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ABSTRACT Nowadays, rapid urbanization causes a wide-range of congestion and pollution in megacities
worldwide, which bears an urgent need for micromobility solutions such as electric scooters (e-scooter).
Many e-scooter firms use freelancers to charge the scooter where they compete to collect and charge the
e-scooters at their homes. This competition leads the chargers to travel long distances to collect e-scooters.
In this paper, we developed a mixed-integer linear programming (MILP) model for a real-world e-scooter-
Chargers Allocation (ESCA) problem. The proposed model allocates the e-scooters to the chargers with an
emphasis on minimizing the chargers’ average travelled distance to collect the e-scooters. The MILP returns
optimal solutions in most cases; however, the ESCA is identified as a generalized assignment problem which
classifies as an NP-complete combinatorial optimization problem. Moreover, we modelled the charging
problem as a game between two sets of disjoint players, namely e-scooters and chargers. Then we adapted the
college admission algorithm (ACA) to solve the ESCA problem. For the sake of comparison, we applied the
black hole optimizer (BHO) algorithm to solve this problem using small and medium cases. The experimental
results show that the ACA solutions are close to the optimal solutions obtained by the MILP. Furthermore,
the BHO solutions are not as good as the ACA solutions, but the ACA solution consumes more time to
solve large-scale real cases. Based on the obtained results, we recommend applying the ACA1 to find the
near-optimal solution for large-scale instances, as the MILP is inapplicable to find the exact solution in
comparison.

INDEX TERMS Micromobility modes, e-scooter-chargers allocation, mixed-integer linear programming,

heuristic.

I. INTRODUCTION

Nowadays, transportation systems are an important part of
human activities. In recent years the dependency of people on
the transportation system has increased. Currently, an average
of 40 per cent of the world’s population spends at least
1 hour on the road each day. As the dependency of people
on transportation systems increases, these systems face sev-
eral challenges. Congestion is one of these challenges facing
transportation systems and has a direct impact on people.
Firstly Congestion has an environmental impact where it
increases fuel consumption and consequently, air pollution
[1]. Congestion is also one of the major factors influencing
emissions. It increases the emission by 40% at 45 km/h [2].
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Lastly, congestion increases travel time and wastes com-
muters’ time. The annual hours spent in road congestion in
the UK, Belgium, Italy, Luxembourg and Greece are 45.73,
39.37, 37.36, 36.88 and 36.28 respectively; thus, costing the
EU nearly EUR 100 billion, or 1% of the EU’s annual GDP.
The situation in Australia is no better than Europe, average
driving speeds in the big Australian cities have significantly
dropped. For example, the speeds in Sydney, Brisbane and
Melbourne fell by 3.6 per cent, 3.7 per cent and 8.2 per
cent respectively. Moreover, congestion cost the Australian
economy $16.5 billion in 2015 and is expected to reach
between $27.7 and $37.3 billion by 2030 [3].

The above numbers suggest that there is a real need to find
solutions to reduce traffic congestion and enhance transporta-
tion safety. Most of the traditional solutions tend to build new
infrastructure. As a result, these solutions need land resources
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FIGURE 1. Comparison of trips taken by station-based, dockless, and
scooter systems (source: https://nacto.org/shared-micromobility-2018/).

and significant funding and pose social and environmental
problems. Recent studies have shown that drivers tend to
use their personal cars or even the ridesharing services for
short trips more than long ones [4]. According to the US
Department of transportation 2017, 45.6 per cent of the trip
distances is three miles or less. In Australia, the distribution
of the commuting distance for Australians shows that 29 per
cent of the trips are less than 5 km and 50 per cent of the
trips are 10 km or less [5]. For the ridesharing services,
the trip distances of Uber is skewed toward the low end.
Meaning Uber trips are more likely to be short (< 5 mi).
Consequently, around 50% of Uber trips might be replaced by
micro-transportation modes such as a bike or e-scooter shar-
ing systems, and thus, reducing congestion and emissions.

As an effort by governments to replace short trips by
offering micro-transportation modes, bike-sharing systems
(BSSs) have been introduced in over 50 countries [6]. This
system aims to encourage people to travel via bike by dis-
tributing bicycles from stations located across an area of
service. Residents and visitors can borrow a bike from any
station and then return it to any station near their destination.
Yet, the imbalance problem has happened where some of the
stations run empty, and others become full. In response, a new
micro-transportation mode: the e-scooter-sharing system has
emerged side-by-side to the bike-sharing system and bloomed
remarkably in 2018, as shown in Figure 1. This system works
similarly as the BSS, yet it provides more flexibility to users
as it is the station-less system. Since 2017, e-scooter sharing
system reached more than 85 city schemes with more than 1.8
million registered users [7]. These e-scooters need charging
in order to continue in service. There is no assignment of
e-scooters to the chargers and the state of practice is based
on first come first serve which creates competition, increases
violence and results in travelling longer distances to collect
e-scooters.

As the system has expanded remarkably, keeping the
e-scooters charged to become a challenge for the operators.
Consequently, many companies took advantage of technol-
ogy and promoted a new model where e-scooters are made
available through an application for the public and charging
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of these e-scooters are under the responsibility of “chargers”
who are participants remunerated depending on specific con-
ditions. The task of the charger is locating e-scooters which
needs charging on the app, driving to the e-scooters locations
for pick up, and charging at home. This job sounds easy;
however, it is not, and it has two major problems.

Firstly, freelance chargers spend a long time searching
for the e-scooters because of the inaccuracy of the locations
of the e-scooters on the app, which does not correspond to
its location in real life [8]. Moreover, the current state-of-
practice to charge e-scooters is based on the first-come, first-
serve. It has been reported by chargers that they showed up to
collect an e-scooter at the same time when others did the same
[9]. This strategy encourages competition among chargers
and may lead to physical violence [10].

Secondly, the chargers are independent contractors as
defined by the gig economy, which describes the peer-to-peer
arrangement between the e-scooter company and the charger.
Although this gig economy offers flexibility and freedom
to the chargers, there is no grantee for minimum wage and
maximum hours [4], [11].

To the best of our knowledge, we are among the first to
propose a solution to this problem. So, there are no previous
published papers that address such an e-scooters/chargers
assignment. In this paper, we hypothesize that if we pro-
duce an optimal assignment of the e-scooters to the chargers
then, the competition and possible physical violence will be
eliminated. Where we assumed that, the proposed assign-
ment algorithm/model will run on a central computer at the
e-scooters’ operator data center. This central computer is fed
with the locations of the e-scooters needing charging and the
chargers.

