
Received November 4, 2019, accepted November 29, 2019, date of publication December 3, 2019,
date of current version December 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957346

Overlay Indexes: Efficiently Supporting Aggregate
Range Queries and Authenticated Data Structures
in Off-the-Shelf Databases
DIEGO PENNINO , MAURIZIO PIZZONIA , AND ALESSIO PAPI
Dipartimento di Ingegneria, Sezione Informatica e Automazione, Università degli Studi Roma Tre, 00146 Rome, Italy

Corresponding author: Maurizio Pizzonia (pizzonia@ing.uniroma3.it)

This work was supported in part by MIUR, the Italian Ministry of Education, University and Research through Efficient Algorithms for
HArnessing Networked Data (AHeAD) under Project PRIN 20174LF3T8.

ABSTRACT Commercial off-the-shelf DataBase Management Systems (DBMSes) are highly optimized to
process a wide range of queries by means of carefully designed indexing and query planning. However, many
aggregate range queries are usually performed by DBMSes using sequential scans, and certain needs, like
storing Authenticated Data Structures (ADS), are not supported at all. Theoretically, these needs could be
efficiently fulfilled adopting specific kinds of indexing, which however are normally ruled-out in DBMSes
design. We introduce the concept of overlay index: an index that is meant to be stored in a standard database,
alongside regular data and managed by regular software, to complement DBMS capabilities. We show a data
structure, that we call DB-tree, that realizes an overlay index to support a wide range of custom aggregate
range queries as well as ADSes, efficiently. All DB-trees operations can be performed by executing a small
number of queries to the DBMS, that can be issued in parallel in one or two query rounds, and involves a
logarithmic amount of data.We experimentally evaluate the efficiency of DB-trees showing that our approach
is effective, especially if data updates are limited.

INDEX TERMS Database systems, indexes, tree data structures, data security, computational efficiency,
aggregated range queries, authenticated data structures.

I. INTRODUCTION
In relational and NoSQL databases, the ability to obtain
aggregate information from a (possibly large) set of
‘‘records’’ (tuples, documents, etc.) has always been an
important feature. Usually, the set on which to apply an
aggregation function (e.g., COUNT or SUM in SQL [20]) is
identified by some form of record selection. In the simplest
form, records that have one of their fields in a given range
are selected and the aggregation function is applied on them.
This kind of queries are usually referred to as aggregate range
queries. Applications of aggregate range queries can be easily
found in many data analytics activities related to business
intelligence, market analysis, user profiling, IoT, etc. Further,
this feature is one of the fundamental elements of a good sys-
tem for big-data analytics. In many applications, the speed at
which queries are fulfilled is often critical, possibly marking
the distinction between a system that meets the user needs
and one that does not. Typical examples are interactive visual

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

systems, where users expect the system to respond in less than
a second.

The vast majority of DataBase Management Sys-
tems (DBMSes) supports aggregate range queries to some
extent. When data are large, aggregation performed by a
complete scan of the selected data can be too costly to be
viable. In theory, adopting proper data structures for index-
ing [16], it is possible to answer aggregate range queries in
O(log n) time, where n is the amount of selected records to
be aggregated, for any selection range and for a quite large
class of aggregation functions.1 The general idea behind those
data structures is to store partial pre-computed aggregate
values in each node of the index. In this way, it is possible to
answer aggregate range queries on any range without actually
scanning the data. Update operations on these data structures
also take logarithmic time, allowing them to be used even
when data is subject to updates.

1Essentially, for indexing techniques to be applicable, aggregation func-
tions have to be associative. In Section IV-B, we provide a formal definition
of a class of aggregation functions that theoretically can be computed effi-
ciently by proper indexing techniques.

175642 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-5339-4531
https://orcid.org/0000-0001-8758-3437
https://orcid.org/0000-0002-3753-8053
https://orcid.org/0000-0001-7005-6489

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

However, in practice, indexes realized by many DBMSes
are designed to support regular (non aggregated) queries.
This is reflected in the limited advantage that regular indexes
can provide to aggregate range queries. In particular, most
DBMSes can exploit regular indexes only for aggregation
based on MIN and MAX functions. Other typically DBMS-
supported aggregation functions, like SUM, AVG, etc., usu-
ally require sequential scans. To speed up these sorts of
queries, a typical trick is to keep data in main memory, which
is costly and usually not possible for big-data applications.

In this paper, we introduce the concept of overlay index,
which is a data structure that plays the role of an index but is
explicitly stored in a database along with regular data. The
logic to use an overlay index is not frozen in the DBMS
but can be programmed and customized at the same level
of the application logic, obtaining great flexibility. However,
designing an overlay index rises specific challenges. In prin-
ciple, any memory oriented data structure could be easily rep-
resented in a database. Nonetheless, operations on these data
structures typically require traversing a logarithmic number
of elements, each of them pointing to the next one, which is an
inherently sequential task. While this is fast and acceptable in
main memory, sequentially performing a logarithmic number
of queries to a DBMS is extremely slow. In fact, each query
encompasses client/server communication, usually involving
the network and the operating system, which introduces a
large cost that cannot be mitigated by the DBMS query
planner. Further, performing queries sequentially prevents the
exploitation of the capability of RAID arrays and DBMS
clusters to fulfill many requests at the same time and of disk
schedulers to optimize the order of disk access [56].

Our main contribution is a new data structure, called
DB-tree, for the realization of an overlay index. DB-trees are
meant to be stored and used in standard DBMSes to support
custom aggregate range queries and possibly other needs,
like, for example, data authentication by Authenticated Data
Structures [55] (ADS). DB-trees are a sort of search trees
whose balancing is obtained through randomization, as for
skip lists [47]. In a DB-tree, query operations require only a
constant number of range selections, that can be executed in
parallel in a single round and that return a logarithmic amount
of data. Updates, insertions and deletions, also involve a
logarithmic amount of data and can be executed in at most
two rounds. We formally describe all algorithms and prove
their correctness and efficiency.

Additionally, we present experimental evidence of the
efficiency of our approach, on two off-the-shelf DBMSes,
by comparing the queries running times using DB-trees
against the same operations performed with the only support
of the DBMS. Experimental results show that the adoption of
DB-trees brings a large gain for range queries, but they may
introduce a non negligible overhead when data changes. We
also discuss several applicative and architectural aspects as
well as some variations of DB-trees.

This paper is structured as follows. In Section II, we show
the state of the art. In Section III, we introduce the concept

of overlay index and discuss several architectural aspects.
DB-trees are introduced in Section IV along with some
formal theoretical results. Algorithms to query a DB-tree
and perform insertions, deletions and updates are shown in
Section V. In Section VI, we show an experimental com-
parison between DB-trees and plain DBMS. In Section VII,
we show how it is possible to use DB-trees to perform, effi-
ciently, aggregate range queries grouped by values of a certain
column. We also show an experimental comparison with
other approaches. In Section VIII, we show how DB-trees
can be adapted to realize persistent ADSes. In Section IX,
we discuss some architecture generalizations. In Section X,
we draw the conclusions.

II. STATE OF THE ART
In this section, we review the state of the art of technology and
research about aggregate range queries optimization. We also
review the state of the art about persistent representation of
ADSes, which is a relevant application of the results of this
paper.

Optimization of query processing in DBMSes is a very
classic subject in database research, which historically also
dealt with the optimization of aggregate queries (see for
example [59]). Indexes are primary tools for the optimization
of query execution. They are data structures internally used
by DBMSes to speed up searches. They are persisted on disk
in a DBMS proprietary format. Typical indexes realize some
form of balanced search tree or hash table [16], [49]. Specific
indexing techniques for uncertain data are also known, see for
example [3], [11]–[13]. Some research effort was also ded-
icated to the creation of a general architecture for indexing,
see, for example, [29], [33]. However, these results have been
adopted only by specific DBMSes (see, for example, [4]).
The query optimizer of DBMSes can take into account the
presence of indexes in the planning phase if this is deemed
favorable. In a typical DBMS, the creation of an index is
asked by the database administrator, or the application devel-
oper, using proper constructs (available for example in SQL).
The decisions about indexes creation is usually based on
the foreseen frequencies of the queries, the involved data
size, and execution time constraints. Several works deal with
the possibility for a DBMS to self tune and to choose right
indexes (see, for example, [9], [34]). Usually, there is no way
for the user of the DBMS to access an index directly or to
create indexes that are different from the ones the DBMS
is designed to support. A notable exception to this is the
PostgreSQL DBMS that provides some flexibility [1].

Concerning aggregate range queries, in commonDBMSes,
regular indexing is usually only effective for some aggregate
functions, like MIN and MAX. Sometimes, certain index
usages can provide a great speed-up for aggregate range
queries due to the fact that putting certain data in the index
may avoid random disk access and/or most processing could
occur in-memory [48]. The current DBMS technology and
the SQL standard do not allow the user to specify custom
indexes to obtain logarithmic time execution of aggregate

VOLUME 7, 2019 175643

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

range queries, even for SQL-supported aggregation functions
for which this would be theoretically possible.

A wide variety of techniques was proposed to optimize the
execution of aggregate range queries in DBMSes. A whole
class of proposals deal withmaterialized views (see for exam-
ple [23], [27], [28], [40], [53]). These techniques require the
DBMS to keep the results of certain queries stored and up-to-
date. These can be used to simplify the execution of certain
aggregate queries and are especially effective when data is
not frequently updated.

A largely investigated approach is called Approximate
Query Processing (AQP), which aims at gaining efficiency
while reducing the precision of query results. A survey of the
achievements in this area is provided in [37]. This approach
is relevant especially when data are large. An approximate
approach targeted to big-data environments is proposed
in [62]. A method to perform approximate queries on gran-
ulated data summaries of large datasets is shown in [52].
Approximated techniques are now available on some widely
used systems [8], [54]. The VerdictDB [45] system provides a
handy way to support AQP for SQL-based systems by adding
a query/result-rewriting middle layer between the client and
the DBMS.

A context in which aggregation speed is very relevant is
in On-Line Analytical Processing (OLAP) systems (see, for
example, [26], [30]). Several works deal with fast methods
to obtain approximated results [2], [18], [51] for OLAP
systems. In this field, specific indexing techniques may be
adopted [50]. Specific data structures were proposed to sup-
port aggregated range queries, like for example aR-trees [44]
for spatial OLAP systems. The work in [38] surveys several
aggregation techniques targeted to the storage of spatiotem-
poral data.

To support strict time bounds, specific techniques for in-
memory databases exist [10].

As will be clear in the following, one of the applications of
our results is to support Authenticated Data Structures (ADS)
(see Section VIII). ADSes are useful when we need a cryp-
tographic proof that the result of a query is coherent with a
certain version of the dataset and that version is succinctly
known to the client by a cryptographic hash that the client
trusts. The first ADS was proposed by Merkle [39]. Merkle
trees are balanced search trees in which each node con-
tains a cryptographic hash of its children and, recursively,
of the whole subtree. The work in [46] shows how to arbi-
trarily scale the throughput of an ADS-based system in a
cloud setting with an arbitrarily large number of clients.
ADSes are especially desirable in the context of outsourced
databases. The work in [35] studies data structures to realize
authenticated versions of B-trees to authenticate queries. This
proposal is meant to be used in DBMSes as an internal
indexing structure. Other works tried to represent ADSes
in the database itself. Several general-purpose techniques to
represent a tree are presented in [7]. The problem of repre-
senting an authenticated skip list [55] in a relational table was
investigated in [19]. They propose the use of nested sets to

FIGURE 1. A schematic architecture for the adoption of overlay indexes.
Thick arrows shows the data path when overlay logic is realized
client-side. Dotted arrows shows data path when overlay logic
is realized by stored procedures in the DBMS.

perform queries in one query round. An efficient use of this
approach to compute authenticated replies for a wide class of
SQL queries is provided in [42]. Nested sets represents nodes
of trees as intervals bounded by integers and a parent-child
relation is represented as a containment relation between two
intervals. Unfortunately, nested sets cannot be updated effi-
ciently. In [58], several variations of nested sets are described,
varying the way in which intervals bounds are represented.
These methods are based on numerical representations of
rational numbers and are limited by precision problems.

III. OVERLAY INDEXES
In this section, we discuss the rationale for introducing over-
lay indexes, the applicative contexts where overlay indexes
can be fruitfully applied and discuss some architectural
aspects. This discussion is largely independent from the
DB-tree data structure, which we propose as one form of
realization of overlay indexes, described in Section IV.

In the following, when we refer to a query, we may intend
either a proper data-reading query or a generic statement,
which can also change the data. The distinction should be
clear form the context.

In Figure 1, we show a schematic architecture for the
adoption of overlay indexes. We suppose to have a client
and a DBMS connected by a connection. In our scheme,
the client contains the application logic and performs queries
to the DBMS through the connection. Note that, we use this
scheme in the following discussion but we do not intend to
restrict the use of overlay indexes to this simple architecture.
For example, the client may be the middle tier server that
performs DBMS queries on behalf of user clients, the storage
of the DBMS may be located in a cloud, the client may be
on the same machine of the DBMS and the connection may
be just inter-process communication, and so on. The protocol
used to perform queries to the DBMS is a standard one
(e.g., SQL or one of the many NoSQL query languages).
Additional requirements on features supported by the DBMS
depend on the way overlay indexes are realized. We provide
these details for DB-trees in Section IV-B.

A. APPLICATIVE CONTEXTS
The applicative contexts where we believe overlay indexes
may turn out to be of great help are those where (1) the

175644 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

application performs both updates (possibly comprising
insertion and deletion) and reads on the database, (2) some
read operations have strong efficiency requirements, like,
for example, in interactive applications, (3) the amount of
data is so large that in-memory solutions cannot be applied
and, hence, the efficiency of those read operations can only
be obtained by adopting indexes, and (4) the DBMS does
not support the right indexing for those read operations. For
example, an application might need to provide the sum of a
column for those tuples having the value of their key con-
tained in a certain range, which depends on (unpredictable)
user requests, or might need to provide a cryptographic hash
of the whole table to the client for security purposes. The
first case, is often inefficiently supported and often efficiency
is obtained not by proper indexing but by keeping data in
main memory. The second case is usually not supported
by DBMSes. Clearly, in the above described conditions,
approximate query processing could be adopted. However,
in certain situations approximation is not desirable or is ruled-
out by the nature of the aggregation function, as for the
cryptographic hash case.

