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ABSTRACT Long-term energy evaluation of PV systems that use micro-inverter configuration (micro-
inverter PV systems) is currently unclear due to the lacking of sufficient longitudinal measurement data
and appropriate analysis method. The poor knowledge about impact and aging of micro-inverter PV system
affects the comprehension and accuracy of PV design and simulation tools. In this paper, we propose a
machine learning approach based on the mixed-effect model to compare and evaluate the electrical energy
yield of micro-inverter PV systems. The analyzed results using a 5-year period data of PV stations located
at Concord, Massachusetts, USA showed that there is no significant difference in yearly electrical energy
yield of micro-inverter PV systems under shading and non-shading condition. This finding has confirmed
the advantage of micro-inverter PV system over the other PV types. In addition, our work is the first study
that identified the average degradation rate of micro-inverter PV of 3% per year (95% confidence intervals:
2% − 4.3%). Our findings in this study have extended substantially the comprehensive understanding of
micro-inverter PV system.

INDEX TERMS Mixed-effect model, micro-inverter PV system, micro-inverter configuration, longitudinal
measurement, fixed effects, random effects.

I. INTRODUCTION
Photovoltaic system (PV) plays a key role in many renewable
energy development plans. According to the Global Mar-
ket Outlook report, the total generated power from PV is
expected to be over 1 TW by 2022 [1]. In addition, the global
rooftop PV grows rapidly due to the decline of installment
cost and many incentive policies from governments such as
utility rebates, tax credit, or renewable energy credit [2]–[4].
From customer aspect, installing the residential PV system is
the referred choice because of the self-consumption, i.e. the
generated electricity can be used directly for appliances at
household. The electricity from rooftop PV also feeds in
energy to the distribution grid to make profit for homeowner.
From utility aspect, the development of rooftop PV brings the
ability to better control and manage the grid since they are
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distributed power generators, which helps to reduce the peak
load demand. Therefore, the rooftop PV systems prove to be
a cost-effective solution.

To encourage homeowner turning to PV system, many PV
designing and planning tools have been released, for example
PVSOL [5], PVsyst [6], PVsites [7], PVwatt [8], and Google
Project Sunroof [9]. These simulation tools have successfully
provided an easy-to-use method to provide sufficient outputs
about energy performance rooftop PV system and also the
additional information such as the Levelized Cost of Energy
(LCOE) or Energy Payback period [10]–[12]. Nevertheless,
the reliability of these tools is still in doubt since they focus
only the details about solar panel and PV location. The chal-
lenge is how to accurately predict the energy of PV system,
taking into account the impacts of inverter configurations and
also the aging of PV system.

Regarding the impact of inverter configuration to energy
efficiency (measured by kWh/kW ) of PV system, there
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FIGURE 1. Typical inverter configurations of rooftop PV system.

are limited studies concerning about this issue. Currently,
there are three common inverter configurations in rooftop
PV system, named as central inverter, string inverter, and
micro-inverter configuration (Fig. 1). In the two former con-
figurations, an inverter is connected to a string PV panels
to convert DC power to AC power. In the last configura-
tion, micro-inverters are connected to single PV panel (or
two PV panels) and archive maximum AC power at module
level by integrating maximum power point tracker (MPPT)
in individual micro-inverter. Therefore, the shading appears
in a PV module does not affect to other modules in a
micro-inverter PV system. Authors in [13]–[16] investigated
the conversion efficiency and energy yield of micro-inverters
in non-shading condition in both laboratory environment and
outdoor test field. The study in [17] simulated the operation
of micro-inverter based on Matlab and Simulink modeling.
Those studies theoretically proved that PV system that uses
micro-inverter configuration has better energy efficiency than
the one using central inverter configuration. The data driven
approach in [18] showed that the energy efficiency from PV
station that uses micro inverter is higher than that uses central
inverter configuration. However, the drawback of study is
that all monitored PV systems are not in the same weather
condition. Moreover, all PV stations also did not have the
same orientation. The case study in [19], [20] said that in the
same environment condition, the micro-inverter more quickly
reaches the Levelized Cost of Energy (LCOE) than string
inverter under shading effects. Although the abovementioned
studies have proven the advantages of micro-inverter PV
system, their proposed methods have not completely con-
vinced the reader. The first reason is due to the lacking of
longitudinal datasets of micro-inverter PV system. This type
of dataset is the recorded measurements of the same system

(e.g.: power, generated energy) hourly or daily. The second
reason is due to the lacking of an appropriate analysis method
rather than T-Test, which is only applied to compare the mean
values between two independent datasets.

