7 set Um← 0 ; /* memory utilization */
8 for i = 1 to n do
9 Uc = Uc + Aij · cij;

10 Um = Um + Aij · mij;
11 end
12 calculate CPU overflow probability Prob

{
Uc > Cj

}
according to Eq. (17);

13 update OFc by setting OF jc← Prob
{
Uc > Cj

}
;

14 calculate memory overflow probability according to
Eq. (19) and update OFm;

15 end
16 return OFc and OFm;

probability on PM j can be determined in a similar manner,
and is given by

OF jm = 1− φ

(
Mj−η

j
m

γ
j
m

)
, (19)

where ηcm and ηjm are the mean value and variance of the
PM’s total memory utilization

∑n
i=1(Aij · m̃ij), respectively.

Algorithm 1 presents the pseudocodes for predicting over-
flow probabilities given a VM placement solution. Only if
the CPU and memory overflow probabilities on each PM are
within their threshold values, this solution is considered a
feasible solution to the stochastic VM placement problem.

V. THE PROPOSED VM PLACEMENT ALGORITHM
This section details the metaheuristic algorithm developed
for solving the stochastic VM placement problem formulated
in Eqs. (11)-(13). Figure 1 summarizes the general flow of
this algorithm. The fundamental mechanism is an iterative
procedure that searches for the most appropriate placement
solution (or solution hereafter in the text) based on the particle
swarm optimization (PSO) strategy. As a preliminary step,
we first calculate the average overflow probability for placing
each VM on available PMs, and sort the VMs accordingly.
We then select the most appropriate PM for each sorted
VM, providing the metaheuristic with a good initial solution.
During each iteration, we apply the particle updating rule to
update the velocity and position of each particle in the swarm.
To cope with the placement problem, we design a mapping
operator to convert a particle in the continuous particle space

174416 VOLUME 7, 2019



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

FIGURE 1. The flowchart of the stochastic VM placement algorithm.

into a candidate solution in the discrete solution space. For
each converted solution, we use the estimation approach to
evaluate its feasibility by predicting the corresponding CPU
and memory overflow probabilities. Then, we identify the
best solution with lowest energy cost among all feasible
solutions. Furthermore, we employ a neighborhood search
strategy to explore the neighborhood of the best solution to
further improve its quality of VM placement. This procedure
is iterated until the termination criterion is satisfied.

A. SOLUTION INITIALIZATION
A good initial solution is beneficial for enhancing the quality
of the final solution produced by the proposed metaheuristic
algorithm. For this reason, we develop a solution initialization
method consisting of a VM prioritization step and a PM
selection step. We first prioritize all VMs by their placement
priorities that are calculated based on the average overflow
probability on PMs. To be specific, the priority of VM i is
determined as

Pi =
1
k

 k∑
j=1

ÕF
j
c

+ 1
k

 k∑
j=1

ÕF
j
m

 , (20)

Algorithm 2 Solution Initialization
Input: uncertain CPU and memory requirements of each

VM on each PM cij and mij;
Output: an initial solution Xinit;

1 set Xinit← [0, 0, · · ·, 0]T ;
2 calculate the priority value for each VM to be placed
according to Eq. (20);

3 sort the VMs in a descending order of priority values,
and uses a list L to store the sorted VMs;

4 while L is not empty do
5 select the first VM in list L;
6 for j = 1 to k do
7 check the available resource on PM j;
8 if PM j’s resource cannot hold this VM then
9 continue;

10 end
11 calculate the energy overhead if the VM is

placed on PM j;
12 end
13 assign the VM to the PM with lowest energy

overhead and remove it from L;
14 update the corresponding position in Xinit;
15 end
16 return Xinit;

where ÕF
j
c and ÕF

j
m denote the CPU and memory overflow

probabilities by placing VM i on PM j, which can be calcu-
lated by Eqs. (17) and (19), respectively. Note that placing
a specific VM on the designated PM would affect the PM’s
total resource utilization, and in turn the resource overflow
probability on that PM. This VM priority in fact defines the
extent that a VMmay exceed the resource limit if it is placed.
A higher VM priority indicates that the placement of this
VM is more likely to cause resource overflow. Therefore, this
VM has a higher priority when determining the uncertainty-
aware placement solution.