B. RATIONALE
Clearly, the introduction of an overlay index has some
performance overhead when data are updated, as any index-
ing approach has, but can be the only viable approach for
certain non-supported aggregation functions or can dramat-
ically reduce the time taken to reply to certain queries for
which specific indexing is not available from the DBMS. For
example, in the cases where the DBMS cannot use indexes,
an aggregated query may run inO(r) where r is the number of
elements in the range selected by the query. This is essentially
due to the fact that the DBMS has no better strategy than
sequentially scan the result of the selection. For an overlay
index realized as a DB-tree (see Section IV), both queries
and updates take O(log r). The speed-up obtained for the
aggregate range queries may be huge, if r is even moderately
large, while paying a logarithmic slow-down on the update
side is usually affordable, especially if data are rarely updated
(see also Section VI).

C. ARCHITECTURAL ASPECTS
We refer to Figure 1. Realizing an overlay index requires to
introduce (i) one or more specific table(s) into the database,
which we call overlay table(s), alongside the regular data,
with the purpose to store the overlay index, and (ii) a (possibly
only conceptual) middle layer, which we call overlay logic,
that is in charge of keeping overlay tables up-to-date with the
data and to fulfill the specific queries the overlay index was
introduced for.

We observe that the overlay logic can be naturally designed
as a real middle layer, which should (1) take an original
query performed by the client, for example expressed in plain
or augmented SQL language, (2) produce appropriate actual
queries that act upon regular tables and/or overlay tables and
submit them to the DBMS, (3) get their results from the

DBMS, and (4) compose and interpret the results to reply to
the original query of the client. This is the approach taken
by VerdictDB [45] for approximate processing of aggregated
range queries. Since we aim at proving the soundness and the
practicality of the overlay index approach, the construction of
such a middle layer for overlay indexes is out of the scope of
this paper.

A simpler approach is to have a library that is only in
charge to change or query overlay tables. In this case, it is
responsibility of the application to call this library to change
an overlay table every time the corresponding regular data
table is changed. Special care should be taken to keep con-
sistency between the two. For example, the whole update
(of data and overlay tables) should be performed within a
transaction. In certain situations, it may be convenient to keep
all the data within the index itself without having a distinct
regular data table. This is the approach that we adopted for
the experiments described in Section VI.

When designing a data structure for an overlay index,
the time complexity of its operations is clearly a major con-
cern. However, we should also take into account its efficiency
in terms of data transferred for each operation, and also how
this transfer is performed. In fact, to perform a query on an
overlay index, it is likely that several actual queries to the
DBMS should be performed. It is important that these queries
could be done in parallel. A round is a set of actual queries
that can be performed in parallel to the DBMS. We assume
actual queries to be submitted to the DBMS at the same
instant. The duration of a round is the time elapsed from
queries submission to the end of the longest one. Round dura-
tion is composed of the execution time (on the DBMS) of the
longest query and the communication latencies in both direc-
tions. A poor implementation may require the original query
to take several rounds to be accomplished, possibly consisting
of only one actual query each. For example, a plain porting
of any balanced data structure (like, for example, AVL-trees,
skip lists, or B-trees) to use a DBMS as storage would take
O(log n) rounds for their operations, where n is the number of
elements in the data structure. This means that in the overall
time to execute the original query, we should sum up the
time spent byO(log n) actual queries for both communication
and execution on the DBMS. As already mentioned, highly
parallel systems (like RAID arrays) may greatly reduce the
overall response time if the tasks they have to perform (i.e.,
sectors to be read or written) are all known in advance. In fact,
they can usually execute many tasks concurrently making a
much better use of resources and obtaining a much smaller
execution time, overall. Even when a single hard drive is
used, it is useful to know all the tasks in advance since disk
schedulers reorder all the tasks they know so that they are
fulfilled in a single sweep of the head of the hard drive [56]
to reduce the time spent for seeking the correct tracks. Some
studies show how disk schedulers are relevant also when solid
state drives or virtualization is adopted [5], [32], [60].

To improve performances, the overlay logic may realize
some form of caching by keeping part of the overlay table

VOLUME 7, 2019 175645

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 2. An example of a skip list. For each element, only the key is shown. Level 0 also stores values, not shown.

in the memory of the client. While this may speed up some
queries, it introduces a cache consistency problem, if more
clients are present. For data-changing queries, it is likely that
the overlay logic needs to know beforehand the part of the
overlay table that is going to be modified, before submitting
the changes to the DBMS (this is the case for DB-trees,
described in Section IV). The obvious approach is to perform
changes in (at least) two rounds. The first (read round), to
retrieve the part of the overlay table that is involved in the
change and, the second (update round), to actually perform
the change. The introduction of caching may help in reducing
the amount of data transferred from the database in the read
round. However, since the data needed for the change depends
on the request performed by the user, caching is unlikely
to make the read round unnecessary, unless the application
always updates the same set of data. A particular case is the
insertion of a large quantity of data (also called batch insert
in technical DBMS literature). In this case, many insertions
may be cumulated in cache and written in one round, possibly
using batch insert support from the DBMS itself. We consider
all aspects introduced by caching to be outside of the scope of
this paper. In the realization adopted for the experimentation
of Section VI, we do not adopt any form of caching and we
have only one client.

It is worth mentioning that overlay logic may also
be realized exploiting programmability facilities of certain
DBMSes, usually called stored procedures. In this case,
the impact of communication between the overlay logic and
the DBMS would be negligible. This has two notable effects:
(1) the inefficiency of data-changing operations due to the
need of two query rounds is mitigated and (2) the adoption of
a realization that performs in many rounds (e.g., logarithmic
in the data size) becomes more affordable. Anyway, having
many sequential query rounds still makes a poor use of RAID
arrays, DBMS clusters, and disk schedulers. Hence, also in
this setting, it is advisable to adopt special data structures
that limit the number of query rounds, like DB-trees. We note
that stored procedures are proprietary features of DBMSes,
hence, exploiting them links overlay logic to a specificDBMS
technology. Further, not all DBMSes support them, especially
in the NoSQL world.

IV. THE DB-TREE DATA STRUCTURE
In this section, we describe the DB-tree data structure, which
we propose to realize an overlay index. We first describe

Algorithm 1 Extraction of a Random Level
Output: A random level for a skip list or a DB-tree.
F We denote by RandomChoice a random value in
{GO-UP,STOP}, where GO-UP is extracted with
probability p and STOP with probability 1− p.

1: l ← 0
2: while RandomChoice is GO-UP do
3: l ← l + 1
4: end while
5: return l

it intuitively. Then, we provide a formal description of the
data structure with its invariants. Finally, we describe its
fundamental properties.

A. INTUITIVE DESCRIPTION
A DB-tree stores key-value pairs ordered by key. To simplify
the description we assume that keys are unique and both keys
and values have bounded length. A DB-tree is a randomized
data structure that shares certain features with skip lists [47]
and B-trees [15], which are widely used data structures to
store key-value pairs, in their order. We start by recalling
skip lists, which are conceptually simpler than DB-trees, and
then we show how DB-trees derive from them. A formal
description of DB-trees is provided in Section IV-B.

A skip list is made of a number of linked lists. An example
is shown in Figure 2, where linked lists are drawn horizon-
tally. Each element of those linked lists stores a key and each
list is ordered. Each list is a level that is denoted by a number.
Level zero contains all the keys and it is the only level that
also stores values. Higher levels are progressively decimated,
that is, each level above zero contains only a fraction of the
keys of the level below. In this way, each key k is associated
with a tower of elements up to level l(k), called height of
the tower. For the example of Figure 2, we have l(10) = 0
and l(11) = 3. Beside regular pointers of linked lists, in skip
lists, elements have also pointers that vertically link elements
of the same tower.

In traditional skip lists, when k is inserted, l(k) is randomly
selected using the approach described in Algorithm 1. We
assume to have a random generator with two possible out-
comes: GO-UP, with probability p, and STOP, with probabil-
ity 1 − p. Initially, l(k) is set to zero. We iteratively produce
a random outcome and increase l(k) each time we obtain

175646 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 3. A DB-tree corresponding to the skip list shown in Figure 2 for the SUM aggregation function. For simplicity, we do not show values. In this and
in the following examples, for each key k the corresponding value is intended to be v = 10k .

GO-UP. The procedure ends when we obtain the first STOP.
In this way, each level contains a fraction p of the elements of
the previous level. A typical value for p is 1/2. In a skip list,
the search of a key k proceeds as follows. First, we linearly
search the highest level for the largest key less than or equal
to k . If we have not found k yet, we traverse the tower link
descending of one level and start to search again until we
either find k (success) or reach level zero and a key greater
than k . This procedure takes O(log n), where n is the number
of keys in the skip list. Deletion and insertion can be also
performed in O(log n) (further details can be found in [47]).

Skip lists are regarded as efficient and easy-to-implement
data structures, since they do not need any complex
re-balancing. However, they are meant to be stored in mem-
ory, where traversing pointers is fast. An attempt to represent
a skip list in databases was made in [19], resulting in oper-
ations taking O(log n) query rounds, since the execution of
each round depends on the result of the previous one.

DB-trees can be interpreted, and intuitively explained, as a
clever way of grouping elements of a corresponding skip list
so that update and query operations can be performed in only
one or two query rounds. The DB-tree corresponding to the
skip list shown in Figure 2 is shown in Figure 3. To simplify
the picture, in this and in the following examples, we show
only keys and omit values, implicitly intending (only for the
purpose of the examples) that for each k the corresponding
value v is derived by k so that v = 10k . We construct a
DB-tree starting from a skip list as follows. Levels of the
DB-tree are in one-to-one correspondence with levels of the
skip list. Only the elements at the top of each skip list tower
are represented in the DB-tree and grouped into nodes. Nodes
are associated with levels. Each node spans consecutive keys
of its level, but it cannot span keys having, in between, others
contained in some level above. In other words, nodes at level
l only contains keys k such that l(k) = l. Each key at level

above l separates nodes at level l and below. In Figure 3, this
separation is represented by vertical dashed lines. The num-
ber of keys associated with a node is not fixed. Consider two
adjacent, and not consecutive, keys in a node. The missing
keys in that level are represented by nodes at inferior levels,
which are children or descendants of that node.
Since we intend to use DB-trees to support aggregate range

queries, we store in each node the aggregate values of the
key-value pairs that are between two adjacent keys in the
node, which are indeed explicitly contained in its descen-
dants. We have one aggregate value for each child and the
sequence of keys of a node is interleaved with the aggregate
values related to children. An aggregate value is omitted if the
corresponding child is not present. In the example of Figure 3,
aggregate values are shown in the nodes interleaved with
keys. We recall that, for the sole purposes of this example,
values v are derived from the corresponding k (v = 10k).
To realize a DB-tree, the overlay logic (see Section III)

stores its data in a single overlay table T . We use the relational
DBMS jargon just for clarity, but we do not restrict the kind of
the underlying DBMS to this class. The value associated with
each key may be stored in T itself, if the application does
not need to perform other queries that are unrelated with the
DB-tree. Otherwise, a regular table D should be present, and
T is treated as an index that should be kept up-to-date with
D. In the following, we consider only table T , intending that
the shown results can be applied also if a corresponding D is
present. In the rest of the paper, we use the symbol T to denote
also an abstract DB-tree and we denote by |T | the number of
keys it contains.

B. FORMAL DESCRIPTION
A DB-tree contains key-value pairs, where keys are non-
null, distinct, and inherently ordered, and values are from
a set V . We intend to support, efficiently, arbitrary aggre-

VOLUME 7, 2019 175647

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

gate range queries. An aggregate range query performs
aggregation on values related to keys within a range that is
chosen by the user and it is not known in advance. We assume
that the kinds of aggregation queries to support are based
on a decomposable aggregation function2 A decomposable
aggregation function α : V n

→ C is obtained by composing
a triple of functions 〈f , g, h〉 defined as follows.
• f : A × A → A is associative, that is f (a, b, c) =
f (f (a, b), c) = f (a, f (b, c)), and there exists an identity
element denoted by 1A, that is for any x ∈ A : f (1A, x) =
f (x, 1A) = x. The associativity of f (a, b) allows us
to write f (a1, . . . , an), since the grouping according to
which f is applied is irrelevant for the final result.

• g : V → A.
• h : A→ C .
We define α(v1, . . . , vn) = h(f (g(v1), . . . , g(vn))). We call

f the core aggregation function. In the following, by aggre-
gation function, we refer to either the single core aggregation
function f or the whole decomposable aggregation function
(i.e., the triple). The actual meaning should be clear from the
context. Depending on g, V may or may not comprehend the
null value. In the following, results of evaluation of f (·) are
called aggregate values.
This model can support many practical aggregation func-

tions, like, count, sum, average, variance, top-n, etc., which
are referred to as distributive and algebraic aggregation func-
tions in literature [25]. For example, we can support top-2
(giving the first and second maximum) with the following
definitions.
• A = {V ,⊥} × {V ,⊥}, where we intend that the first
element of each pair is the maximum, the second is the
second maximum,⊥means undefined, and⊥ is less than
any element in V ,

• g(v) = (v,⊥),
• h(x) = x,
• f ((v1, v2), (v3, v4)) = (m1,m2) where m1 =

max{v1, v3} and m2 is the second maximum in U =
{v1, v2, v3, v4}, that is m2 = max(U − {m1}), and

• the identity element is (⊥,⊥).
The above definitions can be easily generalized to support
top-n. Our model does not directly support so-called holistic
aggregation functions. In this kind of aggregation functions,
there is no constant bound on the size of the storage needed to
describe a sub-aggregate [25]. For this reason, they are com-
monly recognized as hard to optimize (see for example [14],
[36], [61]). Examples of this kind of aggregation functions
are median, n-th percentile, and mode.