Regarding the aging of PV system, many existing studies
only focused on the degradation rate of solar panel level,
rather than the degradation at system level [21]–[28]. In string
inverter configuration, the degradation of solar panel also can
be represented as the degradation of PV system since the
inverter usually have been operated in standard condition in
the indoor condition. However, micro-inverter is integrated
into individual solar panel and placed outdoor, such as on the
rooftop or facade wall. Hence, it is certain that the changes
in operating temperature, humidity affect to both solar panel
and micro-inverter. Therefore, it is very important to identify
the degradation rate of PV systems that use micro-inverter
configuration.

Because most existing micro-inverter PV systems in the
world have been installed recently, there are obviously no
long term energy performance records yet for the most recent
systems. In this study, we aim to provide a comprehen-
sive understanding about energy efficiency to the amount
of generated energy of PV stations that use micro-inverter
configuration based on a real dataset. In addition, the pro-
posed machine learning approach is conducted based on the
mixed-effect model, which is a flexible and powerful machine
learning tool for analyzing longitudinal data. In general, our
contribution are: (i) proposing how to utilize mixed-effect
model to evaluate the longitudinal PV dataset; (ii) evaluat-
ing the impact of shading condition to generated energy of
micro-inverter PV system; and (iii) identifying the energy
degradation rate at system level, which represents the aging
of micro-inverter PV system over time. The remaining of this
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TABLE 1. PV stations that use micro-inverter configuration in our study. All stations are located in Concord city, Massachusetts, USA (postcode: 01742).
The distance among stations is below 1 km to ensure the climate would vary as little as possible. All stations use monocrystalline silicon panel. Shading
(caused by trees, chimney, or neighbor building) is temporary but unavoidable.

paper is organized as follows: Section II represents the longi-
tudinal PV datasets that we used in our study. In Section III,
we introduce the mixed effect analysis and propose two
mixed-effect models to evaluate the energy efficiency of PV
stations. In detail, the proposed linear model is used to eval-
uate the annual energy yield, while the nonlinear model is
used to evaluate the monthly energy yield. Then, the analysis
results and discussion are described in Section IV. Finally,
Section V summarizes our findings and suggests further
researches.

II. PV SYSTEMS DATASET
Table 1 shows the list of micro-inverter PV stations that are
used in our study. These stations are located at Concord
city, Massachusetts, USA. We collected these stations from
the open source dataset PVoutput [29]. This website allowed
registered user uploading every 5-minute measurement data
of their PV system for academic use. The data include the
power and generated energy of PV systems. The datasets
are uploaded every five minutes from the registration day of
system at PVoutput to the latest day. In addition, the registered
informations of each PV system are the rated PV power;
the brand, type of solar panel, total number and power of
solar panels; the brand, total number and power of inverters;
orientation; shading condition; and tilt degrees of solar panel.

The PV systems in Table 1 were chosen since we intend
to analyze the impact of micro-inverter configuration to the
overall energy efficiency of PV system under non-shading
and shading conditions. They all used monocrystalline
solar panels and the micro-inverter from Enphase manu-
facturater [30], ranging of rated power from 190 Watt to
260 Watt. Our dataset included 5 non-shading PV stations
and 13 shading ones. Comparing to other datasets used in

previous studies, the advantages of our collected dataset are
that all PV stations share the same climate environment
(Concord region) and the measurement data are continu-
ously recorded from 2014 to 2018. Hence, this longitudinal
measurement data is useful and reliable for analyzing the
performance of PV systems.

The monthly and yearly yield of electrical energy (m and y,
respectively) are chosen as the metrics to investigate the
electrical energy performance of a PV system in our study.
The calculations of these yields are given in (1) and (2),

m =

∑M
j=1 Edayj
M .Ppv

(kWh/kW ) (1)

y =

∑Y
j=1 Edayj
Y .Ppv

(kWh/kW ) (2)

where Ppv is the rated power of PV system, M is the total
number of recorded days of the month mth, Y is the total
number of recorded days of the year yth, and Edayj is the total
generated energy from PV system at the jth day. The resulting
yearly yield and monthly yield of micro-inverter PV systems
in Table 1 are represented in Fig. 2 and Fig. 3, respectively.

III. THE MIXED-EFFECT ANALYSIS
The longitudinal dataset is usually a repeated measurement
data of objects taken over time such as hourly, monthly,
or yearly. This type of dataset is useful for the longitu-
dinal study and provides reliable results for evaluating or
comparing the difference of many observed measurement
data. The common T-Test [31] is used to compare the mean
values between two independent datasets when we evaluate
any difference. However, this method actually is not suitable
for longitudinal data since it violates the assumption about
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FIGURE 2. The yearly yield of micro-inverter PV systems in Table 1 from
2014 to 2018.