In order to generate an initial solution to the stochastic
placement problem, we sort all VMs in a descending order
of the VM priority value defined in Eq. (20), and select the
most appropriate PM for each VM. The algorithmic flow of
solution initialization is summarized in Algorithm 2. We first
set the initial solution as a zero vector. We use a list L to
store the sorted VMs. For each VM in the list, we calculate
the energy overhead by placing it on each PM, and select
the PM with lowest energy overhead to hold this VM. The
PMs that have insufficient resource to hold the VM will not
be considered. This procedure is repeated until all VMs in
the list have been placed. In this manner, a valid solution
is obtained and will be used as the initial solution for the
proposed metaheuristic.

B. PARTICLE MAPPING
According to the standard PSO framework [33], we assume
a swarm consisting of N particles, and each particle is

VOLUME 7, 2019 174417



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

FIGURE 2. The mapping operator to convert a particle into a valid
solution.

characterized by its position pu and velocity vu. In addi-
tion, pbu is use to record the personal best position of each
particle, and gb tracks the global best position among all
particles. An important issue in the proposed algorithm is
that, the particles are defined in a continuous space, whereas
the solution space for this VM placement problem is discrete.
To address this issue, we establish a mapping operator to
convert a particle in the continuous particle space into a
solution in the discrete solution space. Extended from the
solution generation procedure in [34], the mapping operator
generate offspring solution by combing the currently best
solution and global best position gb in the swarm.
For a specific particle with position pu, we use Xu to denote

the placement solution that this particle can be mapped onto.
We use Xbest to represent the currently best solution explored
during the search procedure. At the beginning of the meta-
heuristic algorithm, Xbest is set as the initial solution obtained
in Section 2. As illustrated in Figure 2, the mapping operator
relies on both Xbest in solution space and gb in particle space
to implement the conversion from a particle to a solution.
To start with, we initialize Xu as an empty set. The mapping
operator works as follows to create a valid solution. Each
particle is associated with a probability value µ ∈ [0, 1],
and is compared with a given probability value ν. We then
append an available PM to Xu in a sequential order according
to the comparison between µ and ν. For each VM to be
placed, if µ ≤ ν holds, we select the first available PM
in Xbest and append it to Xu. In the opposite situation that
µ > ν, the PM to be appended to Xu will be determined by a
probabilistic model that is dependent upon both Xbest and gb.
More specifically, we select the first available PMs in Xbest,
and use β to denote the number of remaining VMs in Xbest.
The g-th remaining VM (g ≤ min {α, β}) will be appended
to Xu with a probability Pug, which is given by

Pug =
pug + gbug

min {α,β}∑
l=1

(pul + gbul)

. (21)

Algorithm 3 Particle Mapping
Input: i) a particle with position pu;

ii) the global best solution gb;
iii) the currently best solution Xbest;
iv) a given probability ν;

Output: a placement solution Xu;
1 initialize Xu as an empty set;
2 if Xbest does not exist then
3 call Algorithm 2 to obtain Xinit;
4 set Xbest← Xinit;
5 end
6 for i = 1 to n do
7 generate a probability value µ at random;
8 if µ ≤ ν then
9 append the first PM in Xbest to Xu;

10 else
11 select a PM according to the probability value in

Eq. (21), and append this PM to Xu;
12 end
13 end
14 return Xu;

After all VMs have been placed, a valid solution can be
obtained. Algorithm 3 summarizes the algorithmic details of
the mapping procedure.

C. SOLUTION EVALUATION
Given a candidate solution obtained by using the mapping
operator in Algorithm 3, we need to evaluate the quality
of this solution, including the optimization objective (i.e.,
the total energy of the data center) as well as the solu-
tion’s feasibility (i.e., the resource overflow probabilities).
As mentioned previously, the total energy consumption for
a given placement solution can be predicted by summing
over each PM’s energy cost, which is further dependent on
the CPU utilization of each VM this PM hosts. We assume
that the CPU resources demanded by VMs are subject to
normal distributions when placing VMs onto PMs. Under
the uncertainty of resource requirements, we use the mean
value of each VM’s CPU requirement to calculate the energy
costs of all PMs, as summarized in Algorithm 4. It is worth
mentioning that, it is required to verify the feasibility of each
candidate solution by evaluating the overflow probabilities.
If the overflow probabilities for any solution exceed the
threshold values, this solution is identified as an infeasible
one and the corresponding total energy is set to a sufficiently
large value.