We are now ready to formally describe the DB-tree data
structure. DB-trees support any aggregation function that fits
the definition of decomposable aggregation function stated
above. We assume that the aggregation function to be sup-
ported is known before the creation of the DB-tree, or at least
g and f are known.

2We define a decomposable aggregation function in a similar way as in
distributed systems literature, see for example [31].

A DB-tree, keeps certain aggregate values ready to be
used to compute aggregate range queries on any range,
quickly. Its distinguishing feature with respect to other results
known in literature is that it is intended to be efficiently
stored and managed in databases. While typical research
works in this area show data structures whose elements are
accessed by memory pointers (for in-memory data struc-
tures) or by block addressing (for disk/filesystem based
data structures), the primary mean to access the elements
of a DB-tree is by range selection queries provided by the
DBMS itself.
We do not restrict the kind of underlying database that

can be used to store a DB-tree. However, for simplicity,
we describe our model using terminology taken from rela-
tional databases. We only require the underlying database
to have (i) the ability to perform range selection on sev-
eral columns, efficiently, which is usually the case when
proper indexes are defined on the relevant columns, and
(ii) the ability to get, efficiently, the tuple containing the max-
imum (or minimum) value for a certain column among the
selected tuples.
A DB-tree T contains a sequence of key-value pairs,

ordered according to their keys. A DB-tree is logically made
of nodes forming a rooted tree. Each node n of a DB-tree
stands for a subsequence of contiguous key-value pairs of T ,
denoted by standsfor(n).
A node n is associatedwith an open interval (n.min, n.max)

called range, denoted range(n), where n.min and n.max are
either keys in T or can assume values −∞ or +∞. In any
case, it should hold that n.min < n.max. A node n stands
for the subsequence of key-value pairs in T whose keys are
strictly contained in range(n). In other words, n.min is the key
in T right before standsfor(n), or−∞ if it does not exist, and
n.max is the key in T right after standsfor(n), or+∞ if it does
not exist.

A node n explicitly contains only some key-value pairs
among those of standsfor(n). The key-value pairs that are
explicitly contained in n, do not need to be necessarily con-
tiguous in standsfor(n). Those that are not explicitly con-
tained in n are contained in nodes that are descendants
of n. The root of T stands for the whole sequence con-
tained in T and has range (−∞,+∞). A node n is asso-
ciated with its aggregate sequence, which is derived from
standsfor(n) by substituting the key-value pairs that are not
explicitly contained in n with the corresponding aggregate
values. More formally, the aggregate sequence for a node n is
a0, p1, a1, . . . , am−1, pm, am, denoted n.aseq, where pi’s are
key-value pairs 〈ki, vi〉, m is the number of keys in n.aseq,
and ai’s are aggregate values (note that subscripts indicate
positions of key-value pairs within n.aseq and not within the
whole sequence in T). We say that n contains a key k when
k is in n.aseq. Some of the aggregate values in n.aseq may be
missing, as it is explained in the following. It is worth noting
that, if k1, k2, . . . , km are contained in n, it should hold that
n.min < k1 < k2 < · · · < km < n.max. The number m
of key-value pairs contained in a node is not the same for all

175648 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

nodes and may vary when the DB-tree is updated. The value
m related to a node n is denoted n.m.
For each node n, the children of n are in one-to-one cor-

respondence with aggregate values in n.aseq. We denote ni
the child of n associated with aggregate value ai in n.aseq.
Keys in n.aseq impose limits on the keys contained in the
children. Namely, ni.min = ki and ni.max = ki+1, but
for n0, for which n0.min = n.min, and nm, for which
nm.max = n.max, respectively. If ki and ki+1 are consec-
utive in standsfor(n), the i-th aggregate value in n.aseq is
missing, and the corresponding child is also missing. If an
aggregate value and its corresponding child are not miss-
ing we say that they are present. The (present) aggregate
value ai is the value of the core aggregation function on
standsfor(ni). In practice, exploiting the associative property
of f (·), we compute ai on the basis of ni.aseq. Let n.aseq =
a0, 〈k1, v1〉, a1, . . . , am−1, 〈km, vm〉, am, we define f (n) =
f (a0, g(v1), a1, . . . , am−1, g(vm), am), where we intend that
any missing aggregate value should be omitted from the list
of the arguments of f (·). Hence, we can write ai = f (ni).
Each node n has a level denoted n.level ≥ 0, which is∞ for

the root. The children of n have levels that are strictly lower
than n.level. We say that a node n′ is above (below) n if level
of n′ is greater (lower) than the level of n.
When a key k is inserted into a DB-tree, it is associated

with a randomly selected level obtained using Algorithm 1.
The level of k is denoted l(k). Key k is then inserted in a node
at that level.

C. SUMMARY OF INVARIANTS
We now formally summarize the invariants that must hold
for each node n in a DB-tree T . In the following m = n.m,
l = n.level, n.aseq = a0, 〈k1, v1〉, a1, . . . , am−1, 〈km, vm〉,
am where some ai are possibly missing, as explained above.
Children of n are denoted n0, . . . , nm and some of them may
be possibly missing.

1) If n is the root of T , n.min = −∞, n.max = +∞,
n.level = +∞. If T is empty, n.m = ⊥, n.aseq is
an empty sequence and n has no children. If T is not
empty, n.m = 0, n.aseq = a0 and n has one child.

2) If n is not root, n.m > 0 and
n.min < k1 < k2 < · · · < km < n.max.

3) If ni (with 0 ≤ i ≤ m) is present, ni.level < n.level,

ni.min =

{
n.min if i = 0
ki otherwise

and

ni.max =

{
n.max if i = m
ki+1 otherwise

4) for all i = 0, . . . ,m, ai is present iff ni is present and
ai = f (ni)

D. FUNDAMENTAL PROPERTIES
In this section, we introduce some fundamental properties
that are important for proving the efficiency of the algorithms
described in Section V.

The following property is a direct consequence of Invari-
ants 2 and 3.
Property 1 (Range Monotonicity): Given a node n of a

DB-tree and n′ parent of n, range(n) ⊆ range(n′).
Now we analyze the relationship among nodes and

between nodes and keys. Let n be a node that contains k . Key
k cannot be contained in a node that is above n, since for all
nodes above n (which have k in their range) k is represented
by an aggregate value (see Invariants 4). Key k cannot be
contained in a node that is below n, since it does not exist
any of those nodes whose range contains k (see Invariants 3
plus the definition of range(·) as an open interval). From the
above considerations, the following properties hold.
Property 2 (Unique Containment): A key k contained in a

DB-tree T is contained in one and only one node of T .
Property 3 (Lowest Level): The node that contains a key

k is the one with minimum level among those that have k in
their range.

Concerning space occupancy, we note that in a DB-tree,
a node contains one or more key-value pairs and each of them
is contained in at most one node. This means that nodes are
at most as many as the key-value pairs stored in the DB-tree.
Hence, the space occupancy for a DB-tree is O(|T |), in the
worst case. In Section VI, we also provide some details about
space occupancy in practice.

To reason about the size of the data that are transferred
between the overlay logic and the DBMS, it is useful to state
the following property.
Property 4 (Expected Node Size): The expected number of

keys that are contained in each node of a DB-tree is the same
for all nodes.

This property can be derived from a consideration on the
homogeneity of the levels. The number of keys contained in
a node at level i depends from the probability p with which
a key has level greater than i. In fact, these are the keys that
partition keys of level i into distinct nodes. Since p does not
depends on i, this proves the property.

The following lemma states a fundamental result on which
the efficiency of querying a DB-tree is based.
Lemma 1 (Expected maximum level): Given a set of r keys

k1, . . . , kr contained in a DB-tree T , the expected value of
max{l(k1), . . . , l(kr)}, where l(ki) is the level of ki, is O(log r).

In other words, considering r keys, the expected value
of the maximum of their levels is logarithmic in r . Note
that, this result also holds for skip lists, but we were not
able to find its proof in standard skip list literature. For
example, in [47], the proposed method for dimensioning the
number of levels of a skip list focuses on the level whose
expected number of elements is 1/p, which is O(log n) with
n the number of keys in the skip list. While this approach
is viable for the maximum level, it cannot be applied when
we should measure the number of levels spanned by a subset
of the keys that are contained in a much larger skip list
or DB-tree.

The probability that r keys are all at levels less than or equal
to i is (1 − pi+1)r , since all random levels are independent.

VOLUME 7, 2019 175649

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 4. An example of construction of an aggregate range query according to the proof of Lemma 2. In this example, the query regards the sum of the
values of the keys in the range from 10 to 25. The aggregation function is SUM and for each k its value is v = 10k .

The probability that the maximum is at level i is (1−pi+1)r−
(1−pi)r , since this is the probability of having all keys below
i+1 minus the probability that all of them are below i. Hence,
the expected maximum level for r keys can be expressed
as
∑
∞

i=0 i
(
(1− pi+1)r − (1− pi)r

)
, which can be rewritten

as
∑r

k=1(−1)
k−1

(r
k

) pk

1−pk by expanding binomials powers,
reordering, and solving the infinite sum. Sums similar to
this are known to be quite subtle to deal with. Flajolet and
Sedgewick have provided several examples of how to tackle
this kinds of sums in [22] using a mathematical tool called
‘‘Nørlund–Rice integral’’. The proof that the above sum is
O(log r) can be found in [41].
The following lemma is relevant to understand the correct-

ness of the query procedure that is algorithmically introduced
in Section V.
Lemma 2 (Aggregate Range Query Construction): Given

a sequence of keys k1 < k2 < · · · < kr contained in aDB-tree
T with their associated values v1, . . . , vr , the aggregation
function α(v1, v2, . . . , vr) can be computed from selected
parts of the aggregate sequences of a set of nodes N of T
containing
• the node that contains k1, denoted nL ,
• the node that contains kr , denoted nR,
• the common ancestor of nL and nR with minimum level,
denoted n̄,

• the ancestors of nL and nR up to n̄.
Proof: We build a sequence s, that contains some of the

values in {v1, v2, . . . , vr } and the missed values are substi-
tuted by aggregate values form nodes of N . We show that
α(s) = α(v1, v2, . . . , vr). We build s from the aggregate
sequences of nodes in N . Sequence s is built from left to
right. An example of the construction described in this proof
is shown in Figure 4.

We start with s containing, from nL .aseq, value v1 associ-
ated with k1 and all values (aggregated or not) at its right,
in their order. We proceed by considering ancestors of nL
in N excluding n̄, ordered by increasing level. For each of
them, denoted by n, let n′ be its descendant in N . We add
to s, from n.aseq, the value associated with n′.max, and
all values (aggregated or not) at its right in their order.
We do that, if n′.max exists in n.aseq, otherwise we skip
to the next node. Let n′ and n′′ be the two descendants
of n̄, with n′.max ≤ n′′.min. We add to s, from n̄.aseq,
the value associated with n′.max and all values (aggregated
or not) at its right, in their order, up to the value associated
with n′′.min (n′.max and n′′.min exists in n̄.aseq by con-
struction of n̄, n′ and n′′, and by Invariant 3). We continue
by considering each ancestor n of nR in N , excluding n̄,
ordered by decreasing level. Let n′ be the descendant of
n in N . We add to s, from n.aseq, all values (aggregated
or not) starting from left up to the value associated with
n′.min, in their order. We do that, if it exists in n.aseq,
otherwise we skip to the next node. Finally, we add to s, from
nR.aseq, all values (aggregated or not) starting from left up
to value vr associated with kr , in their order. To prove that
α(s) = h(f (s)) = h(f (g(v1), g(v2), . . . , g(vr)) =

α(v1, v2, . . . , vr), we inductively apply Invariant 4, to f (s).
This allows us to express each aggregate value in s as appli-
cation of f (·) to the aggregate sequence of the corresponding
child. The associative property of f (·) ensures that the aggre-
gate value remains the same. �
Lemma 2 states that it is possible to answer to an aggregate

range query considering only certain parts of the aggregate
sequences of a small set of nodes N . We now estimates the
size of N . The following result relates this size to the results
stated by Lemma 1.

175650 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Lemma 3: Given a sequence of keys k1 < k2 < · · · <
kr contained in a DB-tree T , let nL and nR be the nodes
containing k1 and kr , respectively, and call n̄ their common
ancestor with minimum level, the level of n̄ is given by the
maximum of the levels l(k1), l(k2), . . . , l(kr).
The above lemma is easily proven considering the con-

struction used for proving Lemma 2. Each of the keys
k1, k2, . . . , kr is either contained in one of the nodes in N or
in one of its descendants. Note that, at least one of the keys is
contained in n̄, which is above of all other nodes in N . This
means the n̄.level = max{l(k1), l(k2), . . . , l(kr)}.
Lemma 4 (Aggregate Range Query Size): Given a DB-

tree T and k ′ < k ′′ two keys contained in T , such that [k ′, k ′′]
contains r keys in T , the aggregate range query on [k ′, k ′′]
can be answered considering expected O(log r) values spread
on expected O(log r) nodes.

Proof: The proof of Lemma 2 constructs an aggregated
sequence s out of the aggregates sequences of nodes in N
which is made of two descending paths with a common
ancestor n̄. Lemma 3 states that the level of n̄ is the maximum
of the levels assigned to keys in [k1, kr], with k ′ ≤ k1 and
kr ≤ k ′′. Lemma 1 states that this maximum is expected to be
O(log r). Since each of the two ascending paths constructed
in the proof of Lemma 2 contains at most one node for each
level, the maximum number of nodes needed to answer to an
aggregate range query is expected O(log r). This proves the
statement about the expected number of nodes involved in
the query. Since the size of each node has constant expected
size (Property 4), it can provide only an expected constant
number of values. Hence, also the number of values are
expected O(log r). �

V. DB-TREE ALGORITHMS
In this section, we describe the algorithms to perform queries
on a DB-tree and to modify its content. We also state
their correctness and efficiency on the basis of the fun-
damental properties provided in Section IV-D. At the end
of the section, we provide a comparison with similar data
structures.