FIGURE 3. The monthly yield of micro-inverter PV systems in Table 1. The
recorded measurements are from January to December, 2018.

correlation between data observing from the same object.
Recently, the mixed-effect model is increasingly recognized
as an effective method in case dataset is longitudinal and
consists of grouped objects [32]. Each mixed-effect model is
combined from two terms: fixed effects and random effects.
While the former represents the trend of the general energy
yield of whole PV dataset, and the latter term reflects the
variability among many PV stations and the variability in
many measurements of each PV station. By identifying the
fixed effect terms for grouped objects, any differences among
groups can be identified easily. In this study, we applied
mixed-effect model to the energy yield dataset in Fig. 2
and Fig. 3 in order to evaluate the energy performance of
micro-inverter PV systems under two groups: non-shading
and shading.

The procedure analysis based on mixed-effect model is as
follow. Further related theories and computational methods
of mixed-effect model are referenced to [32]:

1) Choosing the suitable statistical model (ie.: linear
model, nonlinear model) to represent the trend of lon-
gitudinal PV dataset;

2) Identifying the fixed-effects and random-effects parts
in the model based on the particular grouped dataset of
the comparison;

3) Fitting and estimating the coefficients of the model.
Two methods that are used for parameter estimation
aremaximum likelihood (ML) and restrictedmaximum
likelihood (REML) [32];

4) Assessing the precision and the significance of various
terms in the model:
• Test the significance of terms in the fixed effects
part: Performed by F-Test for assessing the signif-
icance of terms [33], the resulted significance of
terms is shown by P value. The F-Test is a ratio of
two variances, which is a measure of dispersion, or
how far the data are scattered from the mean;

• Test the assumption on the random effects part
about normal distribution. Using the diagnos-
tic methods such as the Quantile-Quantile (Q-Q)
norm plot. This is a scatter plot created by plotting
two sets of quantiles against one another. If both
sets of quantiles come from the same distribution,
we should see the points forming a roughly straight
line.

• Test the significance difference of many mod-
els that represent subjects belonging to differ-
ence groups. This test is called as likelihood
ratio test and performed by an analysis of vari-
ance (ANOVA) method [34].

From the annual energy yield in Fig. 2, we saw that the Yi
tends to decrease over years. Also in Fig. 3 it seems that the
monthly generated energies are the same between two groups.
Hence, the question are: is there any real difference in the
yearly yield trend between two PV groups? and is there any
real difference in the monthly energy yield between two PV
groups?.

Shading is the main issue that causes the reduction in
energy efficiency of PV system. From our literature review,
the maximum power point tracker (MPPT) algorithm in
micro-inverter is performed at individual PV module, hence
the shading on a module does not affect other modules.
Therefore, the overall energy efficiency ofmicro-inverter sys-
tem in shading condition equals to the one of micro-inverter
system in non-shading condition. Therefore, we formulate the
hypothesis test of our research as below:
• The null hypothesis (H0): There is no difference in
energy yield between non-shading group and shading
group. If the P value is larger than 0.05, then H0 can
be assumed;

• The alternative hypothesis (H1): There is real difference
in energy yield between two groups (P < 0.05).

A. THE UNCONDITIONAL LINEAR MODEL
Linear mixed-effect model has both fixed and random effects
occurring linearly in the model function. It extends lin-
ear model by incorporating random effects, which can be
regarded as additional error terms, to account for correlation
among observations within the same group. In the uncon-
ditional model, we treat the dataset in Fig. 2 as only one
group regardless of the shading conditions. The yearly yield
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is represented as (3):

yi = αi + βit + ei (3)

where yi is the observed energy yield for individual PV station
i = 1, 2, ..., 18, measured repeatedly every year from 2014
to 2018 and represented by the index of year t = 1, 2, .., 5.
The αi and βi are called the baseline yield (kWh/kW ) and
annual degradation rate of PV station i, respectively. The
meaning of baseline yield is the initial observed yield that
we obtained in 2014, and ei is the error (or residual) between
the measured value (or real value) and estimated value from
model of station i. The error ei is assumed to follow a normal
distribution with zero mean and variance σ 2

e , ei ∼ N (0, σ 2
e ).