D. NEIGHBORHOOD SEARCH
As is well known, general metaheuristic algorithms, includ-
ing PSO algorithm, suffer from the limitation of eas-
ily being trapped into the first local optimum [35], [36].
To address this limitation, we further incorporate a neigh-
borhood search strategy to improve the effectiveness of the

174418 VOLUME 7, 2019



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

Algorithm 4 Solution Evaluation
Input: a placement solution X
Output: the total energy cost ETotal

1 determine Aij values according to X ;
2 determine Bj values according to Aij values;
3 set ETotal← 0;
4 for j = 1 to k do
5 set EPM← 0;
6 for i = 1 to n do
7 EPM = EPM + Aij · λ · cij;
8 end
9 if Bj is true then
10 EPM = EPM + Estat,j;
11 end
12 ETotal = ETotal + E

j
PM;

13 if OF (j)
c > αmax or OF

(j)
m > βmax then

/* overflow probability exceeds the
threshold value */

14 ETotal = ∞ ; /* a sufficiently large
value */

15 end
16 end
17 return ETotal;

proposed metaheuristic by exploring the neighborhood of the
best solution during each iteration.

As summarized in Algorithm 5, the first step of the neigh-
borhood search strategy is to construct a set of neighborhood
structures for each solution, in which we can search for
better solutions. By evaluating all solutions that are converted
from the particles, we can identify the currently best solution
Xbest = [x∗1 , x

∗

2 , · · ·, x
∗
n ]. We use a swap operation on any

two elements in Xbest to construct a neighborhood structure
for Xbest. In other words, swapping x∗p with x∗q denotes that
the PM holding VM p and the PM holding VM q are inter-
changed. This swap operation results in a new placement
solutions. For a given Xbest, the total number of possible
swaps is n(n−1)/2. Thus, we can determine a set of neigh-
borhood structures N1,N2, · · ·,Nr , where r = n(n− 1)/2.
By evaluating the solutions in the neighborhood, it is possible
to explore better solutions and help the proposed metaheuris-
tic escape the local optimum. For each neighborhood solu-
tion, we first examine its feasibility by calling Algorithm 1 to
predict the overflow probabilities. If the overflow probability
exceeds the threshold value on any PM, this neighborhood
solution is infeasible and will be neglected. We identify the
best neighborhood solution among all feasible ones, and use
it the replace the currently best solution Xbest.

E. STOCHASTIC PLACEMENT ALGORITHM
This section details the proposed metaheuristic algorithm that
seeks for the optimal solution to the stochastic VM placement
problem. The details about this procedure is summarized

Algorithm 5 Neighborhood Search
Input: the currently best solution Xbest;
Output: the best solution in the neighborhood XN

best;
1 set XN

best← Xbest;
2 for i = 1 to n do
3 for l = i+ 1 to n do
4 swap x∗i with x∗l to form a new solution X ′best;
5 call Algorithm 1 to evaluate CPU and memory

overflow probabilities for X ′best;
6 call Algorithm 4 to evaluate ETotal(X ′best);
7 if overflow probability exceeds the threshold

value then
8 continue;
9 end

10 if ETotal(Xbest)′ < ETotal(XN
best) then

11 set XN
best← X ′best;

12 end
13 end
14 end
15 update the currently best solution Xbest← XN

best;
16 return XN

best;

in Algorithm 6. The metaheuristic starts with generating an
initial solution, relying on which the swarm and particles
can be initialized. Each particle in the swarm can be con-
verted into a solution according to the mapping operator in
Section V-B. We evaluate the feasibility as well as the quality
of all converted solutions to determine the optimal one.

At the initialization step, we randomly initialize the values
of particle position pu and velocity vu, and initialize each
particle’s pbu value as its position pu. The initial value of
global best gb is determined by evaluating all particles in the
swarm. By generating an initial solution and setting it as the
currently best solution, we can use the mapping operator in
Algorithms 3 to convert a particle into a valid solution, and
can further evaluate the solution’s energy efficiency as well
as its feasibility. Among all feasible solutions satisfying the
overflow probability constraints, the one with lowest energy
cost is identified as gb of the swarm.