In the following, to simplify the description, we always
assume g(v) = v and h(v) = v and never apply g(·) and h(·)
explicitly. The adaption to the case of non-trivial g(·) and h(·)
is straightforward.

When writing the algorithms, we denote by a0, 〈k1, v1〉,
a1, . . . , 〈km, vm〉, am the aggregate sequence of a node n
containing m keys. We use that notation implicitly mean-
ing that some aj may be missing (see Section IV-B).
For example, using that notation we includes sequences
like 〈k1, v1〉, 〈k2, v2〉, a2, for m = 2, where a0 and
a1 are missing. We also includes the special case in
which m = 0, where the sequence is only a0. Analo-
gously, we write f (vi, ai, . . . , aj−1vj), f (a0, v1, . . . , ai−1vi),
and f (vi, ai, . . . vm, am) to aggregate a subsequence of an
aggregate sequence of a node, again, implicitly meaning that
some aggregate values may be missing.

A. AGGREGATE RANGE QUERY
The procedure to compute an aggregate range query is shown
in Algorithm 2. Two keys k ′ and k ′′, not necessarily contained
in DB-tree T , are provided as input. The algorithm computes
the aggregate value for the values of all keys between k ′ and
k ′′ in T . The procedure closely follows the proof of Lemma 2.
Firstly, it retrieves the nodes cited in the statement of that
lemma, plus some others that we will prove, are irrelevant.
This is done in Lines 1-3. These queries can be performed
in parallel in a single query round. The size of the data is
O(log r) by Lemma 4, where r ≤ |T | is the number of
keys between k ′ and k ′′. Hence, the following theorem about
efficiency of Algorithm 2 holds.
Theorem 1 (Query Efficiency): On a DB-tree T , an aggre-

gate range query on a range containing r keys in T can be
executed, by Algorithm 2, in only one query round and the
expected size of the transferred data is O(log r).
Since Algorithm 2 processes each retrieved node a constant

number of times, the execution of the part of the algorithm
after data retrieval has expected time complexity O(log r).

We now focus on the correctness of Algorithm 2. Referring
to the symbols introduced by the statement of Lemma 2,
we consider k1 as the lowest key in T such that k ′ ≤ k1 and
kr as the highest key in T such that kr ≤ k ′′. By construction,
there is no other key between k ′ and k1 and between kr
and k ′′ in T .

We show that the set of nodes N ′ = L ∪ R ∪ {n̄}, selected
by the algorithm, contains the set of nodes N identified by
the statement of Lemma 2. The correctness of Algorithm 2
will be given by the fact that the result of the aggregate value
computed on both sets of nodes are equal.

We now analyze the differences between N ′ (of the algo-
rithm) and N (of the lemma). Refer to Figure 5 for an exam-
ple. The algorithm selects a n′L such that n′L .min < k ′ <
n′L .max, if k1 < n′L .max the node n′L is equal to nL selected
by the lemma, otherwise nL is an ancestor of n′L . Analogous
reasoning can be done for n′R and nR. Figure 5 shows a case in
which n′L .max = k1 and hence nL is an ancestor of n′L . In the
same figure, n′R.min = kr−1 < kr and hence n′R = nR.
This means that L and R of the algorithm may additionally

include descendants of nL and nR down to n′L and n′R, respec-
tively. The remaining part of L (R) coincides with ancestors
of nL (nR), for both the algorithm and the lemma. We now
show that n̄ is the same for both the algorithm and the lemma.
From the relationship k ′ ≤ k1 < kr ≤ k ′′, n̄ in the algorithm
might be an ancestor of n̄ in the lemma, since the range of
the first may only be larger than the range of the second. By
Invariant 3, the range of a child is smaller only when there
is a key in the parent that limits the range of the child, but
this is not possible in our case, since no other key is present
between k ′ and k1 and/or between kr and k ′′, by construction.
This means that n̄ is the same for both the algorithm and the
lemma.

We have just proven that N ′ can differ from N only by
some descendants of nL and nR. Now, we prove that the

VOLUME 7, 2019 175651

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Algorithm 2 Algorithm for Performing an Aggregate Range Query on a DB-Tree
Input: Two keys k ′ and k ′′ (with k ′ < k ′′) and a DB-tree T .
Output: α(v1, . . . , vr) where 〈k1, v1〉, . . . , 〈kr , vr 〉 and k1, . . . , kr are all the keys contained in T within k ′ and k ′′, and k ′ ≤

k1 < · · · < kr ≤ k ′′.
F Execute Lines 1-3 in one query round.

1: L ← a sequence of nodes resulting from the selection from T of all nodes n such that n.min < k ′ < n.max ≤ k ′′ ordered
by ascending level.

2: R← a sequence of nodes resulting from the selection from T of all nodes n such that k ′ ≤ n.min < k ′′ < n.max ordered
by ascending level.

3: n̄← the node n in T such that n.min < k ′ < k ′′ < n.max, with minimum level.
4: aL ← 1A, where 1A is the identity element of A
5: for all nodes n in L in ascending order do

6: s←

{
f (vi, ai, . . . , vm, am), where k ′ ≤ ki, if there exists at least one 〈ki, vi〉 with k ′ ≤ ki
1A, otherwise

7: aL ← f (aL , s)
8: end for
9: aR← 1A
10: for all nodes n in R in ascending order do

11: s←

{
f (a0, v1, . . . ai−1, vi), where ki ≤ k ′′, if there exists at least one 〈ki, vi〉 with ki ≤ k ′′

1A, otherwise
12: aR← f (s, aR)
13: end for
14: Let n̄.aseq be a0, 〈k1, v1〉, a1, . . . , 〈km, vm〉, am
15: s← f (vi, ai, . . . aj−1, vj) where ki is the lowest key such that k ′ ≤ ki and kj is the highest key such that kj ≤ k ′′.
16: return f (aL , s, aR)

FIGURE 5. An example in which Algorithm 2 selects more nodes than those considered in Lemma 2. The additionally selected nodes are
evidenced with fat borders. See text for details.

contribution of those descendants to the overall aggregate
value is null. Consider the relevant case n′L 6= nL , we have
that k1 is contained in nL by construction, k ′ is contained in
range(n′L) by construction, no key is between k ′ and k1 by
construction. This implies that n′L .max = k1 by Invariant 3
and that there is no key in n′L .aseq greater that k

′ to considered
in the computation of the aggregate value (see Line 6). The
same reasoning holds even if there are several nodes between
n′L and nL . An analogous reasoning can be done about the
contribution of nodes from n′R up to and excluding nR.

The above considerations together with the Lemma 2 prove
the following theorem about the correctness of Algorithm 2.
Theorem 2 (Query Correctness): An aggregate range

query executed by Algorithm 2 on a DB-tree T with range

[k ′, k ′′] correctly returns α(v1, . . . , vr) where v1, . . . , vr are
the values corresponding to all keys k1, . . . , kr in T such that
k ′ ≤ k1 < · · · < kr ≤ k ′′.

B. UPDATE, INSERTION AND DELETION
All the algorithms to change a DB-tree T shown in this
section can be divided in the following three phases.
P1. The nodes of T that are relevant for the change are

retrieved from the database, in one single round, and
put into a pool of nodes stored in main memory (read
round).

P2. The pool is changed to reflect the change required for
T . Old nodes may be updated or deleted and new ones
may be added.

175652 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Algorithm 3 This Algorithm Propagates the Change of Values of a Certain Node Into the Aggregate Values in All Its Ancestors.
It Also Inserts Aggregate Values That Should Be Present in the Aggregate Sequence Since the Corresponding Child Is Present.
This Algorithm Is Intended to Be Performed on a Pool of Nodes Stored in Main Memory
Input: A sequence U of nodes, in ascending order of level, representing an ascending path in a DB-tree. The first node of U

is denoted n̄.
Output: Aggregate values of nodes in U above n are updated to reflect the current state of n̄.
1: a← f (n̄)
2: k ← any key contained in n̄.
3: Remove n̄ from U
4: for each node n in U in ascending order of level do
5: Let a0, p1, a1, . . . , pm, am be n.aseq with m = n.m and pi = 〈ki, vi〉 F Some ai’s might be missing.
6: switch do F This switch can assigns a previously missing ai making it present.
7: case m = 0
8: a0← a
9: case k < k1

10: a0← a
11: case km < k
12: am← a
13: case ki < k < ki+1 for any i ∈ {0, . . . ,m}
14: ai← a
15: a← f (n)
16: end for

Algorithm 4 This Algorithm Updates a Key k in a DB-Tree T With a New Value v Assuming That k Is Already Present in T
Input: A key k , a DB-tree T that contains k , and a new value v to be assigned to k .
Output: The value for k in T is v.
1: N ← the sequence of nodes resulting from the selection from T of all nodes n such that n.min < k < n.max ordered by

ascending n.level. This is performed in a single query round.
2: n← the first node in N .
3: Update the value for k in n with v.
4: Update affected aggregate values of nodes in N by calling Algorithm 3 on N .
5: Store all nodes in N to T , in one round.

P3. The nodes of the pool are stored into the database,
in one round (update round).

In our description, we always assume the pool to be empty
when the algorithm starts. A rough form of caching could be
obtained by not cleaning up the pool between two operations,
but we do not consider that, to simplify algorithms descrip-
tions. It is worthmentioning, that the expected size of the pool
is always O(log |T |) during the execution of each of the algo-
rithms and that at beginning and end of Phase P2, the DB-tree
invariants hold. Further, as it will be clear from the following
descriptions, all algorithms process nodes of the pool at most
a constant number of times and hence the execution time of
the processing part of the algorithms, i.e., excluding interac-
tion with the DBMS, isO(log |T |) on average, for all of them.

A particular operation, performed in Phase P2, recurs in
all algorithms. When a value of a key is changed or a key
is inserted or deleted, the corresponding aggregate values of
nodes in the path to the root should be coherently updated
(see Invariant 4 in Section IV-C). This is always performed
as the last step of Phase P2. This procedure is shown in
Algorithm 3. It simply traverses all nodes in a path to the root

computing and updating aggregate values from bottom to top.
If previously missing children was added, it also restore the
corresponding aggregate values.

1) UPDATE
The procedure to update the value of a key already present in
a DB-tree T is shown in Algorithm 4. The algorithm follows
the three phases listed above. In Line 1, the node containing
k is retrieved with all its ancestors. This follows from Proper-
ties 1, 2 and 3. From Lemma 1, the expected number of nodes
retrieved is O(log |T |). Invariants are clearly preserved, since
the structure of T is unchanged and Invariant 4 is ensured by
the execution of Algorithm 3.

2) INSERTION
Algorithm 5 shows the procedure to insert a key k in T
under the hypothesis that k is not already contained in T .
The first line performs the same query as for Algorithm 4
to retrieve an ascending path in T , denoted by N , of nodes
that are involved in the insertion. The expected size of N
is O(log |T |) by Lemma 1. Then, a random level l, where k

VOLUME 7, 2019 175653

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Algorithm 5 This Algorithm Inserts a New Key-Value Pair Into a DB-Tree T , Supposing the Key Is Not Contained in T
Input: A key-value pair 〈k, v〉 and a representation of a DB-tree T that does not contain k .
1: N ← be the sequence of nodes resulting from the selection from T of all nodes n such that n.min < k < n.max ordered by

ascending n.level. This is performed in a single query round.
2: l ← a random level extracted according to Algorithm 1.
3: n̄← the node in N such that n̄.level = l, or ⊥ if it does not exist.
4: U ← the subsequence of nodes n in N with n.level > l
5: n′← the first node in U
6: D← the subsequence of nodes n in N with n.level < l
7: if n̄ = ⊥ then F Init with a dummy node, if needed.
8: kprev← the highest key contained in n′ such that kprev < k , otherwise kprev = n′.min
9: knext← the lowest key contained in n′ such that k < knext, otherwise knext = n′.max
10: n̄← a new node with n̄.level = l, n̄.m = 0, n̄.min = kprev, n̄.max = knext, n̄.aseq is empty.
11: end if
12: Insert 〈k, v〉 in n̄.aseq at the correct position to keep Invariant 2, and coherently n̄.m← n̄.m+ 1.
13: Let L and R be two empty sequences of nodes.
14: for all nodes n in D in descending order of level do
15: Create nodes nL and nR such that

◦ nL .level← n.level, nL .min← n.min, nL .max← k , nL .aseq← the order-preserving subsequence of n.aseq
containing all keys less than k with all aggregate values at their left (if present).

◦ nR.level← n.level, nR.min← k , nR.max← n.max, nR.aseq← the order-preserving subsequence of n.aseq
containing all keys greater than k with all aggregate values at their right (if present).

16: Add nL at the beginning of L, only if nL contains at least one key.
17: Add nR at the beginning of R, only if nR contains at least one key.

F Nodes in L and R turn out to be in ascending order of level.
18: end for
19: Update affected aggregate values on L||{n̄} and R||{n̄} (if L or R are not empty) by calling Algorithm 3. Note that, this also

adds currently missing aggregate values that do have corresponding children.
20: Update affected aggregate values in U by calling Algorithm 3 on {n̄}||U .
21: Write nodes in L, R, {n̄}, and U in one round in the representation of T .

should be inserted, is obtained (Line 2). The following lines
aim at identifying the node n̄ in N at level l and the node n′

that is the parent of n̄. They also handle the case in which
n̄ does not exist. In this case, a new node is inserted with
no keys (for the moment). Note that, n′ always exists since
at least the root of T exists. This and other operations in
the rest of the algorithm may make present some previously
missing aggregate value. These aggregate values are actually
fixed or inserted by Algorithm 3, which is called at the end of
Phase P2. The path N is also partitioned into D (nodes below
n̄), {n̄}, and U (nodes above n̄, starting with n′).