Using locations of the e-scooters and the chargers the
distance matrix between e-scooters and chargers can be cal-
culated using google API or any similar software. Conse-
quently the assignment problem is solved and each group
of e-scooters (i.e. unique IDs) are assigned to a charger (i.e.
unique ID as well). Therefore, the central computer commu-
nicate with the charger mobile application and give it the
e-scooters IDs and locations. Now it is the responsibility
of charger to travel to the e-scooters locations. Once he
reaches an e-scooter location he scans the e-scooter ID using
his mobile application. Then, the application matches the
e-scooter ID with the assigned e-scooters IDs. If the appli-
cation found a match then it unlocks the e-scooter and the
charger take it for charging otherwise it displays a message
informing him this is the wrong e-scooter. So, there is no
competition since the application only unlock the assigned
e-scooter and the chargers know no one else can take his
assigned e-scooter for charging.

Moreover, it can reduce the cost of the e-scooters’ charging
and the renting cost at the same time, and increase the hourly
rate of the charger. To confirm our hypothesis, the e-scooter-
Chargers Allocation (ESCA) Problem is formulated as a
mixed-integer linear programming (MILP) model. Because
of the time complexity of the MILP, we adopted two other
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algorithms, namely the ACA and the BHO, which has poly-
nomial complexity [12], [13]. Consequently, we compared
the solutions of the ESCA using the three approaches and
recommended ACA for large instances.

The remainder of the paper is organized as follows. The
mathematical formulation is given in Section II. Heuristic
algorithms to solve the proposed problem are developed in
Section III. The experimental work is presented in Section IV.
Finally, the concluding remarks are drawn in Section V.

Il. MATHEMATICAL FORMULATION

The assignment problem is common in the fields related to
the network flow theory. The standard assignment problem
is to determine an optimal assignment of assigning n jobs
and »n individuals using the cost or profit as an objective
function. In this problem, any individual can be assigned to
perform any job, including some costs and profit that may
vary depending on individual-job assignment. In addition,
each has a budget, and the sum of tasks assigned to it cannot
exceed this budget. It is necessary to find an assignment in
which all individuals do not exceed their budget, and the total
profit of the assignment is maximized. In this paper, we adopt
an extended assignment problem to be applicable for the
e-scooters and chargers assignment problem by assigning
each charger (individual) to some e-scooters (jobs) under a
group of constraints.

The capacitated facility location (CFL) problem is a clas-
sical optimization problem for determining the potential sites
in order to minimise costs, where demands at several points
must be satisfied by the established facilities under limited
capacity. The local search techniques and hybrid algorithms
have been proposed to solve the CFL problem for many
real applications [20], [22], [23]. Furthermore, the k-median
problem is another example of facility location problems,
where seeking to establish k facilities, without considering
fixed costs. The k-median problem is applicable for many real
applications and heuristic algorithms are used to obtain good
solutions. [20], [21], [24].

The ESCA problem is formulated mathematically as
a MILP model to optimize the number of chargers,
the e-scooter allocation for each charger and freelance charg-
ers’ location with a particular emphasis on the associ-
ated costs. The extended model will consider the optimal
e-scooters assignment for each charger to minimize the total
cost. The charger is joined at locations with high charging
potential based on demand and distance between charger and
e-scooter. In the proposed model, optimizing the number of
chargers in the system can lead to increase the hourly rate
of each charger. For that reason, we added a penalty term in
the objective function to restrict the number of new chargers
that will join to meet the requirements for the number of
e-scooters. Figure 2 shows the proposed framework of the
ESCA based on different types of data and optimization meth-
ods to minimizing the associated costs and solving the allo-
cation problem for small and large-scale size real cases. The
proposed framework includes five stages that inherited in data
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FIGURE 2. The proposed framework of the ESCA problem.
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FIGURE 3. lllustration of deploying more than one chargers in one
location (block).

Centre, operator management and best assignment dataset.
The data centre includes data collection, data cleaning and
filtering, while best assignment dataset includes output and
final solutions, and minimum associated costs. The operator
is managing the data processing with the proposed models
and methodologies.

In this paper, we suppose that there is one charger which
starts the service at a location. Multiple chargers can be
deployed from different close points but not the same point
at a location.

Also, we assumed that the e-scooter operators only provide
six chargers per person hence the maximum number a person
can collectis six. So if a certain location (block) has more than
six e-scooters need charging the model will deploy more than
one charger as shown in the illustration below in Figure 3.

Consider the complete graph G = (N, A), where N is the
set of nodes with two subsets V and S; V C N andS C N. Set
A is the edge set of graph G, where A C N x N.G is adapted
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to be the route network, and N is the number of locations.
V is the total number of e-scooters in the system and S is
the total number of chargers in the system. Optimizing the
number of chargers and their locations with producing an
optimal e-scooters assignment to a charger is the main aim of
this model. Let zjz € {0, 1} be 1 if e-scooter located at node
i is allocated to a charger located at node k and O otherwise.
Based on N of set nodes (Locations), yx means a specific
location is assigned for a charger. In particular, yiz = 1
implies that the location at node k is selected as a charger.
We assumed in the proposed model that one charger will
start the service at a location; however, many chargers can
be deployed from different close points (locations), but not
the same point.

Indices and Sets

V': Total number of e-scooters in the system

i: Index of an e-scooter; i =1...V

S : Total number of chargers in the system

k:Index of a charger; k =1...S§

Parameters

dj: Distance between e-scooter i and charger k; k =
l...Vandk=1...§

Dy: Maximum number of e-scooters assigned to the
charger; k =1...S

by: Penalty of using one chargerk; k =1...§

B: Total investment for joining all chargers

f: Total cost for the given system

Decision Variables

1: e-scooterihasbeenassignedtochargerk;

Zik = i=1...Vandk=1...§
0: otherwise
1 : charger k is ready to work at a specific
location; k=1...S
Yk =

0: otherwise

Objective function

The objective function in Equation (1) is to minimize
the associated costs for the e-scooter charging. The devel-
oped equation demonstrates two terms of costs; the distances
from the e-scooter location to the charger location, and the
penalties of joining new chargers. The joining penalties term
has been identified in the objective function to optimise
number of chargers in the systems and increase the num-
ber of assigned e-scooters for each charger considering the
maximum number of assigned e-scooters for each charger.
Consequently, optimizing the number of chargers can lead to
an increase in the hourly rate for a charger who are already
in the system by assigning mostly the maximum number of
e-scooters is (6) that has been identified in advance based
on practices. In the objective function, the costs included the
distances and penalty of adding each charger. We chose the
magnitude of the b_k such that it is close to the longest link
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in the graph. Thus we do not need to do normalization.