According to Algorithm 6, during each iteration, we first
apply the following updating rule to produce a new set of
particles [33]. Each particle’s velocity vu is updated by

vu← w · vu + c1 · r1(pu − pbu)+ c2 · r2(pu − gb). (22)

The parameters r1, r2 and w are the structural parameters in
PSO scheme (refer to [33] for details). The particle position
is then updated by

pu← pu + vu. (23)

Each updated particle is converted into a solution X ′u for
evaluation. We perform Algorithm 4 to evaluate the total
energy that solution X ′u yields. If X ′ϕ achieves better energy
efficiency and satisfies the overflow probability constraints,
we use X ′u to replace Xbest, i.e., the best solution explored in

VOLUME 7, 2019 174419



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

Algorithm 6 Stochastic VM Placement
Input: i) uncertain CPU and memory requirements of

each VM on each PM cij and mij;
ii) user-specified threshold values αmax and βmax;

Output: the optimal solution Xbest with lowest energy
consumption

1 call Algorithm 2 to obtain Xinit and set Xbest← Xinit;
2 for u = 1 to P do
3 initialize pu and vu randomly;
4 set pbu← pu;
5 call Algorithm 3 to obtain a solution Xu;
6 call Algorithm 4 to evaluate ETotal(Xu);
7 end
8 determine gb among all particles;
9 while termination criterion is not met do
10 use particle updating rule to update all particles;
11 for u = 1 to P do
12 call Algorithm 3 to obtain a solution X ′u;
13 call Algorithm 1 to evaluate CPU and memory

overflow probabilities OFc and OFm;
14 call Algorithm 4 to evaluate ETotal(X ′u);
15 if ETotal(X ′u) < ETotal(Xbest) then
16 if ∀OF (j)

c ≤ αmax and ∀OF (j)
m ≤ βmax then

17 set Xbest← X ′u ; /* update Xbest
if X ′u is feasible */

18 end
19 end
20 update pb for the particle;
21 end
22 update gb for the swarm;
23 call Algorithm 5 to replace Xbest by the best solution

in its neighborhood;
24 end
25 return Xbest;

previous iteration. When all particles have been evaluated,
we employ the neighborhood search strategy in Algorithm 5
to explore the neighborhood of Xbest to further improve its
quality. If a better solution is identified in the neighborhood
of Xbest, we replace Xbest by this newly identified solution.
At the end of each iteration, the personal best position for
each particle and global best position for the swarm need to be
updated according to Eqs. (22) and (23). When this iterative
procedure satisfies the termination criterion, Xbest is returned
as the final solution to the stochastic VM placement problem.

VI. EVALUATION RESULTS
We use a set of heterogeneous server clusters to examine the
effectiveness and energy efficiency of the proposed stochas-
tic VM placement algorithm. We assume that the number
of available PMs is at most 30 in the data center, and the
number of VMs to be placed range from 100 to 300. The
maximum amount of resource provided by the PM is set to
90%. The CPU and memory resources demanded by each

FIGURE 3. Distributions of CPU utilization with a αmax value of 0.02 by
different VM placement methods.

VM are assumed to follow normal distributions. Considering
the uncertainty of resource requirements, the threshold value
for resource overflow probability is selected at different val-
ues for performance evaluation, ranging from 0.02 to 0.10.

A. EVALUATION OF SOLUTION FEASIBILITY
We first verify that the proposed stochastic placement
approach can produce feasible solutions satisfying the prob-
abilistic constraints on overflow probabilities for all PMs.
For comparison purposes, we also consider the following two
scenarios using deterministic VM placement in the presence
of resource requirement variations.

174420 VOLUME 7, 2019



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

TABLE 1. Overflow probabilities for different numbers of VMs and PMs.

• Nominal design: the mean values of uncertain CPU
and memory requirements c̃ij and m̃ij are used in the
VM placement framework to generate an uncertainty-
unaware placement solution.

• Worst-case design: uncertain CPU and memory require-
ments are truncated at their 3σ values, and the maximum
values are used in the VM placement framework to
generate an uncertainty-unaware placement solution.

We first consider a configuration of 100 VMs and 10 PMs
in the placement problem. The overflow probability threshold
is set as 0.02, indicating a maximum overflow probability
of 2% for each PM. We randomly generate 10,000 samples
according to the solution obtained by the stochastic method.
Fig. 3(a) shows the distribution of CPU utilization evaluated
at all samples. We can observe that, the vast majority of
the fluctuation values are below the overflow probability
threshold value. More precisely, only 197 out 10,000 samples
produce CPU utilization values that exceed 90%, indicating
an overflow probability of 1.97%. The results by determinis-
tic VM placement methods using nominal design and worse-
case design are also presented in Figs. 3(b) and 3(c). Clearly,
without consideration of resource requirement variations,
the deterministic method using nominal design produces an
overly optimistic solution that leads to a significant over-
flow probability of 32.67%. The deterministic method using
worst-case design, on the other hand, leads to a conservative
solution. Although this solution does not incur any overflow,
a considerable energy overhead would be incurred due to
the wastage of hardware resources, as will be justified in
subsequent experiments.