Since all the PV stations in Table 1 are micro-inverter
configuration and share the same environment condition, it is
reasonable to imply that they all shared a common baseline
yield and degradation rate. Therefore, we interpret the param-
eters αi and βi as (4),

αi = A+ u βi = B+ v (4)

where A and B are the mean baseline yield and the mean
degradation rate of all observed stations, respectively. The
error terms u and v are assumed to follow a normal distri-
bution with their respective variances u ∼ N (0, σ 2

u ) and
v ∼ N (0, σ 2

v ).
By substituting (4) to (3), (3) is written as below

yi= (A+ u)+ (B+ v)t + ei= (A+ Bt)+ (u+ vt)+ ei (5)

The term (A + Bt) in (5) is called the fixed-effects part of
model since it represents the general decreasing trend of
annual energy yield of micro-inverter PV systems during a
5-year period. The term (u+ vt) is called the random-effects
since it includes the variant elements in the model. This
random-effects explains the variability in measured energy
yield from many stations.

B. CONDITIONAL LINEAR MODEL
In this model, the PV stations in Table 1 are fomulated
as same as (3). However, the PV system are grouped into
non-shading and shading group since we consider to inves-
tigate there is any difference or not in annual yield between
two groups. Then, the (4) is rewritten as (6) below:

αi = A0 + A1Si + u βi = B0 + B1Si + v (6)

where A0 and B0 have the same meaning as A and B. The
new parameters A1 and B1 reflect any differences in the
baseline energy yield and in the degradation rate between
two PV groups. The Si equals to 0 if PV station belongs to
non-shading group and to 1 if it belongs to shading group as
shown in Fig. 4.
By substituting (6) to (3), then (3) is written as (7) below:

yi = (A0 + A1Si + u)+ (B0 + B1Si + v)t + ei
= [(A0 + A1Si)+ (B0 + B1Si)t]+ (u+ vt)+ ei (7)

FIGURE 4. The groups of micro-inverter PV systems in Table 1. PV system
which is suffered shading is coded as S = 1, while none-shading PV
station is coded as S = 0.

In this case, the fix-effects term is [(A0+A1Si)+(B0+B1Si)t].
Unlike the fix-effects term in unconditional model, it now
separately represents the decreasing of annual energy yield of
none-shading PV stations and shading PV stations. In addi-
tion, if there exists any significant difference between two
groups, then A1 and B1 identify how large the difference. The
resulting analysis of linear mixed effects models are shown
in Subsection IV-A.

C. CONDITIONAL NONLINEAR MODEL
The monthly energy yield mi of the ith PV station in Fig. 3
can be represented by the d th degree polynomial function
as (8) below. This nonlinear function (d th degree polynomial
function) was chosen as it can efficiently represent the curve
which includes two peaks like those in Fig. 3 [32].

mi = f (t,ψ i)+ ei =
d∑
j=0

βjit j + ei (8)

where ψi is a d vector of coefficients of the polynomial func-
tion, The error ei is assumed to follow a normal distribution
with zero mean and variance σ 2

e , ei ∼ N (0, σ 2
e ).

In a population approach, the PV stations in our dataset
are assumed to be randomly sampled from a same population
of individuals. Then, each individual parameter ψi is treated
as an independent random variable and distributed normally,
ψi ∼ N (ψ0,�). The fixed effect term ψ0 is a d-vector of
population parameters and � is a d × d variance-covariance
matrix. In this model, the least squares estimate of ψ i is
defined as (9)

ψ̂ i = argminψi

12∑
k=1

(mik − f (tk ,ψ i))
2 (9)

As mentioned in Fig. 4, there are two grouped data:
non-shading and shading PV stations. We assumed that any
variability in the monthly yield between two groups can be
reflected by the differences in parameters of their polynomial
functions. Therefore, we define the parameters of each group
as (10) and (11) as follow:

For non-shading group, we imply that this group represents
the population since we coded S = 0:

ψ i = ψ0 + Sψ
′
+ ηi = ψ0 + ηi (10)
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TABLE 2. The fixed effect results of both models.

FIGURE 5. The Q-Q plots of residuals of non-conditional model and condition model in Table 2 and Table 3.

For shading group (S = 1):

ψ i = ψ0 + Sψ
′
+ ηi = (ψ0 + 1ψ ′)+ ηi = ψS + ηi (11)

where ηi is random effect and ηi ∼ N (0,�). The fixed effect
ψ0 and ψS comparative result is shown in Subsection IV-B.

IV. ANALYSIS RESULTS
All algorithms and models were implemented using R pro-
gramming version 3.4.0 [35] and nlme package [36]. The
random process used the same number of generators to ensure
the reproducibility.

A. YEARLY YIELD ANALYSIS
Table 2 and Table 3 show the resulting parameters of the
fix effects and random effects terms of yearly energy yield
modeling, respectively. From these results, themodels of each
PV group are rewritten as follow:

TABLE 3. The random effect results of both models.