Vv S s

f = Min (Z > duzi + Zbk)’kk> &)
i=1 k=1 k=1

Constraints

Constraints (2) impose that each e-scooter i is assigned to
exactly one charger k;

S
d =1 VieV. 2)
k=1

Constraints (3) ensure that no e-scooter i is assigned to
a charger k unless a charger is ready to work at a specific
location.

Zk <y VieV,kes, 3)

Constraints (4) ensure that the total costs of joining S
chargers are less than the total investment B, where the cost
of each charger k is by.The penalty of joining new charger,
by is given in advance.

S
Y by <B )
k=1

Constraints (5) ensure the assigned number of e-scooters to
open charger k is less than the maximum number of assigned
e-scooters for this charger. In the next sections, the maximum
number of scooters will be found based on the historical data
for Brisbane city. In this case, the maximum assigned number
of e-scooters for each charger is six to give a fair hourly rate
for chargers based on practices.

1%
Yz <Diyie VKES, (&)
i=1
Constraints (6) ensure that the assignment decision will

result in either no assignment, Z;j = 0, or assignment, z;; =
1.

zik €{0,1} VieV, keSS, (6)
ill. METHODS
The developed MILP model is solved to find the exact solu-
tion of the ESCA problem using the Branch and Bound
method [14]. However, as the ESCA problem is NP-hard,
the mathematical programming will be used to solve small-
size cases but intractable to handle large-size case studies.
As a result, two algorithms are proposed to solve large-size
instances. The exact solution obtained by the MILP model
will be used to test the performance of the other proposed
algorithms. The real case study will be solved using the
developed MILP model, which we restricted its running time
to a maximum of two hours. We compare solutions obtained
from the MILP to the ACA and BHO solutions.

The hyper-parameters of the Heuristic algorithms is criti-
cal, time consuming and may change based on the size of the
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TABLE 1. ACA algorithm for the ESCA.

1. Initial Inputs: Spatial Data

1.1 Identify the area R that allows having e-scoters by operators

1.2 Identify the number of e-scooters V in the proposed area R

1.3 Identify the number of chargers S in the system

1.4 Obtain the geographical coordinates (Long, Lat) of the e-
scooters and chargers

2. Construct the preference lists

2.1 Construct the preference list G, for each charger k based on
distance to the e-scooters using (7) below
sort(d((Long, Lat),, (Long, Lat)yy) )
where d() is the distance function

2.2 Construct the preference list M;for each e-scooter i based
on distance using (8)
sort(d((Long, Lat);, (Long, Lat) ys) (8)

3 Select Initial assignments

3.1  Chargers offer the charging service to the best-qualified e-
scooters(i.e. the top ranked e-scooters in their
preference lists)

3.2 E-scooter compares proposals from the different charges
and its current deferred accepted charger proposal, then
responds based on its preference list By
3.2.1 Deferred Acceptance of an offer OR
3.2.2 Rejection of the offers and keep its current deferred

accepted charger
4 Iterating proposals
Chargers check for the available number of charging
adaptors after the previous proposal

4.2 Chargers find the next e-scooters in their lists to offer the

charging services

4.3 Chargers offer to charge e-scooters whether they are

assigned to other chargers or not.

44 Gotostep 3.2

4.5 Repeat step 4 until all chargers are full (i.e. no more

available charging adaptor)

problem and distribution of distances. So that we chose the
heuristics which has small number of hyper-parameters.

In the case of the ACA, there is no hyper-parameters at all
which make it a great choice for us. In the case of the BHO,
the number of the hyper-parameters is small which made it
easy for us to find a good values for the hyper-parameters.

A. ACA ALGORITHM

The ACA algorithm is developed based on the college admis-
sion (CA) algorithm to formulate the ESCA problem. The
CA problem is many to one matching algorithm [13]. In the
context of ESCA Problem, there are two sets of players,
namely the chargers (colleges) and the e-scooters (students)
that need to be matched, as shown in Figure Each charger
builds a preference list (ranked list) of the e-scooters based on
the distance, where the most preferred e-scooter is the nearest
one.

Similarly, each e-scooter builds a preference list of charg-
ers based on the distance. However, the e-scooters oper-
ator can choose any criteria such as the charging price
per e-scooter requested by the charger. The best-qualified
e-scooters are offered to charge first, followed by the lesser-
qualified e-scooters. The ACA algorithm finds a stable
matching solution through a series of iterations, as described
in Table 1. At each iteration, the chargers offer to charge the
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best-qualified e-scooters, and the e-scooters have to reply by
either deferred accepting the offer or not. Deferred accepting
means that the e-scooter will “holds’” the most preferred pro-
posal (deferred acceptance) if it receives more than one pro-
posal. In other words, the e-scooter uses his own preference
list to compare the incoming proposals from the chargers and
hold its most preferred proposal. In the next iteration, if that
e-scooter received a better proposal than the current match
(deferred acceptance), it breaks the tie with the old match and
holds the better proposal. At the end of the iteration, some
e-scooters have temporary assigned to chargers, and others
do not. Chargers then update their list accordingly in the next
iteration and offer to charge to e-scooters who did not receive
an offer in the previous iterations, regardless of whether they
are assigned to other chargers or not. The e-scooters’ lists do
not change, but e-scooters can change their decision at each
iteration if they are offered to charge service with a better
charger. The algorithm continues iterating until it reaches a
stable matching solution.

The idea of stability of the solution which means that there
is no blocking pair of (charger C, e-scooter b). If there are
two e-scooters a and b who are assigned to chargers C and
D, respectively, although b prefers C to D and C prefers b to
a then the pair (charger C, e-scooter b) is blocking and the
solution is unstable.

In ACA, the stable matching solution is not a grantee to be
optimal. However the solution is still good. The advantage of
the ACA algorithm:

1- It has O(VS), where V is the total number of e-scooters
in the system and S is the total number of chargers.

2- This algorithm allows each charger and each e-scooter
to have its preference list. Each preference list could be built
based on different criteria. For example, in future work we
will allow e-scooters to build their preference list of chargers
based on how much they are asking to charge an e-scooter.
At the same time we will allow chargers to build their prefer-
ence list of e-scooters based on distance.