Actual insertion of 〈k, v〉 in n̄ is performed in Line 12.
Then, all nodes below n̄ in N , i.e., those that are in D, are
split to keep Invariant 3. In fact, all nodes in D (actually all
nodes in N) were selected to have k in their range, but after
the insertion of k in n̄, k is contained in a node above them.
The split is performed from top to bottom in the cycle starting
at Line 14. It sets min and max of each node considering the
existence of k , according to Invariant 3 (see Figure 6) and sets
the aggregate sequences of the resulting nodes, according to
Invariant 2. The splits of nodes inD form two branches whose
nodes are stored in sequences L and R (in ascending order
of level). Special care is taken not to store in L and R nodes

that do not contain any key. When creating or modifying
nodes in L and R, as well as n̄ and n′, the algorithm do not
care about setting the correct aggregate values that intersect or
are adjacent to k . These are updated and possibly inserted by
calling Algorithm 3 on L||n̄ and R||n̄, if L or R are not empty,
and then on n̄||U . This makes the affected aggregate values
to comply with Invariant 4. Clearly the resulting number of
nodes is at most 2|N | and hence still expected O(log |T |).

3) DELETION
Algorithm 6 shows the procedure to delete a key k in T under
the hypothesis that k is already present in T . See Figure 7
for an example of execution of this algorithm. The first line
performs a query to retrieve all nodes n having k in their range
or n.min = k or n.max = k . The nodes whose min and
max are equal to k are important for this algorithm, since
the deletion of k affects their range. This set, denoted N ,
contains a node n̄ that contains k . We denote by l its level.
The other elements ofN are partitioned into three paths,U , L,
R corresponding to the three disjoint conditions of the query.
PathU is from n̄ to the root of T (like in Algorithms 4 and 5).
Path L (R) contains nodes n such that n.max = k (n.min = k).
Paths L and R are made of descendants of n̄ by Invariant 3.

175654 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 6. Example of execution of Algorithm 5: insertion of a new key-value pair 〈k = 9, v = 90〉. The randomly obtained level for this key is 4. The
aggregation function is SUM and for each k its value is v = 10k .

FIGURE 7. Example of execution of Algorithm 6: deletion of key k = 9. The aggregation function is SUM and for each k its value is v = 10k .

By applying Lemma 1 on the three paths, we get that the
expected size ofN isO(log |T |). In the algorithm, L and R are
represented as arrays having one element for each level below
l. The n̄.aseq is updated removing the key-value pair for k .
The algorithm proceeds by performing opposite operations
with respect to Algorithm 5, that is, nodes in L and R that are
at the same level are merged so that they cover a range that is
the union of the ranges of the merged nodes. This is done so
that Invariants 2 and 3 are preserved. The resulting nodes end
up to be a path of descendants of n̄, denoted by D. Aggregate
values that ‘‘overlap’’ the deleted key k are not set during the
merge. However, this is fixed when Invariant 4 is enforced by
calling Algorithm 3 on D||{n̄}||U .

4) BULK/BATCH INSERTION
The insertion of a large number of elements that are known in
advance is more efficiently performed as a single operation.
In particular, if the insertion starts from an empty DB-tree,
the whole DB-tree can be built from scratch in main memory
(supposing that this is large enough). This can be easily
performed applying, for each element, a procedure similar to
that shown in Algorithm 5, where sets N , U , and D are got
from main memory. The DB-tree in main memory is updated
and kept ready for the next element of the bulk insertion. A the
end, the resulting DB-tree can be written into the database in
a single round, possibly using bulk insertion support provided
by the DBMS.

VOLUME 7, 2019 175655

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Algorithm 6 This Algorithms Deletes a Key k From a DB-Tree T
Input: A key k and a representation of a DB-tree T . We assume k is contained in T .
Output: The key k is no longer contained in T .
1: N ← the sequence of nodes resulting from the selection from T of all nodes n such that n.min ≤ k ≤ n.max ordered by

ascending n.level. This is performed in a single query round.
2: n̄← the node in N that contains k .
3: l ← n̄.level
4: Let L and R two arrays indexed by 0, . . . , l − 1, all their elements are initialized with ⊥.
5: L[i]← the node n in N such that n.level = i < l. F Note that, it also holds n.max = k .
6: R[i]← the node n in N such that n.level = i < l. F Note that, it also holds n.min = k .
7: U ← the sequence of nodes n in N such that n.level > l.
8: Delete from n̄.aseq the key-value pair for k and coherently n̄.m← n̄.m− 1. Delete also the aggregate values at the left and

right of k , if they are present.
9: Let D an empty sequence of nodes.

10: nprev← n̄
11: for i from l − 1 down to 0 do
12: kmin← the key right before k in nprev.aseq, if it exists, otherwise nprev.min
13: kmax← the key right after k in nprev.aseq, if it exists, otherwise nprev.max
14: switch do
15: case L[i] 6= ⊥ and R[i] 6= ⊥
16: Create a new node n. FMerge
17: n.level← i, n.min← kmin, n.max← kmax.
18: Let L[i].aseq = aL0 , p

L
1 , a

L
1 , . . . , p

L
m, a

L
m.

19: Let R[i].aseq = aR0 , p
R
1 , a

R
1 , . . . , p

R
m′ , a

R
m′ .

20: n.aseq← aL0 , p
L
1 , a

L
1 , . . . , p

L
m, p

R
1 , a

R
1 , . . . , p

R
m′ , a

R
m′

21: case L[i] 6= ⊥ and R[i] = ⊥
22: Let n = L[i].
23: n.max← kmax F Expand n rightward
24: case L[i] = ⊥ and R[i] 6= ⊥
25: Let n = R[i].
26: n.min← kmin F Expand n leftward
27: Add n to the beginning of D F Nodes in D turn out to be in ascending order of level.
28: nprev← n
29: end for

30: P←

{
{n̄}, if n̄.m > 0
∅, otherwise

31: Update affected aggregate values by calling Algorithm 3 on D||P||U . Note that, this also adds currently missing aggregate
values that have corresponding children.

32: Write nodes in P, D, and U in the representation of T , in one round.

In Section VI, we show that single insertions into DB-trees
are quite slow with respect to insertion into regular tables.
We can adopt a bulk-like approach to speed-up many inser-
tions (a batch) in a non-empty DB-tree. In this case, we have
to be careful to read first into main memory all the nodes that
are affected by all insertions. This can be done by executing
Lines 1, 4, and 6 of Algorithm 5, for each element. Note
that, this can be done in one query round. We also have to
keep track of deleted and changed nodes to correctly apply
these changes at the end of the bulk insertion. We do not
further detail these procedures that are simple variations of
the algorithms shown in this section.

C. COMPARISON OF DB-TREES WITH SKIP
LISTS AND B-TREES
Now, we present a detailed comparison of DB-trees with skip
lists [47] and B-trees [15].

The most important distinguishing feature of DB-trees is
related to the representation of relationships between nodes.
In DB-trees, we do not store any pointer in the nodes: a
parent-child relationship between nodes n1 and n2 is implic-
itly represented by a containment relationship of range(n1)
and range(n2), where the extremes of ranges are explicitly
represented in the nodes. This approach allows us to obtain
a path to the root in a single query round and makes DB-trees

175656 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

very well suited to be represented in databases. On the con-
trary, skip lists and B-trees do use explicit pointers, thus
implicitly assuming that pointer traversal is an efficient prim-
itive operation, which is not true for databases.

Another fundamental difference with respect to common
data structures is that DB-trees are targeted to support aggre-
gate range queries and authenticated data structures, and are
not targeted to speed up search. In fact, DBMSes already
perform searches very efficiently. On the contrary, DB-trees
rely on DBMS search efficiency to speed up aggregate range
queries. DB-trees reach this objective without relying on
traversals.

In Section IV-A, we described DB-trees starting from skip
lists. In fact, each skip list instance is in one-to-one correspon-
dence with a DB-tree instance. Both data structures associate
levels with keys and the level of each key is selected in the
same random way. However, while a skip list redundantly
stores a tower of elements for each key, the corresponding
DB-tree stores each key only once: essentially only the top
element of the tower is represented. Further, in a DB-tree,
sequential keys in a level may be grouped into a single
node equipped with some metadata (level, min, and max)
that allow them to be efficiently retrieved from the database.
In DB-trees, a node is the smallest unit of data that is selected,
retrieved, or updated when the DBMS is contacted. Due to
all these differences, algorithms performing operations on
DB-trees turns out to be very different from the corresponding
algorithms for skip lists. Since the level associated with each
key is the same in DB-trees and skip lists, statistical prop-
erties of DB-trees (see Section IV-D) also hold for skip lists
(e.g., Lemma 1), or can be recast to be applicable in the skip
list context (e.g., in the skip list context, Property 4 can be
interpreted as related to the expected number of consecutive
tower-top elements in a level).

While statistical aspects of DB-trees are very similar to
skip list ones, storage aspects are somewhat similar to B-trees.
In B-trees, each node n is meant to be stored in a disk
block and contains a selection of keys (or key-value pairs)
interleaved by pointers to blocks storing the children of n.
In both DB-trees and B-trees, descendants of n store keys
that are between two keys that are consecutively stored in n.
In B-trees, each node can contain a number of keys between
d and 2d , where d is a fixed parameter. Hence, a node can
have a number of children between d + 1 and 2d + 1. In
DB-trees, each node contains at least one key, but there is no
maximum number of keys for a node. The number of keys
in a node is only statistically constrained (see Property 4).
Insertion of a new key in a B-tree occurs in a node that is
deterministically identified and may provoke the split of zero
or more nodes, possibly all the way up to the root of the tree,
in order to respect the maximum number of keys per node.
In DB-trees, the node n where a new key is inserted is at a
level that is randomly selected, possibly creating a new one if
needed. Insertion of a key into node n may provoke the split
of nodes below n to respect Invariant 3. Deletion in B-trees
may require re-balancing through rotations to respect the

minimum number of keys per node. In DB-trees deletion of
a key from node n may provoke the merge of nodes below n,
which is exactly the opposite of what occurs during insertion.
The maximum depth of a B-tree is

⌊
logd (x + 1)/2

⌋
, where x

is the number of keys in the B-tree [16]. The depth of the
DB-tree is only statistically characterized (see Lemma 1).

Finally, we note that the depth of a B-tree and the num-
ber of levels of a skip list are closely related to the effi-
ciency of the operations on the respective data structure. For
DB-trees, the depth of the tree is related to the size of the
data that should be handled by any operation. As described in
Section V, DB-tree operations, which are locally performed
by the overlay logic, take a time that is proportional to the
handled data and hence turns out to beO(log |T |) on average,
as for skip lists. However, it should be noted that the selection
of nodes involved in a query or change is not performed by
the implementation but is delegated to the DBMS. Its ability
in efficiently executing the queries requested by the overlay
logic has a significant impact on the overall performance (see
also the experiments reported in Section VI).

VI. EXPERIMENTS
We developed a software prototype with the intent to provide
experimental evidences of the performances of our approach.

The objectives of our experiments are the following.
O1. We intend to show the response times of aggre-

gate range queries that we obtain by using DB-trees.
We expect them to be ideally logarithmic in the size
of the selected range. We compare them against the
response time obtained by using a plain DBMS with
the best available indexing.

O2. We intend to measure the response time for insert and
delete operations using DB-trees and compare them
against the response time of the same operations per-
formed using a plain DBMS.

Tests were performed on a high-performance notebook
with 16GB of main memory (SDRAM DDR3), M.2 solid-
state drive (SSD), Intel Core i7-8550U processor (1.80GHz,
up to 4.0GHz, 8MB Cache). To understand the behavior of
our approach on a less performant hard-disk-based system,
we also performed the tests on an old machine equipped with
Intel Core 2 Quad Q6600 2.4GHz, 8 GB of main memory and
a regular hard disk drive (HDD). In the following, the two
platforms are shortly referred to as SSD and HDD, respec-
tively. Both platforms are linux-based and during the tests no
other cpu-intensive or i/o-intensive tasks were active.

We repeated all experiments with two widely used DBM-
Ses: PostgreSQL (Version 11.3) and MySql (Version 8.0.16).
DBMSeswere runwithin docker containers, however, no lim-
itation of any kind was configured on those containers.

Our software runs on the Java Virtual Machine (1.8).
Since the JVM incrementally compiles the code according
to the ‘‘HotSpot’’ approach [43], for each test we took care
to let the system run long enough before performing the
measurements, to be sure that compilation activity was over:
we run the whole tests more than once and consider only

VOLUME 7, 2019 175657

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

the times measured in the last run. The DB-tree code is
written using the Kotlin programming language and adopt the
standard JDBC drivers for the connection with the DBMSes.
Time measurements are performed using the Kotlin stan-
dard API measureNanoTime, that executes a given block of
code and returns elapsed time in nanoseconds. In our experi-
ments, we set the GO-UP probability for DB-trees to 0.5 (see
Section IV-A).

Regarding Objective O1, we prepared a dataset of 1million
key-value pairs, whose keys are the integers from 1 to 1 mil-
lion and whose values are random integers. We randomly
shuffled the pairs and inserted them into the DBMS. For
testing the plain DBMS, we created a table with two columns,
with the key of the pair as primary key of the table, and the
two possible indexes on (key, value) and on (value, key). For
the table that represents the DB-tree, we have columns for
n.min, n.max, n.level, plus a column that contains a serialized
form of the whole node. We do not perform any selection on
this last column. Its content is just returned to the client. We
configured (n.min, n.max, n.level) as the primary key index
and (n.max, n.min, n.level) as index. In both PostgreSQL and
MySQL, indexes are plain B-trees. In MySQL, primary key
indexing is clustered.