We further verify the feasibility of placement solution
for different configurations. Table 1 provides the overflow
probabilities achieved by using deterministic and stochastic
methods. We use a fixed threshold value of 2% for resource
overflow probability. For various numbers of VMs and
PMs, the deterministic method using nominal design always
results in significant overflow probabilities, since it neglects
the uncertainty of resource requirements. The maximum

FIGURE 4. Energy consumptions for different threshold values.

overflow probability reaches 35.11%. As mentioned previ-
ously, the conservative solutions by the deterministic method
using worst-case design cause no overflows, and therefore the
overflow probabilities are not provided in this table.

B. EVALUATION OF ENERGY EFFICIENCY
Having justified the feasibility of placement solution, we now
verify the energy efficiency of the proposed stochastic
method. Since the deterministic method using nominal design
tends to produce infeasible solutions with high overflow
probabilities, we only compare the energy efficiency between
the deterministic method using worst-case design and the
stochastic method. The comparison results in Table 2 show
that, for different numbers of VMs and PMs, a reduction of
power consumption can be achieved by the proposed stochas-
tic method. Specifically, for the configuration of 200 VMs
and 15 PMs, the power consumption by the deterministic
method is 353.48 kWh, while the power consumption by the
stochastic method has been reduced to 248.44 kWh, indi-
cating a maximum energy reduction of 29.72%. The aver-
age energy reduction for all configurations is 26.74%. This
improvement of energy efficiency is due to the fact that the
conservative solutions generated by the deterministic method
using worst-case design would cause extra energy overhead
for turning on more PMs.

We further evaluate the energy efficiency of the stochastic
method by selecting different threshold values for over-
flow probabilities. Figure 4 presents the energy consump-
tion by the stochastic method and deterministic method,
respectively. The number of VMs is fixed at 200, and the
number of PMs is fixed at 20. For different threshold val-
ues, the stochastic method is capable of producing feasi-
ble placement solutions that satisfy the overflow probability
constraint under the impact of uncertain resource require-
ments. More importantly, as the overflow probability thresh-
old value increases, the improvement of energy efficiency
achieved by the stochastic method becomes more significant.

VOLUME 7, 2019 174421



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

FIGURE 5. Energy consumptions by MH1 and MH2 for different configurations.

TABLE 2. Energy consumptions (in kWh) for different numbers of VMs
and PMs.

When the threshold value reaches 10%, an energy reduc-
tion of 41.41% can be observed. The results indicate that,
by relaxing the probabilistic constraint on overflow probabil-
ity, the stochastic method can explore more energy-efficient
placement solutions.

C. EVALUATION OF KEY STRATEGIES
In this work, we incorporate a solution initialization proce-
dure and a neighborhood search strategy into the proposed
metaheuristic. We now investigate the impacts of these key
strategies upon the placement results. We use MH1 and
MH2 to denote the metaheuristics with and without the
two strategies, respectively. Note that MH2 is in fact the
metaheuristic algorithm in the preliminary version of this
work [16].

We first compare the energy consumptions for the place-
ment solutions obtained by using MH1 and MH2. To fully
justify the performance of metaheuristics, we repeat each set
of experiments 10 times to evaluate the energy consumption

FIGURE 6. Energy consumptions by MH1 and MH2 for different threshold
values.

corresponding to the placement solution, and use the average
values for comparison. The results in Figure 5 shows
that, MH2 outperforms MH1 in terms of reduced energy
consumption for various configurations with different num-
bers of VMs and PMs. The energy reductions ranges from
9.36% to 12.46%. This observation is due to the fact that,
the solution initialization and neighborhood search strate-
gies in MH2 enhances the searching ability of the meta-
heuristic, and in turn the energy efficiency of the proposed
metaheuristic.

The same conclusion can be drawn by changing the thresh-
old values for overflow probabilities. Compared with MH1,
the placement solutions produced by MH2 reduce the energy
consumption to different extents. When the threshold value is
set as 10%, the energy reduction reaches 12.98%. According
to the analysis in Section V, the solution initialization proce-
dure inMH2 in fact provides themetaheuristic algorithmwith
a good initial solution, and the neighborhood search strategy
can identify better solutions in the neighborhood of the best
solution obtained during each iteration.