3- It does not suffer from comparing different quantities
such as money and distance because at the end the matching
is done based on the preference list which is rank-based list.

Recall that, the complexity of this matching algorithm is
(VS) given that the preference lists are constructed. This
algorithm can consider any other factors during constructing
preference lists such as the charging costs and the battery
level. Moreover, in the case of § > V /6, we can use the
above algorithm to select a good subset of chargers and assign
the e-scooters to this subset, where we assume the charger
can collect six e-scooters. The cardinality of this subset of
chargers is [V /6] where [ ] is the ceiling function maps V /6
to the least integer greater than or equal to V /6. We can do
the subset selection and assignment by running the above
algorithm using the full set of the chargers until the best match
achieved. Consequently, we sort the charger based on the
number of assigned e-scooters and remove that charger that
has the least number of assigned e-scooter. Then, we run the
algorithm again using the new reduced set of chargers. We
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FIGURE 4. ACA based assignment.

repeat the matching and removing steps until we reach the
desired several chargers.

B. OTHER RECOMMENDATIONS
The BHO algorithm is an optimization algorithm inspired by
the black holes found in deep space [15]. The first step of
the BHO is selecting a large number of solutions at random
points in the search space. The algorithm evaluates the initial
solutions using the objective function, naming the best solu-
tion the ““black hole” and the other solutions “stars.”” At each
iteration, the algorithm moves the stars randomly toward the
black hole and re-evaluates the cost associated with each new
star. If a star has a cost better than the black hole, it becomes
the new black hole, and the old black hole turns into a star.
If a star gets close to the black hole, it is removed from the
solutions population, and another one is randomly generated.
The BHO keeps iterating until a stopping criterion is reached.

In this paper, we used the BHO to assign the e-scooters to
the chargers. We divide the set of e-scooters G into smaller
sets {g1, g2, ...,8p}, Where g1Ugs, ..., Ugy, = G and |g;| <
6 for Vi. The number of the small subset equals or less
than the number of chargers. The algorithm is initialized by
randomly generating a large number of initial solutions. Each
initial solution is a random permutation of the e-scooters.
If the number of e-scooters is less than the number of the
chargers multiplied by six, then each initial solution will be
padded with zeros at random locations. Such that the length
of each initial solution will be six multiplied by the number
of the chargers. We evaluate each solution by dividing it
into p contiguous sub-vectors, where the length of each sub-
vector equals six. The cost of each solution is computed using
objective function (1) that includes two costs; the distances
from the e-scooter location to the charger location, and the
costs of joining new chargers. The main procedure of the
BHO is detailed below in Table 2.

The BHO assigns the black hole role to the solution that
has the lowest cost, while other solutions become stars. Then
the following is applied to each star, Figure 5:
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TABLE 2. BHO algorithm for the ESCA.

1. Input number of e-scooters, V

2. Input number of Chargers S

3. Generate an initial number of solutions; M
4. Setj=1

5. While G M)

5.1 Select chargeri =1,i €S
5.2 While (i< S)
5.2.1 Generate initial assignment g;for charger i, where
lgil<6forvies
522 If |g;| = n < 6, then
5.2.2.1Complete the set g; by number of zeros equals (6-n)

523 Set G=U g; for Vi € S
524 Set i=i+1
525 Go to Step 5.2

53 Setj=j+l

54 GotoStep5
6. Evaluate M solutions and select the best (black hole)
6.1  Calculate the objective function for each
solution j, j< M
6.2 Select the solution j* that has the lowest value
of the objective function
6.3  Set the Black Hole, BH=j" and the Stars

-y
64 StopifL ft:lf < & where f71 is the objective function (1)

at iteration t — 1

7. Move Stars toward j*
7.1 Identify the set of positions g on ST; such that j*(i) # ST; (i)
7.2 Randomly choose one element of the set g and change ST}, as
shown in Figure 5.
7.3 Measure the Difference between the star ST; and the j*; j # j*
7.3.1 Difference(j",ST;) = &5 1+, where
1j+(y is the indicator function
157 = ST ()
o= {Oj*(i) = STy ()
scooter IDs or zero at the position i in the j*(i) solution and
ST; respectively.
7.4  Replace the star ST; with a randomly generated star if
D(BH,ST;) < 3.
8. Go To Step 6.

and j*(i) and ST; (i) are the e-

4 ‘6 ‘7 ‘11‘0 ‘0 1 ‘5 ‘8 BE ‘0 9‘10‘12‘0 ‘o 0 |BH
P Charger | Charger 2 Charger 3 N
4 6 2[5 0] st

10‘0 o‘o 1‘8 7‘0 9‘11‘12‘3‘0
The set of positions where ST; and the black hole are different is ¢ = {3, 4,8,9,10,11,14,16}

4 ‘6 ‘7 ‘11‘0 ‘o 1 ‘5 ‘3 2 3 ‘o 9‘10‘12‘0 ‘o 0 |BH
Charger | Charger 2 Charger 3
4 2[5

6@ 0 1‘8 ‘o 9‘11‘12‘3‘0 0 | sty
We randomly choose an element of q and make changes to the ST; such that the randomly chosen position at
ST; becomes identical to the same position at the black hole.

o‘o

FIGURE 5. lllustration of the modification of the ST; solution to converge
towards the black hole solution [16].

Then the BHO randomly chooses one of these eight loca-
tions and makes it identical to the same location as the black
hole. The change is done such that each e-scooter appears in
only one location on the modified ST, .
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After the four steps of the BHO are applied to each star in
the population, all the costs are re-evaluated and a new black
hole, having the lowest cost, is selected for the next iteration.
The BHO continues until the stopping criterion is satisfied.

After BHO stop, we examine the best solution, where we
may have two sets of chargers; a complete and incomplete
set.

Definition I: acomplete set of chargers is a set that includes
at most one charger who is assigned less than six e-scooters.

Definition 2: an incomplete set of chargers is a set that
includes more than one chargers who is assigned less than
Six e-scooters.

If the best solution doesn’t have an incomplete set, then
this solution is the final one. Otherwise, we need to reduce
the number of chargers by keeping the complete chargers
of the solutions and try all possible swaps of the e-scooters
between the incomplete chargers. In this way, we create from
the best solution many other solutions which will be the initial
solutions for another BHO run to find a fine-tuned solution.
In the BHO algorithm, a grid search approach to set up these
hyper parameters such as the size of the initial population.
A grid search approach iterates through BHO parameter com-
bination to find the best parameters to use. Although grid-
searching is simple but it can be computationally expensive
if the number of the hyper-parameters is large.