Insertion of DB-trees was performed with a prototypical
implementation of the bulk insertion approach described in
Section V-B. The time taken for bulk insertions are reported
in Table 1.
We show tests using the SUM aggregation function, which

is a very widely used one and whose optimization is likely to
be an objective of DBMS designers. In the tests based on a
plain DBMS, we performed SQL queries like the following,
where we used self explanatory names.

SELECT SUM(value)
FROM test_table
WHERE range_start<=key AND
key<=range_end

For theDB-trees tests, we used our realization ofAlgorithm 2.
Actually, we also performed the same tests with aggrega-

tion functions MIN, MAX, COUNT, and AVG. The MIN and
MAX functions are highly optimized in both DBMSes, and
queries take very small time to execute, independently from
the size of the range. Hence, there is no point in using DB-
trees for MIN and MAX, at least in the considered DBMSes.
On the contrary, the results for tests with COUNT and AVG
are very much like those that we show for function SUM,
hence we decided not to show additional charts for them.

We generated the queries to be performed for the tests in
the following way. We considered range sizes from 50.000 to
975.000, with steps of 25.000. For each range size, we exe-
cuted 200 queries with random ranges of that size (i.e., with
a random shift) and took the average of execution times. The
dataset and the ranges are the same for the tests using plain
DBMSes and for the tests using DB-trees.

Queries are executedwithout any delay in between. Results
are shown in Figures 8 and 9, for platform SSD, and in

FIGURE 8. Performances of aggregate range queries with a PostgreSQL
DBMS, on the SSD platform.

FIGURE 9. Performances of aggregate range queries with a MySQL DBMS,
on the SSD platform.

FIGURE 10. Performances of aggregate range queries with a PostgreSQL
DBMS, on the HDD platform.

Figures 10 and 11, for platform HDD. In each figure,
the x-axis shows the size of the range and the y-axis show the
query duration in milliseconds. Figures show performances
for tests on plain DBMSes and for tests adopting DB-trees.
Using plain DBMS queries, the response time for the aggre-
gate range query is linear, for both PostgreSQL and MySQL.
The tests show that, using DB-trees, the response time is
limited and well below the one obtained using plain DBMS
queries, starting from a certain range size. Concerning the
shape of the curves, we note that aggregate range queries are

175658 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

TABLE 1. Disk space occupancy and bulk insertion times for data used in the experiments of Section VI.

FIGURE 11. Performances of aggregate range queries with a MySQL
DBMS, on the HDD platform.

theoretically easy in two extreme cases (i) when the range is
just a tuple, in this case an aggregate range query is equivalent
to a plain selection, and (ii) when the range covers all the
data, in this case a good strategy is to keep an accumulator
for the whole dataset. In all charts related to aggregate range
queries, we note that the curve for DB-trees response time
is somewhat bell-shaped, reflecting that hard instances are in
the middle between the two extreme cases just mentioned.

We point out that the DBMS internally performs several
non-obvious query optimizations that can profoundly change
the way the same kind of query is performed on the basis of
estimated amount of data to retrieve. A clear effect of this
can be seen in the roughly piecewise linear trend, shown in
Figures 8 and 10, for the performances of aggregate range
queries in PostgreSQL for plain DBMS tests. Further, com-
paring charts for SSD and HDD platforms, we notice the
expected degradation due to the slower HDD technology and
a less regular behavior for the HDD case. However, trends are
quite similar for both platforms for all cases.

Concerning space occupancy on disk, this clearly depends
on actual data types, indexes, and DBMS used. As an exam-
ple, for the above described experiments, the occupancy is
summarized in Table 1. We report occupancy of data and
indexes for a plain table, i.e., the one used for plain DBMS
tests, and for the table used for DB-tree tests. We note that,
the number of rows in the DB-tree table is about half of the
number of rows of the plain table. In fact, in our representa-
tion each row represents a node and each node contains one or
more key-value pair. For PostgreSQL, the size of the data for
the DB-tree is roughly the same as the size of the data for the
plain table, while indexes are larger for the latter. ForMySQL,
the size of the data for the DB-tree is about twice the size of
the data for the plain table, while indexes are comparable.

FIGURE 12. Performance of the insert operation of a key with a
PostgreSQL DBMS, on the SSD platform.

FIGURE 13. Performance of the insert operation of a key with a MySQL
DBMS, on the SSD platform.

Concerning Objective O2, we created 10 datasets con-
taining from 100.000 to 1 million key-value pairs, with
step of 100.000. For each dataset, we created the corre-
sponding databases for both plain DBMS tests and for
DB-trees tests. Tables and indexes are as for Objective O1.
To test insert response time, we performed 200 insertions
of random keys that were not in the dataset. For each of
them, we measured the response time and then deleted the
just inserted key to keep the dataset size constant. Opera-
tions are executed without any delay in between. Results
are shown in Figures 12 and 13, for platform SSD, and
in Figures 14 and 15, for platform HDD. In these figures,
the x-axis shows the size of the number of key-value pairs
in the database and the y-axis shows the response time in
milliseconds.

Analogously, we measured response time for deletion.
We performed 200 deletions of random keys that were

VOLUME 7, 2019 175659

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 14. Performance of the insert operation of a key with a
PostgreSQL DBMS, on the HDD platform.

FIGURE 15. Performance of the insert operation of a key with a MySQL,
on the HDD platform.

FIGURE 16. Performance of the delete operation of a key with a
PostgreSQL DBMS, on the SSD platform.

present in the dataset. For each of them, we measured
the response time and then re-inserted the just deleted
key-value pair to keep the dataset size constant. Results
are shown in Figures 16 and 17, for platform SSD, and
in Figures 18 and 19, for platform HDD. Axes are as in the
figures for insert tests. Operations are executed without any
delay in between for all cases, but for the experiment shown
in Figure 19. In fact, in this case, with no delay, we observed
an anomalous ramp-up trend, which we think was due to

FIGURE 17. Performance of the delete operation of a key with a MySQL
DBMS, on the SSD platform.

FIGURE 18. Performance of the delete operation of a key with a
PostgreSQL, on the HDD platform.

FIGURE 19. Performance of the delete operation of a key with a MySQL,
on the HDD platform.

the exceeding of the maximum throughput of the system.
In this case, we performed the test waiting 400ms after each
operation.

As expected, charts show that, adopting DB-trees, insert
and delete operations are more costly. For plain DBMS tests,
the response time looks essentially constant. This is likely
due to the fact that changes are just written in a log before
acknowledging the operation to the client, and operations
are all equal in size. On the contrary, for DB-trees, we can

175660 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

see a slow but clearly increasing trend, which conforms
to the expected logarithmic trend predicted by the theory.
In fact, also in this case operations are just stored in a log,
but the number of actual operations requested to the DBMS
is logarithmic. For our experiments, when using DB-trees,
the slow-down factor for both insert and delete operations is
within 2-4, for PostgreSQL, and within 10-20, for MySQL.
These factors are quite independent from the kind of platform
adopted (i.e., SSD vs. HDD).

About the comparison of charts for SSD and HDD plat-
forms, the same remarks we made for Objective O1 applies.

VII. SUPPORTING GROUP-BY RANGE QUERIES
In this section, we address a common need that is slightly
more complex than an aggregate range query. We deal with
the aggregation of values of a certain column performed on
the basis of distinct values of a second column limited to a
certain range of a third one. This need is usually fulfilled
using the SQL construct GROUP-BY andwe refer to this kind
of queries as group-by range queries. For example, suppose
to have a table that represents the sales of goods performed by
each department of a company for each day, and we want to
know the total sales in a specific period for each department.
Suppose the table is called Sale and has columns Department,
Date, and Amount. Figure 20 shows an example of group-
by range query to obtain this result, for an arbitrary range,
expressed in plain SQL.

FIGURE 20. Example of GROUP-BY range query.

To exploit DB-trees with this purpose, we define the
key of the DB-tree to be the pair (Department, Date),
where Department is the most significant part. A possi-
ble approach to perform the query, is to execute a plain
query to obtain the distinct departments d1, d2, . . . and then
execute, in parallel, Algorithm 2 for each department with
ranges (d1, start_range)-(d1, end_range), (d2, start_range)-
(d2, end_range), etc. With this approach, we perform two
query rounds. In the second round, we perform a number of
independent queries (one for each department) and each of
them is independently optimized by the query planner.

We now show that, adopting DB-trees, we can perform
the above query in one query round using only three dis-
tinct queries as in Algorithm 2. The procedure is shown in
Algorithm 7, which is a variation of Algorithm 2. We assume
a setting with a regular data table D, containing the data,
and additional overlay-table T containing a DB-tree, also
denoted by T and coherent with D (see Section III-C).
We assume thatD has columns x, y, v and that the user intends
to perform aggregation on column v, grouping on column x,
while selecting a range on column y. For simplicity, in the

following, we use symbols x, y and v to denote both column
names and the corresponding generic values of the columns.
To build the DB-tree T , we consider all the triples (x, y, v)
taken from the rows of D considering each pair (x, y) as key
and v as its corresponding value. We intend x to be the most
significant part of the key, regarding ordering in T .
The first objective of Algorithm 7 is to obtain from T ,

node nx , and sequences Lx and Rx , for each distinct x in D.
These play the same role that n̄, L and R play in Algorithm 2.
Then, the part of Algorithm 2 that can run in main memory
is performed on each triple 〈nx ,Lx ,Rx〉 to obtain each row
of the result. Lines 1-4 retrieve all the data needed in one
round. Then, we proceed with computations performed in
main memory. Nodes in N̄ , L̄, and R̄ are sorted out into their
respective nx , Lx and Rx , in Lines 6-8. Finally, we execute
a procedure very similar to that of Algorithm 2, for each
group, i.e., for each value of x. The only notable change is
to additionally check that aggregations take into account only
aggregate values between keys having x as most significant
part. In fact, if this is not true, the aggregate value is not
related to the current group (or at least not completely) and
should be ruled out.

Figure 21 shows an example of DB-Tree on which a
group-by range query is performed. Squares of distinct col-
ors correspond to keys with distinct values of x (green for
x1, red for x2, and blue for x3). The range on y is given
by y′ and y′′. Lines on the bottom of the figure represent
ranges for each value of x. Colored contours show, for each
value of x, the nodes in nx , Lx , and Rx . Note that, nodes
related to distinct groups (i.e., for distinct values of x) may
overlap.

It is useful to make some remarks on Lines 1-4. Line 1
introduces a further condition with respect to what we find
in Algorithm 2. In fact, by requiring only n.min.y < y′ <
n.max.y ≤ y′′, as in Algorithm 2, we would have collected
many nodes whose ranges intersect (x, y′) for any x, but not
all of them. In particular, if a node has its range that spans
more than one value of x, it may occur that n.min.y < y′

is not true, but the node intersect a certain (x, y′). The con-
dition n.min.x 6= n.max.x includes all the missing cases.
Symmetrically, the same holds for Line 2. Figure 23 shows
an example of this case. In this figure, node nL is required to
compute aggregate for the group between (x2, y′) and (x2, y′′).
However, since nL .min.y > y′, nL turns out not to be selected
when only the condition n.min.y < y′ < n.max.y, of Algo-
rithm 2, is considered. On the contrary, nL is selected by the
condition nL .min.x 6= nL .max.x considered in Algorithm 7,
since nL .min.x = x1 6= x2 = nL .max.x.

About Line 4, performing this operation with one SQL
query is not obvious. In Figure 22, we show an exam-
ple of this query using the PostgreSQL dialect. The
DISTINCT ON (S.x) clause returns only rows with dis-
tinct values for S.x. The chosen one is the first according
to the ORDER BY semantic. We use the regular data table D
to obtain all values for x. Other approaches are possible to
get all values of x when only T is present. We do not go into

VOLUME 7, 2019 175661

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

Algorithm 7 This Algorithm Performs a Group-By Range Query on a DB-Tree and Its Associated Regular Data Table
Input: A regular data table D with columns x, y and v, an associated DB-tree T on all keys (x, y) with associated values v, and

two values y′ and y′′ (with y′ < y′′).
Output: A set of pairs in the form (x, αx), such that αx = α(v1, . . . , vrx), where rx is the number of rows of D, selected such

that they have the given x and have y′ ≤ y ≤ y′′, and v1, . . . , vrx are the values for v for those rows of D (and corresponding
key-value pairs in T).
F Execute Lines 1-4 in one query round.

1: L̄ ← nodes n from T such that y′ < n.max.y ≤ y′′ AND (n.min.y < y′ OR n.min.x 6= n.max.x).
2: R̄← nodes n from T such that y′ ≤ n.min.y < y′′ AND (y′′ < n.max.y OR n.min.x 6= n.max.x).
3: Let X denotes the distinct values of x in D.
4: N̄ ← pairs (x, n) such that x ∈ X , n is in T , n.min < (x, y′) < (x, y′′) < nx .max, and n.level is minimum.
5: For all x ∈ X
6: let nx be the node associated with x in N̄ ,
7: let Lx be sequence of nodes n in L with n.max.x = x,
8: let Rx be sequence of nodes n in R with n.min.x = x.
9: Let S be an empty set.

10: for all triples 〈nx ,Lx ,Rx〉 do
11: Execute Algorithm 2 starting from Line 4 with n̄← nx , L ← Lx , R← Rx and with k ′ ← (x, y′) and k ′′ ← (x, y′′). In

executing Algorithm 2, modify the behavior of Lines 6, 11, and 15 so that aggregate values next to a key that have the most
significant part 6= x should be ignored (since they are not related to group for x).