174422 VOLUME 7, 2019



J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

VII. CONCLUSION
This paper proposes a stochastic VM placement algorithm for
energy-efficient data centers under resource requirement vari-
ations. The uncertainty of resource requirements demanded
by the VMs are modeled as random variables, and the
uncertainty-aware VM placement problem is formulated as a
stochastic optimization problem that imposes a probabilistic
constraint on resource overflow probability. A metaheuristic
algorithm to determine the most appropriate solution that
minimizes the total energy consumption under the probabilis-
tic resource constraint. A solution initialization procedure
and a neighborhood search strategy are incorporated to fur-
ther improve the quality of placement solution. Experimental
results have justified the feasibility and energy efficiency of
the placement solution obtained by the stochastic algorithm.

ACKNOWLEDGMENT
This article was presented in part at the Proceedings of Inter-
national Conference on Cyber, Physical and Social Comput-
ing (CPSCOM), Atlanta, GA, USA, July 14–16, 2019.

REFERENCES
[1] I. Pietri and R. Sakellariou, ‘‘Mapping virtual machines onto physical

machines in cloud computing: A survey,’’ ACM Comput. Surv., vol. 49,
no. 3, p. 49, 2016.

[2] Y. Zhang and J. Sun, ‘‘Novel efficient particle swarm optimization algo-
rithms for solving QoS-demanded bag-of-tasks scheduling problems with
profit maximization on hybrid clouds,’’ Concurrency Comput., Pract.
Exper., vol. 29, no. 21, p. e4249, 2017.

[3] A. Beloglazov, J. Abawajy, and R. Buyya, ‘‘Energy-aware resource allo-
cation heuristics for efficient management of data centers for cloud com-
puting,’’ Future Generat. Comput. Syst., vol. 28, no. 5, pp. 755–768,
2012.

[4] X. Zhang, T.Wu,M. Chen, T.Wei, J. Zhou, S. Hu, and R. Buyya, ‘‘Energy-
aware virtual machine allocation for cloud with resource reservation,’’
J. Syst. Softw., vol. 147, pp. 147–161, Jan. 2019.

[5] M.Masdari, S. S. Nabavi, andV. Ahmadi, ‘‘An overview of virtual machine
placement schemes in cloud computing,’’ J. Netw. Comput. Appl., vol. 66,
pp. 106–127, May 2016.

[6] Z. Á. Mann, ‘‘Multicore-aware virtual machine placement in cloud
data centers,’’ IEEE Trans. Comput., vol. 65, no. 11, pp. 3357–3369,
Nov. 2016.

[7] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as a Computer:
Designing Warehouse-Scale Machines. San Rafael, CA, USA: Morgan &
Claypool, 2018.

[8] X. Fan, W.-D. Weber, and L. A. Barroso, ‘‘Power provisioning for a
warehouse-sized computer,’’ in Proc. 34th Annu. Int. Symp. Comput.
Archit., Jun. 2007, pp. 13–23.

[9] Z. Tang, Y. Mo, K. Li, and K. Li, ‘‘Dynamic forecast scheduling algorithm
for virtual machine placement in cloud computing environment,’’ J. Super-
comput., vol. 70, no. 3, pp. 1279–1296, 2014.

[10] T. Duong-Ba, T. Nguyen, B. Bose, and T. Tran, ‘‘Joint virtual machine
placement and migration scheme for datacenters,’’ in Proc. IEEE Global
Commun. Conf., Dec. 2014, pp. 2320–2325.

[11] T. Yang, Y. C. Lee, and A. Y. Zomaya, ‘‘Energy-efficient data center net-
works planning with virtual machine placement and traffic configuration,’’
in Proc. IEEE 6th Int. Conf. Cloud Comput. Technol. Sci., Dec. 2015,
pp. 284–291.

[12] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A. Baldini,
‘‘Statistical profiling-based techniques for effective power provisioning
in data centers,’’ in Proc. 4th ACM Eur. Conf. Comput. Syst., Apr. 2009,
pp. 317–330.

[13] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
‘‘Efficient resource provisioning in compute clouds via VMmultiplexing,’’
in Proc. 7th Int. Conf. Autonomic Comput., Jun. 2010, pp. 11–20.

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, ‘‘Adaptive control of virtualized resources in
utility computing environments,’’ in Proc. 2nd ACM SIGOPS/EuroSys Eur.
Conf. Comput. Syst., Mar. 2007, pp. 289–302.

[15] B. B. Nandi, A. Banerjee, S. C. Ghosh, and N. Banerjee, ‘‘Stochastic VM
multiplexing for datacenter consolidation,’’ in Proc. IEEE 9th Int. Conf.
Services Comput., Jun. 2012, pp. 114–121.