C. ALGORITHMS ACA1 AND HYBRID ACA-BHO FOR
LARGE INSTANCES

As shown in the experimental work section, the proposed
solution methods of the mathematical model (MILP) pro-
vide the best results in most cases. However, the generalized
assignment problem is identified as NP-complete problem
combinatorial optimization problem, [19]. So for large scale
instances, the model implementations take longer time than
the time accepted by the e-scooter operator. On the other
hand, the adapted college admission algorithm returns a good
solution in most of the instances. Moreover, in the case of
large instances, its computational time is relatively smaller
than the mathematical model. The drawback of the ACA
is selecting a subset of chargers by running the ACA algo-
rithm to find the stable match between the e-scooters and
the chargers then eliminates the charger which has the least
number of assigned e-scooters. This procedure continued
until the required number of chargers is achieved. For exam-
ple, if there are 90 e-scooters need charging and there are
30 chargers available. Because each charger can collect up
to six e-scooters. So, we need 15 chargers out of the 30
chargers. In order to choose the 15 chargers and assign the
e-scooters to them, we start by matching the 90 e-scooters to
30 chargers then we eliminate the charger which is assigned
the minimum number of e-scooters. Consequently, we match
the 90 e-scooters to the remaining 29 chargers and again elim-
inate one charger. Therefore, we alternate between matching
and eliminating until we reach the required number of charg-
ers and their assigned e-scooters. In this example, we run the
matching 16 times to reach the assignment solution. For the
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TABLE 3. ACAT1 for the ESCA.

Input number of e-scooters, V
Input number of Chargers S
Set i=1 and N is the maximum number of the proposed iterations
While (i< N)
Choose randomly s chargers; s € S and s = [V /6]
Recall ACA algorithm
6.1  Assign the e-scooters to the randomly Chosen s
chargers; s € S
6.2 Calculate the distance a charger i € s travel to
collect his assigned e-scooters
Save the cost of each charger i € s
End While
9. Calculate the average cost for each of the S charger
10. Sort the S chargers in ascending order based on the average cost
11. Choose the first s ranked chargers
12. Assign the e-scooters to the s selected chargers using the ACA

QW

TABLE 4. The hybrid ACA-BHA for the ESCA.

Input number of e-scooters, V
Input number of Chargers S
Set i=1 and N is the maximum number of the proposed iterations
While (i< N)
Choose randomly s chargers; s € S and s = [V /6]
Recall ACA algorithm
6.1 Assign the e-scooters to the randomly chosen s
chargers; s € S
6.2 Calculate the distance a charger i € s travel to
collect his assigned e-scooters
7. Save the cost of each charger i € s
8. End While
9.  Augment the initial solutions obtained in the above steps by some
random solutions
10. Recall the BHA to search the space using the initial solutions to
find the best possible assignment solution

SAIRAF IRl e

instances where we have a larger number of chargers M to
choose from them a smaller set of chargers m, we proposed a
modification to the ACA1 as shown in Table 3.

ACA1 estimates the expected marginal cost of each charger
in step nine and then finds the best s chargers based on this
estimated cost. Finally, in step twelve, we run the matching
algorithm once to find the final matching/assignment of the
€-scooters.

For the sake of completeness, we proposed hybrid ACA-
BHA, which uses the BHA to solve large instances with a
simple modification. This modification is improving some of
the initial solutions at the hope this will lead to a better final
solution. Table 4 shows the hybrid ACA-BHA

IV. EXPERIMENTAL WORK

To compare the model with the college-based algorithm
and the black hole based algorithm, we used two different
datasets. The first dataset is simulated data where we ran-
domly generate the coordinates of the e-scooters and the
chargers according to uniform distribution inside a square that
has an area of 25 km”2. In the simulation data, the distances
between e-scooters and chargers are Euclidean distances.

175099



IEEE Access

M. Masoud et al.: Heuristic Approaches to Solve E-Scooter Assignment Problem

20 ch: 30 ch
W L arlw:srs T 2% T L Frgsrs
12
20
10
8 1%
6 10
4
S
2 ]
i 1ml L .
06 07 08 09 1 11 12 13 14 15 06 08 1 12 14 16 18
Total distance in metre 10° BHO Total distance in metre «10°
ACA
MLP
40 chargers. 50 chargers

oLt ) I S oL I i . . |
06 08 1 1.2 14 16 18 08 08 1 12 14 16
Total distance in mefre 108 Total distance in melre x10°

FIGURE 6. Comparison of the three proposed approaches.

The second dataset consists of 12 small and medium-size
benchmark instances and ten large size benchmark instances
[17], [18]. The benchmark instances are real world instances
and the distances between the e-scooters and chargers are
calculated using road network.

In each instance, we assume the following;

1- There is only one e-scooter at each location.

2- The chargers are initially located at the e-scooters.
In other words, if we assume there are M chargers at
different locations, then the first M e-scooters are posi-
tioned at the same chargers’ locations.

The experimental work consists of three steps. In the first
step, we compared the solution of the proposed mathemati-
cal model and the other two algorithms using the simulated
dataset. The comparison is made in terms of the total travelled
distance of all the chargers, and the average travelled distance
of the chargers to collect six e-scooters. In the second step,
based on the comparison measures, we selected the best two
out of the MILP, ACA and BHO. Then we tested the selected
methods using the small and medium-size instances using
the same measures plus the running time. In the third step,
we again tested the two selected methods plus algorithm 1 and
algorithm two using the large instances hoping that algorithm
1 and algorithm 2 run in less time and return good quality
solutions. The PC used to solve these simulated and real-
world instances has Intel®Core™i7-8650 CPU @ 1.90 GHz
2.11 GHz and 16.0 GB RAM. The MILP was solved using
the “intlinprog” MATLAB function. We coded the other
algorithms in MATLAB.

A. THE SIMULATED DATASET

‘We simulated four scenarios. In the first scenario, the number
of e-scooters needing charging is 120, and the number of
chargers is 20. In the second, third and fourth scenarios,
we increase the number of chargers while keeping the number
of e-scooters unchanged. In all scenarios, the allowed maxi-
mum number of collected e-scooters per charger is six that
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TABLE 5. The average travelled distance based on the proposed methods.