12: Let αx be the result of the above call to Algorithm 2.
13: Add (x, αx) to S.
14: end for
15: return S

FIGURE 21. An example of DB-tree evidencing sets Lx , Rx , and nx for a group-by range query executed by Algorithm 7. The details are explained
in the text.

the details of the schemes that can be used for T . We just
note that, for what described before this section, there is no
reason to represent keys contained in nodes in a way that can
be easily extracted by a query. This is also not trivial to do in a

relational database, since their number for each node can vary
(see Section VI). This is the main reason why we described
our solution assuming to have a regular DBMS table D as an
input to Algorithm 7.

175662 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 22. Example of SQL query (in PostgreSQL dialect) to obtain N̄ in Algorithm 7.

FIGURE 23. A case handled by Algorithm 7 in a special way. Node nL spans more than one value for x . See text for details.

The correctness of this algorithm derives from the fact
that, by construction, ranges for each x do not overlap
(see Figure 21) and by the correctness of Algorithm 2.
Further, we note that, elements of aggregate sequences of
retrieved nodes that aggregate values for keys with different
value of x are never used by Algorithm 7.

A. EXPERIMENTS WITH DB-TREES FOR GROUP-BY
RANGE QUERIES
We performed some experiments to assess the performance
of Algortihm 7 on realistic data. In Section VI, we noted
that DB-trees are more advantageous for aggregate range
queries with large ranges. As we show in the following,
this is also true for group-by range queries. The dataset we
used for our experiments is derived from the TPC-H bench-
mark [17]. From that dataset, we considered the lineitem
table containing about six millions of rows. We picked
columns L_suppkey (numeric IDs), L_shipdate (dates
that span seven years), and L_extendedprice (floating
point numbers). We focused on a query that aggregates the
values of L_extendedprice grouping by distinct values
of L_suppkey on ranges defined on L_shipdate. Other
columns were not imported into our test database. To support
this group-by range query, we had to choose, as key of the
DB-tree, the pair (L_suppkey, L_shipdate). For this
pair, TPC-H contains duplicated values, which is not com-

patible with our prototypical implementation of DB-trees.
To circumvent this problem, we transformed each date to a
timestamp adding a random time. To show performances of
DB-trees in a range where they can provide a substantial ben-
efit, wemodified values inL_suppkey as follows. The orig-
inal dataset contains 10,000 distinct values in L_suppkey.
We replaced each value x in L_suppkey with x mod 20 to
obtain 20 distinct values. In this way, we obtained 20 groups,
each one containing a number of elements that is large enough
to show the effectiveness of the adoption of DB-trees. We
refer to the resulting dataset as modified TPC-H. Since ele-
ments are quite uniformly distributed over the groups, each
group turns out to contain about 300,000 elements, for the
whole dataset. The application of range selection reduces it.
This reduction is quite regular, since values in L_shipdate
are uniformly distributed over groups and over time. We per-
formed our experiments with PostgreSQL (SSD platform).
During the preparation of the experiments, we realized that
PostgreSQL is not able to perform a thorough optimization
of the query shown in Figure 22. We substituted it with that
shown in Figure 24. We also added a column f to the overlay
table T to contain character ’t’ if the result of min_x
<> max_x for the node is true, ’f’ otherwise. Actually,
this query returns a larger set of nodes with respect to the
query shown in Figure 22. In fact, the new query always
returns all nodes whose range overlaps group boundary

VOLUME 7, 2019 175663

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 24. Optimized version of the query shown in Figure 22 that was
adopted for testing group-by range queries. See text for further details.

FIGURE 25. Performances of the execution of group-by range queries on
PostgreSQL (SSD platform), on the modified TPC-H dataset.

(i.e., all nodes with f = ’t’). To obtain N̄ (see Algo-
rithm 7), a further selection is performed in memory by the
overlay logic software when data are received. On table T ,
we configured plain B-tree indexes on f and on (min_y,
max_y). We also measured execution times for the plain
DBMS query on the regular table, where we configured a pri-
mary key on (L_suppkey, L_shipdate). In PostgreSQL,
this means that a B-tree index kept on that columns. Since
dates in L_shipdate are uniformly distributed over time,
it was easy to pick random ranges such that each group
contained a number of elements from 50,000 to 300,000,
with steps of 50,000. For each step, we queried 200 different
random ranges (i.e., each with a random shift of the range)
and we took the average of the execution times. The results,
shown in Figure 25, confirms that DB-trees outperform the
plain DBMS query on the regular table for ranges that give
rise to groups with large number of elements: greater that
200,000 in our case.

B. COMPARISON WITH MATERIALIZED VIEWS
We run the same tests for group-by range queries using
materialized views, to understand how this common tech-
nique compare with DB-trees. We performed our experi-
ments using PostgreSQL. For the same dataset adopted in the
above experiments, we createdmaterialized views at different
granularities: month, day, hour, and minute. We executed the
same group-by range queries described above on these mate-
rialized views and we measured execution times. We picked
ranges giving a number of elements per group between
50,000 and 300,000, with steps of 50,000 and 200 random
queries, as above, for each step. Figure 26 shows the execu-
tion times taken by the queries performed on the materialized
views vs. execution times of the same queries performed

FIGURE 26. Performances of group-by range queries. Materialized views
vs. DB-Trees on PostgreSQL (SSD platform), on the modified TPC-H
dataset.

using DB-trees. For materialized views, the execution time
increases linearly with the number of elements contained
in each group, while it decreases for DB-Trees. However,
DB-Trees perform better only for minute granularity, in our
tests. Since the query is performed on aggregated data,
the precision of the result of the queries performed on mate-
rialized views depends on the granularity of the view. It is
possible to obtain precise results by independently querying
the extremes of the range but we did not performed any
experiment regarding this aspect. In fact, we think that the
above results already show the great potentiality of mate-
rialized views. Table 2 shows the time taken to refresh the
whole materialized view. They are between 5 and 12 seconds
for our dataset. The number of rows of the views are also
reported. We note that materializing with minute granularity
provides very little benefit, since the original table contains
6,001,215 rows.

TABLE 2. Refresh times and size of materialized views used in our
experiments.

From the trend shown by our experiments, DB-trees may
result to be a better approach than materialized views when
the number of elements in the groups are very large and
this is not compensated by the coarseness of the granu-
larity. This may occur in practice, since granularities of
materialized views are statically decided in advance, while
queries might be on ranges whose size can vary across sev-
eral orders of magnitude. For example, this may occur in
graphical systems if the user is allowed to zoom in and out
on a timeline and a corresponding histogram for the current
zoom level should be shown. DB-trees have a substantial
overhead but they are adaptive, in the sense that no deci-
sion in advance is needed about the order of magnitude of
the ranges to be queried. Further, we recall, that DB-trees
may be the only viable solution in situations in which the

175664 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 27. Performances of VerdictDB vs. group-by range queries using
DB-Trees on PostgreSQL (SSD platform), on the modified TPC-H dataset.

DBMS does not natively support the needed aggregation
function.

C. COMPARISON WITH VERDICTDB
We now compare our DB-tree approach for the execution
of group-by range queries with the solution provided by
VerdictDB [45]. VerdictDB is a very interesting tool that
practically realizes an approximate query processing tech-
nique. It allows the user to perform group-by range queries
choosing a trade-off between speed and precision of the
result. It relies on regular relational DBMS to store data. The
user can ask the creation of a ‘‘sampled’’ version of a table,
called scramble, with a certain size ratio. Higher size ratios
provide better precision at the expense of longer execution
time.We performed our experiments using PostgreSQL (SSD
platform) as underlying DBMS. For the same dataset adopted
in the above experiments (modified TPC-H), we created
several scrambles with different size ratios: 10%, 50%, 90%,
and 100%. We executed the same group-by range queries
described above on all scrambles. We again picked ranges
giving a number of elements per group between 50,000 and
300,000, with steps of 50,000, running 200 different random
queries in each step, as in Sections VII-A and VII-B.

VerdictDB is very efficient when the size ratio is low.
In any case, execution times increase linearly with the number
of elements contained in each group, as for the execution
using the plain DBMS approach. In Figure 27, we show the
time taken by VerdictDB to process the group-by range query
for increasing range sizes using the four size ratios mentioned
above. For a clear comparison, we also report the time taken
by our approach based on DB-trees. The comparison is favor-
able to our approach when the number of elements in the
groups is large and when the size ratio is not too low. Since a
low size ratio negatively impacts the precision of the results
produced by VerdictDB, we also measured errors. In Table 3,
we reported, for each point of the chart in Figure 27 that is
related to VerdictDB results, the maximum error we obtained,
relative to the correct answer. Each shown percentage is the
maximum of the relative errors across all the queries (200)
that we run for each step. These results are specific for our
case and are only useful for the purpose of comparison with

TABLE 3. Maximum relative errors of results of group-by range queries
using VerdictDB. See text for details.

the DB-tree approach in this specific test. A broad description
of VerdictDB with respect to precision can be found in [45].

In our experiments, the time taken by VerdictDB to gener-
ate the scramble from scratch is always about 6 seconds.

The most evident difference between DB-trees approach
and VerdictDB is that DB-trees always produce an exact
result, while results produced by VerdictDB may have non-
negligible errors. It depends on the application how much
precision can be traded for speed. In any case, when the num-
ber of elements in the groups are large, the DB-tree approach
outperform VerdictDB even for moderately small size ratios.
For example, in our case, when the number of elements for
each group is 250,000 or more, DB-trees provide exact results
and perform better even if VerdictDB is used with a size
ratio of 50%, which gives a maximum error of about 1.5%
in our case.

VIII. SUPPORTING AUTHENTICATED
DATA STRUCTURES
In this section, we show how it is possible to use DB-trees
to support Authenticated Data Structures (ADS). We briefly
introduce ADSes with their properties and show a typical use
case. Then, we show how we can use DB-trees as a persistent
and efficient ADS.

An Authenticated Data Structure (ADS) is an ordered con-
tainer of elements that deterministically provides a constant-
size digest of its content that has the same properties of a
cryptographic hash. We call this digest the root-hash of the
ADS, and we denote it by r . For our purposes, we limit
ADSes to contain implicitly ordered elements, like key-value
pairs. In other words, we regard ADSes as search trees aug-
mented with security features. If the content of the ADS
changes, r changes. Further, it is hard to find two sets of
elements with the same root-hash. An ADS provides two
operations: authenticated query and authenticated update.
A query returns the queried element and the proof, asso-
ciated with a certain r , that the result is indeed among
the elements of the ADS instance having that r as root-
hash. If a trusted entity safely stores the current r , it can
query the ADS and execute a cryptographic check of the
proof against its trusted version of r to verify that the
query result matches what expected. The update operation
on key k changes v associated with k into a provided v′

and changes r in r ′, as well. Insertion and deletion also
change r . The interesting aspect is that a trusted entity that
intends to update the ADS should be able to autonomously

VOLUME 7, 2019 175665

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

FIGURE 28. An example of Merkle Hash Tree with four leaves and a
binary structure. We evidenced the elements regarding the proof of
〈k1, v1〉 with thick contours.

compute r ′ starting from the proof of the elements that are
changing.

A simple ADS is the Merkle Hash Tree [39] (MHT).
An example of MHT is shown in Figure 28. In our example,
the MHT is a binary search tree in which every leaf is
associated with a key-value pair 〈k, v〉. Function hash(·) is
a cryptographic hash function. Every node n is labeled by a
cryptographic hash H (n). If n is a leaf, we define H (n) =
hash(〈k, v〉). If n is an internal node, with n′ and n′′ its chil-
dren, H (n) = hash(H (n′)|H (n′′)). If n is the root, r = H (n)
is the root-hash of the MHT.

A typical application of MHT is to allow a client with
limited amount of resources to outsource the storage of a large
amount of data to an untrusted server. The client keeps only
a trusted version of the root-hash while the server keeps the
MHT. The server provides proofs for each query performed
by the client. A proof for a leaf is obtained by considering the
path from the leaf to the root and, for each node of the path,
putting the hash of the sibling into the proof (see Figure 28 for
an example). This allows the receiver of the proof to be able to
compute the root-hash from the content of the leaf, i.e., from
the result of the query. The client can compare the resulting
root-hash against its trusted copy to verify authenticity of the
reply. The length of the proofs is O(log n) for balanced trees
(where n is the number of leaves).

Suppose that the client intends to change the value associ-
ated with a certain key k . Client query the server for the k and
get the current associated v with its proof. After checking the
proof against its root-hash, client can compute the new root-
hash for a new value v′ just performing the same computation
as for proof checking but pretending the new value v′ is
associated with k . The obtained root-hash should be the root-
hash of the updated MHT, and be used as trusted root-hash
for subsequent queries.

A DB-tree can be adapted to serve as a persisted and effi-
cient ADS. In this case, we call it an authenticated DB-tree.
From the point of view of the algorithms, we use hash(a|b)
as aggregation function on a and b, and we consider cryp-
tographic hash values as a sort of aggregate values (details
are provided below). Note that, hash(a|b) is usually non-

associative, since standard hash functions (like, e.g., SHA-2)
are not associative.3 In this case, the concept of range query
is not correctly defined, and Algorithm 2 is not useful. On the
contrary, the new authenticated query operation is of interest
in this context, which allows the user not only to get the value
of a key but also to get the corresponding proof. Further,
without associativity, the structure of the tree impacts the
resulting root-hash. This is not desirable, since users would
like to uniquely associate a root-hash to a given content of the
ADS. To eliminate this dependency, we can ‘‘de-randomize’’
on the basis of the content as follows. In running Algorithm 1,
to choose the level associated with a key k , we suppose to
adopt a random generator that is initialized by a seed that we
set to k itself.4 In this way, given a key k , a level is determinis-
tically associated with k , while keeping unchanged the statis-
tics of the levels and the properties described in Section IV-B.