The model for all micro-inverter PV stations is:

yi = 3.05− 0.09t (12)

The model for non-shading PV group (S = 0):

yi = [(A0 + A1Si)+ (B0 + B1Si)t]

= [(3.09+ (−0.06)0)+ (−0.11+ (0.02)0)t]

= 3.09− 0.11t (13)

The model for shading PV group (S = 1):

yi = [(A0 + A1Si)+ (B0 + B1Si)t]

= [(3.09+ (−0.06)1)+ (−0.11+ (0.02)1)t]

= 3.03− 0.09t (14)

However, there is no significant difference between these
models since the obtained P values of A1 and B1 are
0.77 and 0.50, respectively. In addition, the 95% CI. ranges
of A1 and B1 in Table 2 also cross the zero value. Therefore,
we conclude that there is no significant difference in annual
energy yield of micro-inverter PV systems under shading
and non-shading conditions. This means that we can use the
model in (12) to represent the annual degradation yield of two
PV groups. Our finding has confirmed again the advantage
of micro-inverter configuration over other inverter configu-
rations under shading condition.

Another interesting finding is that the averaged degra-
dation rate (DRPV) of micro-inverter PV systems is
about −0.09 kWh/kW per year (95% CI.:−0.13 to
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TABLE 4. Comparative results of the degradation rates of PV system.

FIGURE 6. The polynomial fitting curves for monthly energy yield based on the nonlinear mixed effect model.

−0.06 kWh/kW). Counting in percentage, DRPV is
calculated as (15)

DRPV = −
B
A
.100 =

0.09
3.05

.100 ≈ 3% (15)

and the 95% CI. range is calculated as (16)

95%CI. = −
(−0.06)
3.05

.100 : −
(−0.13)
3.05

.100 ≈ 2% : 4.3%

(16)

175132 VOLUME 7, 2019



N. T. Le, W. Benjapolakul: Comparative Electrical Energy Yield Performance of Micro-Inverter PV Systems

Actually, our work is the first study that figures out
the degradation rate of PV system analyzed from real
datasets at system level ofmicro-inverter PV system. Com-
paring to other existing studies in Table 4, this degradation
rate is higher than recommendations by IRENA [37] and
Australian Energy Council [38] at system level, which are
used for string inverter PV system. However, our result is
acceptable, comparing to other studies at module level.

Finally, the Q-Q norm plot in Fig. 5 indicates that the
assumption of normality of random effect term is plausible.
In addition, the curves of two models are nearly identical
since there are no significant difference between them.

B. MONTHLY YIELD ANALYSIS
Figure 6 shows the monthly yield during 5-year period from
2014 to 2018 and the corresponding polynomial fitting curves
of monthly yields for both groups. According to [32], d = 7
was chosen to trade off between the minimum errors for two
nonlinear models in Subsection III-C and computation load.
Table 5 shows the result of likelihood ratio test (ANOVA) for
model of non-shading group and model of shading group in
each year. If the P value is smaller than 0.05, this indicates
that the monthly yield model of non-shading PV stations is
significantly different from the one of shading stations.

TABLE 5. The ANOVA analysis result of nonlinear mixed-effect models.

The results in Table 5 shows that the monthly energy
yield is only significantly different in 2016 and 2017
(P < 0.05). While the results of other years do not show
any significant difference. Actually, it seems that the monthly
energy efficiency of micro-inverter PV system is dependent
on the shading, resulting in a lower ambient temperature
and slow MPPT adaption as mentioned in [13] and [40],
comparing to the non-shading one. However, we did not
observe this difference in our monthly yield analysis. We rec-
ommend further study in order to reach stronger conclusion
about the effect of ambient temperature to micro-inverter PV
system.

V. CONCLUSION
In this study, we compared monthly and yearly yield of
micro-inverter PV systems to evaluate the impact of shading.
Our work has contributed further evidence that the shading
issues such as trees, chimney, or neighbor building does not
affect the yearly electrical energy yield of PV systems that

use micro-inverter configuration. Hence, the micro-inverter
PV guarantees to obtain the maximum energy efficiency in
case of shading. We also found that the averaged energy
yield degradation of micro-inverter PV system is 3% per year,
with the 95% confidence interval from 2% to 4.3% and this
degradation rate is totally independent of shading conditions.
Lastly, our proposed mixed-effect model in our study have
been proven as an effective method to use for the longitudinal
data measurement.

In further study, we will extend our proposed mixed-effect
model to verify the consistency of our findings with
micro-inverter PV systems in other regions. We also
plan to compare the long-term energy efficiency between
micro-inverter PV and string inverter PV system in various
conditions based on mixed-effect method.
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