MILP ACA BHO
(optimal)
wv
3 . )
g & 3. | & |3 ] o |3 |8
5 E B8 |5 |AB|E |=2 |A5 |5
= g S8 | £ |8 |Ec |88 |58 |52
% = <5 | & |<8 |>¢ |E5 |45 |
20 | 76.7 38 | 982 | 49 | 279 | 1319 | 66 | 72.0
30 | 65.6 33 | 859 | 43 | 309 | 1226 | 6.1 | 869
20 |6l4 30 | 810 | 41 | 320 | 1297 | 65 | 1112
50 | 60.4 30 | 793 | 40 | 311 | 130.1 | 65 | 1153

TABLE 6. The fixed effect coefficient estimates and its p-value.

Name Estimate P-value
Intercept 653.7 1.3522¢-13
ACA 43.093 6.5026e-07
ACAl 58.535 5.5466e-11
Hybrid ACA-BHO 101.6 1.599¢-24
Number of chargers -2.9649 7.3562¢-21

Senages

FIGURE 7. Visualization of the optimal e-scooter assignment using the
mathematical model and the distance matrix returned by Google
directions API.

have been identified to give a fair hourly rate for chargers
based on practices.

To capture the stochastic nature of the average travelled
distance, each scenario has been repeated 100 times, and the
histogram and the total travelled distance by all chargers and
mean of the travelled distance for a charger are estimated.
We should mention that in the current state of practice, there is
no assignment and a charger can visit an e-scooter’s location
and do not find it because another charger collected it before
him. On the other side using the proposed assignment model
and algorithms fulfil that;

There is no competition between chargers at the time of
collecting e-scooters, and hence the charger only visited six
locations to collect the e-scooters.
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TABLE 7. Comparison of MILP and ACA using small and medium-size benchmark instances.

\4 S # of Total Av.Dis. Time # of Total dis.  Av.Dis. Time GAP(PRE)
chosen dis. in km (ACA) chosen in km in km (MILP)
instance chargers in km (ACA) chargers (MILP) (MILP)
(ACA)
Bari 13 3 3 17.7 59 0.03 3 17.7 59 0.08 0.00
4 3 17.7 59 0.02 3 17.6 5.7 0.08 3.51
5 3 18.1 6.0 0.01 3 17.6 59 0.02 1.69
6 3 21.5 7.2 0.02 3 17.6 59 0.02 22.03
ReggioEmilia 14 3 3 27.5 9.2 0.01 3 23.8 79 0.02 16.46
4 3 27.1 9.0 0.01 3 24.1 8.0 0.03 12.5
5 3 27.1 9.0 0.01 3 24.1 8.0 0.04 12.5
6 3 26.6 8.7 0.01 3 26.0 8.7 0.06 0.00
36Guadalajara 41 10 7 82.7 11.8 0.59 7 87.9 12.6 1.70 -6.35
15 7 81.3 11.6 0.98 7 85.5 12.2 0.30 -4.92
20 7 75.3 10.8 1.60 7 65.4 9.3 0.89 16.13
25 17 63.6 9.1 2.26 7 59.8 8.5 1.57 7.06
Dublin 45 10 8 41.9 52 0.57 8 36.5 4.6 2.25 13.04
15 8 35.8 4.5 1.03 8 36.5 4.6 1.48 -2.17
20 8 37.1 4.6 1.57 8 34.6 43 1.97 6.98
25 8 339 4.2 2.16 8 34.9 44 1.31 -4.55
Denver 51 10 9 103.3 11.5 0.60 9 109.0 12.1 0.34 -4.96
15 9 113.1 12.6 1.34 9 109.8 12.2 1.03 3.28
20 9 105.3 11.7 2.23 9 106.3 11.8 4.99 -0.85
25 9 111.8 12.4 3.34 9 88.6 9.8 2.36 26.53
RioDeJaneiro 55 10 10 161.3 16.1 0.80 10 201.3 20.1 0.01 -19.9
15 10 141.0 14.1 1.41 10 145.2 14.5 0.14 -2.76
20 10 145.5 14.6 2.23 10 147.2 14.7 0.36 -0.68
25 10 145.1 14.5 3.03 11 131.1 11.9 0.92 21.85
Boston 59 10 10 162.6 16.3 0.11 10 184.0 18.4 0.03 -11.41
15 10 145.7 14.6 0.68 11 138.5 12.6 0.40 15.87
20 10 125.7 12.7 1.44 11 120.7 11.0 0.39 15.45
25 10 124.3 12.4 232 12 1113 9.3 1.87 33.33
Torino 75 15 13 95.5 7.3 0.67 13 88.0 6.8 1.15 7.35
20 13 88.3 6.8 1.72 13 75.2 5.8 1.86 17.24
25 13 76.3 59 3.32 13 75.2 5.8 3.42 1.72
30 13 72.0 5.5 5.02 13 69.3 5.3 3.11 3.77
Toronto 80 15 14 99.5 7.1 0.50 14 102.0 7.3 4.74 -2.74
20 14 96.7 6.9 1.75 14 92.2 6.6 1.77 4.55
25 14 89.4 6.4 3.48 14 84.8 6.1 10.35 4.92
30 14 86.4 6.2 5.43 14 76.7 5.5 16.78 12.73
Miami 82 15 14 270.9 19.3 0.53 14 280.0 20.0 0.09 -3.5
20 14 211.8 15.1 2.08 14 195.4 14.0 0.40 7.86
25 14 131.5 9.4 4.22 15 129.8 8.6 0.37 9.3
30 14 99.2 7.1 8.67 15 97.7 6.5 5.09 9.23
CiudadDeMexico 90 20 15 149.7 10.0 2.02 15 146.0 9.7 0.37 3.09
25 15 130.3 8.7 4.14 15 126.7 8.4 0.12 3.57
30 15 1273 8.5 7.10 15 122.0 8.1 0.74 4.94
35 15 125.7 8.4 10.03 15 94.6 6.3 0.73 33.33
Minneapolis 116 25 20 309.0 15.4 4.24 20 328.3 16.4 0.99 -6.1
30 20 3133 15.7 8.54 20 330.8 16.5 3.62 -4.85
35 20 327.0 16.3 15.72 21 338.2 16.1 1.78 1.24
40 20 324.0 16.2 35.56 21 328.8 15.7 2.15 3.18

The proposed assignment approaches are based on dis-
tance, and hence, the six assigned e-scooters are clustered,
and average travelled distance will be reduced.

We calculated the total, and the average travel distance for
the three proposed approaches for each scenario for each of
the 100 randomly generated a dataset of the e-scooters and
chargers locations.

Figure 6 shows the histograms of the total travelled dis-
tance for the four scenarios. As shown in the figure, in each
scenario, the BHO histogram is well separated from the MILP
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algorithm while the ACA histogram is close to the MILP
histogram.