[16] S. Yan, Y. Zhang, S. Tao, X. Li, and J. Sun, ‘‘A stochastic virtual machine
placement algorithm for energy-efficient cyber-physical cloud systems,’’
in Proc. IEEE Cyber, Phys. Social Comput., Jul. 2019, pp. 587–594.

[17] C. Isci, J. E. Hanson, I. Whalley, M. Steinder, and J. O. Kephart, ‘‘Runtime
demand estimation for effective dynamic resource management,’’ in Proc.
IEEE Netw. Oper. Manage. Symp., Apr. 2010, pp. 381–388.

[18] M. Sindelar, R. K. Sitaraman, and P. Shenoy, ‘‘Sharing-aware algorithms
for virtual machine colocation,’’ in Proc. 23rd Annu. ACM Symp. Paral-
lelism Algorithms Archit., Jun. 2011, pp. 367–378.

[19] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, ‘‘Minimizing cost
and makespan for workflow scheduling in cloud using fuzzy dominance
sort based HEFT,’’ Future Gener. Comput. Syst., vol. 93, pp. 278–289,
Apr. 2019.

[20] Y. Chen, X. Chen, W. Liu, Y. Zhou, A. Y. Zomaya, R. Ranjan, and S. Hu,
‘‘Stochastic scheduling for variation-aware virtual machine placement in
a cloud computing CPS,’’ Future Gener. Comput. Syst., to be published,
doi: 10.1016/j.future.2017.09.024.

[21] G. Wu, M. Tang, Y.-C. Tian, and W. Li, ‘‘Energy-efficient virtual machine
placement in data centers by genetic algorithm,’’ in Proc. Int. Conf. Neural
Inf. Process., 2012, pp. 315–323.

[22] Z. Yang, L. Liu, S. Das, R. Ramesh, A. Y. Du, and C. Qiao, ‘‘Availability-
aware energy-efficient virtual machine placement,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2015, pp. 5853–5858.

[23] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, ‘‘A stable network-aware VM placement for cloud systems,’’ in
Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., May 2012,
pp. 498–506.

[24] M. Wang, X. Meng, and L. Zhang, ‘‘Consolidating virtual machines with
dynamic bandwidth demand in data centers,’’ in Proc. Int. Conf. Inf.
Commun., Apr. 2011, pp. 71–75.

[25] X. Dai, J. M. Wang, and B. Bensaou, ‘‘Energy-efficient virtual machine
placement in data centers with heterogeneous requirements,’’ in Proc.
IEEE 3rd Int. Conf. Cloud Netw., Oct. 2014, pp. 161–166.

[26] R. Kanagavelu, B.-S. Lee, N. T. D. Le, L. N. Mingjie, and
K. M. M. Aung, ‘‘Virtual machine placement with two-path traffic
routing for reduced congestion in data center networks,’’ Comput.
Commun., vol. 53, pp. 1–12, Nov. 2014.

[27] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, ‘‘Particle swarm optimiza-
tion for energy-aware virtual machine placement optimization in virtual-
ized data centers,’’ in Proc. Int. Conf. Parallel Distrib. Syst., Dec. 2013,
pp. 102–109.

[28] J. Xu and J. A. B. Fortes, ‘‘Multi-objective virtual machine place-
ment in virtualized data center environments,’’ in Proc. IEEE/ACM Int.
Conf. Green Comput. Commun. Int. Conf. Cyber, Phys. Social Comput.,
Dec. 2010, pp. 179–188.

[29] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, ‘‘A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing,’’
J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1230–1242, 2013.

[30] S. Chaisiri, B.-S. Lee, and D. Niyato, ‘‘Optimal virtual machine placement
across multiple cloud providers,’’ in Proc. IEEE Asia–Pacific Services
Comput. Conf., Dec. 2009, pp. 103–110.

[31] R. Saini, ‘‘A multi-objective ant colony system algorithm for virtual
machine placement,’’ Int. J. Eng. Res. Appl., vol. 7, no. 1, pp. 95–97, 2017.

[32] A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic
Processes, 4th ed. New York City, NY, USA: McGraw-Hill, 2012.

[33] J. Kennedy and R. C. Eberhart, ‘‘Particle swarm optimization,’’ in Proc.
IEEE Int. Conf. Neural Netw., Nov. 1995, pp. 1942–1948.

[34] C. Rajendran and H. Ziegler, ‘‘Two ant-colony algorithms for minimizing
total flowtime in permutation flowshops,’’ Comput. Ind. Eng., vol. 48,
no. 4, pp. 789–797, 2005.