Table 5 shows compare the three approaches. It is obvious
that increasing the number of chargers improves the total
travelled distance because the program has more options. For
the black hole based algorithm, this trend is not as clear as in
the case of the mathematical model and the college admission
based algorithm.

As shown in Table 5, ACA algorithm solutions are close
to the solutions of the MILP model using the “intlinprog”
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TABLE 8. Comparison of MILP, ACA and the two algorithms using large size benchmark instances.

ACA ACAl Hybrid ACA-BHO MILP
A% N Total Average Time (sec) GAP Total  Average Time GAP Total Average  Time GAP Total ~ Average Time
(km) (km) (PRE) (km)  (km) (sec) (PRE) (km) (km) (sec) (PRE) (km)  (km) (sec)
Brisbane 150 30 201.1 8.0 8.41 5.26 207.1 83 1431 9.21 209.6 8.4 348.00 10.53 1902 7.6 5.81
35 2142 8.6 16.96 13.16 215.1 8.6 14.71 13.16 234.6 9.4 877.65 23.68 189.5 7.6 2.03
40 203.6 8.1 39.86 12.5 1962 7.8 13.76 8.33 236.2 9.4 1792.30  30.56 1863 7.2 50.51
45 206.8 83 38.57 23.88 1986 7.9 13.68 17.91 2133 8.5 1998.80  26.87 1743 6.7 17.59
Milano 184 40 201.9 6.5 26.03 20.37 186.0 6.0 33.58 11.11 2243 7.2 445.60 3333 167.7 5.4 6.95
50 192.6 6.2 61.38 19.23 1970 6.4 25.97 23.08 2282 7.4 1306.30 4231 1599 52 39.58
60 185.2 6.0 102.07 3043 1957 63 27.59 36.96 221.8 7.2 2935.10  56.52 1477 4.6 56.53
70 172.3 5.6 197.03 14.29 2077 6.7 27.29 36.73 228.6 7.4 4202.80  51.02 1534 49 48.15
Lille 200 40 483.8 14.2 37.55 6.77 4913 145 55.25 9.02 531.0 15.6 1161.00 1729 449.8 133 7200.00
50 487.0 143 127.04 9.16 5362 158 56.17 20.61 532.4 15.7 1321.93  19.85 4460 13.1 7200.00
60 469.6 13.8 159.98 23.21 5094 15.0 66.98 33.93 461.8 13.6 1573.00 21.43 380.7 11.2 7200.00
70 301.4 8.9 275.97 20.27 4306 127 65.52 71.62 4154 12.2 5782.00  64.86 259.5 74 12.42
T 240 40 413.4 10.3 5.60 -8.04 4134 103 58.82 -8.04 396.2 9.9 1256.80  -11.61 4483 112 0.09
50 401.5 10.0 64.17 -5.66 430.5 10.8 59.28 1.89 442.1 11.1 1853.00 4.72 4232 10.6 11.88
60 383.3 9.6 136.23 -2.04 3959 99 58.75 1.02 4223 10.6 448530 8.16 3924 9.8 7200.00
70 3727 9.3 220.95 0 379.7 95 59.44 2.15 4455 11.1 3884.60 19.35 3702 93 7200.00
Sevilla 258 50 504.6 11.7 55.86 12.5 496.6 11.5 13491 10.58 549.4 12.8 594.60 23.08 4460 104 2.74
60 4353 10.1 215.89 13.48 4404 10.2 133.06  14.61 470.7 10.9 3087.70  22.47 3833 89 7200.00
70 4152 9.7 290.56 19.75 433.0 10.1 139.61  24.69 464.1 10.8 504220 3333 348.6 8.1 7200.00
80 3742 8.7 663.71 17.57 4094 9.5 13770  28.38 423.8 9.9 2615.50 33.78 3256 74 7200.00
Valencia 276 50 651.5 14.2 66.60 -4.05 6499 14.1 124.0 -4.73 682.5 14.8 629.44 0 679.6  14.8 2.81
60 600.7 13.0 133.69 0.78 587.5 12.8 167.25 -0.78 659.9 143 986.10 10.85 593.8 129 2872.60
70 528.0 11.5 243.00 6.48 5464 11.9 184.79  10.19 646.2 14.0 222840  29.63 4970 10.8 7200.00
80 516.7 11.2 376.44 3.7 5302 115 175.69  6.48 646.1 14.0 4731.90  29.63 5003 10.8 8.34
Bruxelles 304 60 607.8 1.9 190.37 12.26 600.1 11.8 120.66  11.32 623.1 12.2 987.30 15.09 5414  10.6 7200.00
70 583.9 114 325.24 16.33 544.0 10.7 11934 9.18 663.3 13.0 2220.00  32.65 4979 9.8 29.98
80 572.9 11.2 493.29 17.89 533.0 105 183.4 10.53 632.3 124 2810.50  30.53 485.1 9.5 7200.00
90 502.5 9.9 1076.91 15.12 532.0 10.4 97.7 20.93 622.7 12.2 2664.40  41.86 4375 8.6 7200.00
Lyon 336 60 711.3 12.7 51.35 242 706.2  12.6 245.7 1.61 718.2 12.8 821.40 3.23 692.7 124 4.92
70 7144 12.8 176.76 18.52 699.8 125 291.5 15.74 761.6 13.6 1802.90  25.93 604.4  10.8 7200.00
80 670.0 12.0 678.49 29.03 655.6  11.7 164.6 25.81 735.4 13.1 2486.10  40.86 5227 93 7200.00
90 6259 11.2 1055.14 25.84 646.8 11.6 127.3 30.34 739.3 13.2 2864.30 4831 498.8 8.9 7200.00
Barcelona 410 70 827.1 12.0 37.54 6.19 827.1 12.0 253.2 6.19 814.5 11.8 946.00 4.42 7798 11.3 545
80 719.6 10.4 272.60 7.22 720.6  10.4 2322 7.22 778.6 11.3 1996.70  16.49 671.1 9.7 7200.00
90 650.8 9.4 530.07 6.82 7052  10.2 228.7 15.91 753.4 10.9 2764.80  23.86 609.7 8.8 7200.00
100 586.3 8.5 801.59 4.94 648.8 9.4 223.4 16.05 698.7 10.1 317820  24.69 559.1 8.1 7200.00
London 564 100 846.5 8.8 271.46 3.53 860.8 89 867.6 4.71 903.7 9.6 225520 12.94 7955 85 7200.99
110 767.5 9.0 905.57 20 841.0 838 614.7 17.33 914.1 9.7 4064.60  29.33 705.6 7.5 7200.00
120 762.5 7.9 1770.33 9.72 8283 8.6 872.5 19.44 889.3 9.4 4.61 34.72 6802 7.2 7200.00
130 7118 7.4 2380.81 5.71 762 7.9 14429  12.86 883.54 9.4 4.31 38.57 6589 7.0 7200.00

MATLAB function. As a result, the ACA and MILP tech-
niques will be used in the Section below to solve real-world
benchmark instances at a different number of chargers.

B. THE SIMULATED DATASET
In this section, we used 12 real-world benchmark instances.
The size of the instances varies from 13 to 116.

TABLE shows the same trend. Increasing the number of
the available chargers gives a better solution because we
have the chance of selecting a better subset of chargers.
Furthermore, we observed that the solution obtained using
the ACA algorithm is close to the MILP solution. So that
ACA would provide good solutions for the prospective large
instances based on its polynomial complexity.

C. THE SIMULATED DATASET

In this section, we used ten real-world benchmark instances.
The size of the instances varies from 150 to 564. TABLE
8 shows a comparison of the four approaches.

From this table we observe the following;

1- The “intlinprog” MATLAB function researches its pre-
set maximum running time in many instances before
researching the optimal solution.

2- For many large instances, ACA found good solutions in
a short time compared to the function solving the MILP.

3- In some instances, ACA found a better solution bet-
ter than the MILP solver. This is because the MILP
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is solved based on MATLAB heuristic function, (i.e.
“intlinprog”’). The overall algorithm of this func-
tion depends on using cut generation to tighten the
LP relaxation of MILP, then using the branch-and-
bound heuristic to find an upper bound on the objec-
tive function and feasible solution. The branch and
bound methods produce a sequence of sub-problems
that try to converge to a solution of the MILP. The
sub-problems provide a sequence of upper and lower
bounds on the solution of the given objective func-
tion. The first upper bound is any feasible solution,
and the first lower bound is the solution to the relaxed
problem.

4- The running time (i.e. CPU time) of MILP for small
cases is shorter than the proposed algorithm; however,
the MILP starts to increase exponentially more than the
proposed algorithms for large scale size problems. So,
the proposed algorithms are more suitable in case of
solving large size sale problems.

5- Algorithm 1 is good in terms of time compared to ACA.
Its running time for very large instances is better than
the ACA, but its solution quality is not as good as
the ACA.

6- Algorithm 2 is not an option to solve this problem
because of its solution quality and running time.

In order to get a better idea of how these algorithms are
performing in terms of the total travelled distance in Table 8,
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we did statistical comparison between these algorithms. The
analysis should consider the dependency between the obser-
vations. In other words, we should realize that the total dis-
tances of different algorithms solutions for the same instance
are correlated. Therefore, we used a generalized linear mixed-
effects model to explain the variability of the total distance as
a function of the algorithm used and the number of available
chargers. We used three indicator variables to code the four
algorithms. We set MILP as the baseline.
As shown in Table 6:

1. All factors (i.e. ACA, ACA1, Hybrid ACA-BHO and the
Number of chargers) are statistically significant.

2. Keeping the algorithm unchanged and increasing the
number of charger by one reduce the total distance by
2.96 km.

3. Keeping the number of chargers unchanged and chang-
ing the algorithm from MILP to ACA, ACAL1, Hybrid
ACA-BHO increases the total distance by 43 km, 58 km
and 101 km respectively.

For the sake of completeness, we used google maps to
generate a toy example. Consequently, we used Google direc-
tions API to calculate the distance matrix of the chargers and
e-scooter.

Finally, we solved this toy example using the mathematical
model and visualized the optimal assignment based on the
calculated distance matrix returned by Google directions API
in Figure 7.

As shown in the paper and the statistical analysis above
ACA provides good solutions in a short time. Recall that;

1- The e-scooters/chargers assignment needs solution more
than once a day

2- The key point here is finding a good solution in a short
time to this e-scooters/chargers assighment problem.

3- ACA is based on the college admission algorithm which
is hyper-parameters free algorithm. So it is easy for the
operator to run it.

4- As defined by [13] “A stable assignment is called opti-
mal if every applicant is at least as well off under it as
under any other stable assignment.”. Moreover, the men-
tioned “Thus the principles of stability and optimality
will, when the existence questions are settled, lead us to
a unique “‘best”” method of assignment”. So based on
that, we will advise the operator to Run ACA to find the
first stable solution then break the tie between one pair
and find another stable solution. The operator repeats
this breaking and matching several times to find many
stable solutions and then find the best.

V. CONCLUSION

This paper investigates the ESCA problem to minimize the
associated costs by optimizing the e-scooter allocation for
each charger and chargers location. The MILP formulation
model is developed with two adapted algorithms to solve
the ESCA problem. The ESCA problem is an NP-hard com-
binatorial optimization problem. The proposed MILP was
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formulated to solve the small case study and compare with
the two adapted algorithms (i.e., ACA and BHO) for testing
the performance of these two algorithms. The results of the
simulated dataset show that the ACA solutions are better
than the BHO in solving medium- and large-scale real-world
instances. These instances vary in size from 150 to 564. More-
over, we proposed a method to speed up the ACA and yield
good quality solutions as well. In computational experiments,
22 small-scale instances are used for the comparisons of the
exact solutions by MILP with those of the ACA algorithm,
which points out that ACA is much more efficient than the
MILP method. For the large scale size real cases, the results
proved that ACA1 is more efficient than other algorithms
based the accuracy of the solutions and implementation times.

Successful application of this approach can help the
e-scooter companies to meet the customer’s demand with
considering the renting cost, and at the same time, increase
the hourly rate of the charger. Future research will investigate:

1-How to generalize the model to ensure it is broadly
applicable based on the collected real data from too many
areas in Australia such as Queensland.

2- How to find the good solution (i.e. near optimal solution)
for large e-scooters operators who may need to solve this
problem for thousands of e-scooters

3- The current solution to the problem does not consider
the inaccuracy of the e-scooters positions so we will work on
improving the solutions by developing a scholastic approach
considering the uncertainties in e-scooters positions.

4- Our solution assumes that the chargers will accept
the assignment solution which maybe not the case.
Thus a fuzzy logic-based solution will be developed to
address the uncertainty of accepting the solution by the
chargers.
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