[35] C. Blum and A. Roli, ‘‘Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,’’ ACMComput. Surv., vol. 35, no. 3,
pp. 268–308, Sep. 2003.

[36] P. Hansen and N. Mladenović, ‘‘Variable neighborhood search: Principles
and applications,’’ Eur. J. Oper. Res., vol. 130, no. 3, pp. 449–467, 2001.

VOLUME 7, 2019 174423

http://dx.doi.org/10.1016/j.future.2017.09.024


J. Zhou et al.: Stochastic Virtual Machine Placement for Cloud Data Centers Under Resource Requirement Variations

JUNLONG ZHOU (S’15–M’17) received the
Ph.D. degree in computer science from East China
Normal University, Shanghai, China, in 2017. He
was a Visiting Scholar with the University of
Notre Dame, Notre Dame, IN, USA, from 2014 to
2015. He is currently an Assistant Professor with
the School of Computer Science and Engineering,
Nanjing University of Science and Technology,
Nanjing, China. His research interests include real-
time embedded systems, cloud computing, and

cyber physical systems. He has published 50 refereed articles in his research
areas, most of which are published in premium conferences and journals,
including the ACM/IEEE DATE, the IEEE TC, the IEEE TPDS, the IEEE
TCAD, the IEEE TCAS, the IEEE TR, the IEEE TAES, and so on. He
received the Reviewer Award from the Journal of Circuits, Systems, and
Computers, in 2016. He has been an Associate Editor for the Journal of
Circuits, Systems, and Computers, and serves as a Guest Editor for several
special issues of the ACM Transactions on Cyber-Physical Systems, the IET
Cyber-Physical Systems: Theory & Applications, and the Journal of Systems
Architecture (Elsevier).

YI ZHANG received the B.S. and Ph.D. degrees
from the School of Computer Science and Engi-
neering, Southeast University, Nanjing, China,
in 2005 and 2011, respectively. From July 2009 to
December 2009, he did an internship at the IBM
China Research Laboratory after he was awarded
the IBM Ph.D. Fellowship. In 2011, he joined the
Huawei Tech. Company, as a member of the Tech-
nical Research Staff. He is currently an Assistant
Professor with the School of Computer Science

and Engineering, Nanjing University of Science and Technology, Nanjing,
China. His research interests include project scheduling, workflow optimiza-
tion, resource management, and allocation in cloud computing and mobile
computing.

LULU SUN received the B.S. degree in software
engineering from Nanjing University of Science
and Technology, Nanjing, China, in 2017. She
is currently working toward the M.S. degree in
the School of Computer Science and Engineer-
ing, Nanjing University of Science and Technol-
ogy, Nanjing, China. Her research interests include
cloud computing and task scheduling.

SISI ZHUANG is currently pursuing the B.S.
degree in intelligent science and technology with
the Nanjing University of Science and Technol-
ogy, Nanjing, China. Her research interests include
cloud computing and task scheduling.

CHENG TANG is currently pursuing the B.S.
degree in network engineering with the Nanjing
University of Science and Technology, Nanjing,
China. His research interests include cloud com-
puting and task scheduling.

JIN SUN (M’17) received the B.S. and M.S.
degrees in computer science from the Nanjing
University of Science and Technology, Nanjing,
China, in 2004 and 2006, respectively, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Arizona, in 2011. He is
currently an Associate Professor with the School
of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing,
China. His research interests include cloud and

edge computing, stochastic modeling and analysis, and cyber-physical
systems.

174424 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	PROBLEM FORMULATION
	DETERMINISTIC VM PLACEMENT
	STOCHASTIC VM PLACEMENT

	PREDICTION OF OVERFLOW PROBABILITIES
	THE PROPOSED VM PLACEMENT ALGORITHM
	SOLUTION INITIALIZATION
	PARTICLE MAPPING
	SOLUTION EVALUATION
	NEIGHBORHOOD SEARCH
	STOCHASTIC PLACEMENT ALGORITHM

	EVALUATION RESULTS
	EVALUATION OF SOLUTION FEASIBILITY
	EVALUATION OF ENERGY EFFICIENCY
	EVALUATION OF KEY STRATEGIES

	CONCLUSION
	REFERENCES
	Biographies
	JUNLONG ZHOU
	YI ZHANG
	LULU SUN
	SISI ZHUANG
	CHENG TANG
	JIN SUN