In an authenticated DB-tree, the hash of a node n
with n.aseq = a0, p1, a1, . . . , am−1, pm, am is hash(n) =
hash(a0|p1|a1| . . . |am−1|pm|am), where each ai = hash(ni)
and ni is the corresponding child. As we did in the rest of
the paper, we intend that missed ai’s are simply omitted in
the formulas. If n is a leaf, it has no children, hence, its hash
is computed on the concatenation of the pairs it contains,
unnoticed. The root of an authenticated DB-tree contains
only one hash, that is its root-hash. A proof, for a given
pair p = 〈k, v〉, is the sequence N of nodes that have k in
their range, ordered by ascending level, up to the root. This
set of nodes can be retrieved in one query round and has
size logarithmic in the number of elements contained in the
DB-tree (see Section V).
The client checks that the response to an authenticated

query operation is genuine, by the following procedure. It
computes hash(n) for the first node n ∈ N . For each node
n ∈ N after the first, let n′ be the node that precedes n in
N . Node n contains in n.aseq one hash that is related to the
node n′. This is the hash between the keys that are the closest
to k . This hash is ignored and substituted by hash(n′). Then,
hash(n) is computed and used in the next iteration. When
all nodes are scanned, the hash of the root is compared with
the trusted root-hash the client should have. A proof of non-
existence for key k has the very same structure, just the first
node of N does not contain a key-value pair of k and the keys
closest to k in n.aseq have no aggregate value between them.
The same checking procedure can be applied.

In an authenticated DB-tree, the algorithms to perform
update, insertion and deletion of a key-value pair are very
similar to those of the corresponding operations for a regular
DB-tree. We should take care of the following aspects. When
the server provides a set of nodes they should always be

3An associative cryptographic hash function was proposed by Tillich and
Zémor [57] in 1994. It resisted cryptanalysis attempts untill 2011 [24],
but now it is considered insecure. However, since these functions have
many interesting properties, the research is still active in this area (see, for
example, [6]) and in the future we might have cryptographic hash functions
both associative and secure, to use with regular DB-trees.

4A more practical approach is to compute hash(k) and take, from the
result, the position of the first bit that is zero.

175666 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

considered proofs and checked against the trusted root-hash
of the client before proceeding. This is always possible since
all DB-tree-changing algorithms deal with paths up to the
root of the DB-tree. After the change, hashes, including the
root-hash, are updated by the execution of Algorithm 3. After
executing any changing algorithm, the client should locally
store the new root-hash as the trusted root-hash to be used in
the following operations.

Concerning security, we assume a threat model in which
the DBMS can perform any tampering on the DB-tree with
the purpose to change the key-value pairs it contains. We do
not consider other kinds of attacks. The security of an authen-
ticated DB-tree is its ability to always detect any misbehavior
of the DBMS, i.e., we would like to rule out any false nega-
tive. As for Merkle Hash Trees, this is a direct consequence
of the inability of the untrusted DBMS to find a collision
on the adopted cryptographic hash function. In the context
of ADSes, correctness means that any misbehavior detected
by proof checks is a real DBMS misbehavior, i.e., we would
like to rule out any false positive. Correctness of DB-trees
derives directly from the ability of keeping invariants after
all DB-tree-changing operations. This comprises correctly
computing the hashes of all nodes, which is responsibility of
Algorithm 3.

Concerning performances of authenticated DB-trees in
practice, we note that all their operations interact with the
DBMS using exactly the same queries as for plain DB-trees.
Only the local processing performed by the overlay-logic
is slightly different. In all experiments of Section VI, the
time spent for the overlay-logic processing is negligible with
respect to the time spent to execute the queries. For authenti-
cated DB-trees, the overlay-logic may additionally need to
check proofs performing all needed cryptographic hashes.
But this turns out to be negligible, too, as we show in the fol-
lowing. For these reasons, in practice, authenticated DB-trees
perform like regular DB-trees. In particular, for insertion
and deletion, experimental results are essentially the same
of those shown in Section VI, hence they are not reported
here. An authenticated query for a key k selects only the
nodes n for which n.min < k < n.max. We measured the
average execution time of this query on the same DB-tree
of 1 million elements that we used in Section VI. The time it
takes on PostgreSQL (using SSD) is about 20ms (average on
200 random queries). Our instance has 23 levels, hence each
query returns at most 23 nodes, which should be interpreted
as the proof returned by the authenticated query performed on
the authenticated DB-tree. Now, we show that the time spent
to check a proof is negligible with respect to the time taken
to perform the query on the DBMS. The actual verification
of the proof should compute all the cryptographic hashes
along the proof up to the root. In our instance, each node
contains 2 key-value pairs and 3 ‘‘aggregates’’, that is hashes
of children, on average. To verify the proof, for each node,
we have to compute the hash of the pairs plus one hash of
the whole node. We performed the tests using SHA256. Each
hash takes about 1.5µs to be computed. Hence, the time taken

by proof verification turns out to be about 103.5µs. This is
four order of magnitude less than the time taken to perform
the query on the DBMS.

IX. DISCUSSION OF THE SIMPLIFYING ASSUMPTIONS
In Section III-C, we presented general architectural problems
related with overlay indexes and introduced some simplifying
assumptions. The objective of this section is to discuss these
assumptions, also considering the specific DB-tree approach,
and show whether generalizations are simple or require fur-
ther scientific investigation.

A. MIDDLE LAYER
In Section III-C, we mentioned the possibility to develop
a query rewriting middle layer to support overlay-indexes.
Query rewriting is a classical topic in database research
(see, for example, [2], [23], [26], [28], [45]), but practical
widely used realizations are rare. Concerning the develop-
ment of a middle layer targeted to DB-trees, we identify
some challenges. Firstly, query rewriting means dealing with
a complex SQL syntax and its many proprietary variations.
We think that the scientific interest of this aspect is marginal,
but the development effort is large. Further, a middle layer
may address only the exact kinds of queries shown in this
paper (passing all others queries to the DBMS unchanged) or
trying to support the optimization of more complex aggregate
(group-by) range queries, for example comprising equality
selections, two dimensional range selections, joins, etc. Some
of these objectives are direct extensions of what is described
in this paper, while some may require further scientific inves-
tigation. For example, suppose to have an aggregate range
query Q supported by a DB-tree T . To support Q′ derived
from Q by including an additional equality selection on a
column c, we can simply add c as the most significant part of
the key of T . On the contrary, the extension tomore-than-one-
dimension range queries is not trivial and, in our opinion, may
deserve further scientific investigation (see also Section X).
In any case, the middle layer should allow the user to specify
which DB-trees to build, specifying the key, the value, and the
aggregation function(s) to be supported. To do that, an exten-
sion of the data definition language should be provided. The
design of this extension is a critical aspect from the point of
view of the usability and of the power of the resulting layer.
Further, having a number of DB-trees at disposal, the middle
layer should be able to rewrite certain queries taking advan-
tage ot them, but only when this is deemed useful. This can
be regarded as an optimization problem per se that may be
independently studied. For example, the middle layer may
choose not to rewrite an aggregated range query whose range
is small.

B. TRANSACTIONS, MULTIPLE CLIENTS,
FAULT TOLERANCE
In this paper, for the sake of simplicity, we deliberately
avoided to consider the use of overlay-indexes and DB-trees
in a context where transactions are needed. Typical situations

VOLUME 7, 2019 175667

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

in which this occurs is when multiple clients access the same
DB-tree and when faults of the DBMS may occur. In princi-
ple, nothing prevents to execute the algorithms presented in
this paper within transactions (supposing to adopt a DBMS
that supports them). Algorithms 4, 5, and 6 follow the scheme
showed at the beginning of Section V-B. That is, they wait for
the reply of the read round, compute the changes and perform
the update round. However, the best practice is to avoid the
execution of schemes like this within a transaction. In fact,
a communication problem with the DBMS may keep the
transaction open (and involved tables locked) until a timeout
expires. A possible workaround to this problem is to move the
overlay-logicwithin theDBMSby using stored procedures (if
supported) or moving overlay-logic so close to the DBMS so
that network faults cannot independently occur (for example
within the same machine).

The above considerations also apply to the case in which
a DB-tree is associated with a regular table. In this case,
Algorithms 4, 5, and 6 should be executed in a transaction
together with the change of the regular table.

When changing operations are rare, and the DB-tree is not
associated with a regular table, optimistic approaches may
be adopted. For example, we could perform the read round
of a changing operation within a transaction and perform
the update round of that operation in a distinct transaction.
In the second transaction, before applying changes, it should
be checked, preferably directly within the DBMS, that no
change was applied (e.g., by another client) in the meantime
to the DB-tree. If the check fails, the transaction should
be aborted and the whole changing operation should be re-
run, starting from the query round. An interesting way to
perform this check is to use the same DB-tree to realize an
authenticated data structure (see Section VIII). In this case,
the root-hash can be checked to verify if any change to the
DB-tree occurred from the last read. It is possible to support
an aggregation function and a cryptographic hash within the
same DB-tree as explained in the following.

C. MULTIPLE AGGREGATION FUNCTIONS
There are cases where more than one aggregation function
〈fi, gi, hi〉, for i = 1, . . . , q, (see Section IV-B) should be
supported, where each fi(·) aggregates values in Ai, and each
gi(·) generates values in Ai from one or more columns. Here,
we refer to columns as if they were stored independently in
the database in a regular data table, but this is not strictly
needed (see Section III-C). If range selections are always
performed on the same key for all aggregation functions, we
can build a single DB-tree to support all of them. For this DB-
tree, the set A (see Section IV-B) is A1×· · ·×Aq, aggregation
function is defined as f (a1, . . . , aq) = (f1(a1), . . . , fq(aq)),
and functions g(·) and h(·) are consistently defined. Note that,
if the queries that we have to support perform range selections
on distinct columns, to support them, we have to construct
one DB-tree for each of that columns (having each of them as
its key). Cryptographic hash functions can also be supported
along with aggregation functions, if we take care of the fact

that they are not associative (see the details in Section VIII).
This allows us to support the optimistic approach described
at the end of the previous paragraph. In this case, checking if
a DB-tree has been changed since the execution of a previous
query, boils down to checking that its root-hash is unchanged.

D. CACHING, CONSISTENCY, BATCH INSERTION
In Section III-C, we mentioned the possibility to implement
caching in the overlay-logic. We also mentioned that con-
sistency problems may arise in the case of multiple clients.
This occurs when the DB-tree is changed by Algorithms 4, 5,
and 6. The most obvious workaround is to broadcast all
changes to all clients, so that they can update (or invalidate)
their cache. This approach is very demanding in terms of
networking and CPU resources, especially if changes and
clients are many. We may obtain most of the benefits of
caching bymoving the overlay-logic close to the DBMS or by
using stored procedures. In fact, in this case, the overlay-logic
can quickly access the DBMS, which we suppose to have its
own cache. Finally, we note that the notable case of batch
insertion performed by one client described in Section V-B is
essentially a special case of caching.

X. CONCLUSION AND FUTURE WORK
We showed how it is possible to support aggregate range
queries efficiently on conventional databases that do not
implement specific optimizations. To do that, we introduced
the DB-tree: a new data structure that realizes a specific
type of index that is represented at the database level (an
overlay-index) and can be accessed by performing regular
queries to the DBMS. It can be also customized in many ways
to support a wide class of aggregation functions, authenti-
cated data structures, and group-by range queries. DB-trees
can be queried downloading only O(log r) data (and hence
taking O(log r) time), with r the size of the data on which
aggregation is performed, while common DBMSes scanO(r)
data and thus take O(r) time to answer the same queries.
Experiments show that the improvement with respect to the
plain DBMS can be very large even for moderately large
datasets. DB-trees introduce some overhead for insertion and
deletion, which was experimentally measured to be a factor
from 2 to 20 in our tests.

Regarding future research directions, from the theoretical
point of view, it would be interesting to investigate a bi/multi-
dimensional generalization of DB-trees to support speedup of
aggregate range queries in GIS systems. This generalization
may be inspired to the work of Eppstein et al. [21] about skip
quadtrees.

From the practical point of view, it would be desirable to
have a framework that streamlines the use of DB-trees in
practical contexts, like VerdictDB [45] does for approximate
query processing. Further, experiments in a big-data context
may be useful to better asses the spectrum of applicability of
DB-trees.

175668 VOLUME 7, 2019

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

REFERENCES

[1] (Oct. 14, 2019). PostgreSQL 12.0 Documentation. [Online]. Available:
https://www.postgresql.org/docs/9.4/sql-createaggregate.html

[2] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy, ‘‘The Aqua
approximate query answering system,’’ ACM SIGMOD Rec., vol. 28,
pp. 574–576, Jun. 1999.

[3] F. Angiulli and F. Fassetti, ‘‘Indexing uncertain data in general metric
spaces,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1640–1657,
Sep. 2012.

[4] A. Borodin, S. Mirvoda, I. Kulikov, and S. Porshnev, ‘‘Optimization of
memory operations in generalized search trees of PostgreSQL,’’ in Proc.
Int. Conf., Beyond Databases, Archit. Struct.Cham, Switzerland: Springer,
2017, pp. 224–232.

[5] D. Boutcher and A. Chandra, ‘‘Does virtualization make disk scheduling
passé?’’ ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 1, pp. 20–24, 2010.

[6] L. Bromberg, V. Shpilrain, and A. Vdovina, ‘‘Navigating in the Cayley
graph of SL2(Fp) and applications to hashing,’’ Semigroup Forum, vol. 94,
no. 2, pp. 314–324, 2017.

[7] J. Celko, Joe Celko’s Trees and Hierarchies in SQL for Smarties.
Amsterdam, The Netherlands: Elsevier, 2012.

[8] B. Chandramouli, J. Goldstein, and A. Quamar, ‘‘Scalable progressive
analytics on big data in the cloud,’’ Proc. VLDB Endowment, vol. 6, no. 14,
pp. 1726–1737, 2013.

[9] S. Chaudhuri and V. Narasayya, ‘‘Self-tuning database systems: A decade
of progress,’’ in Proc. 33rd Int. Conf. Very Large Data Bases (VLDB
Endowment), 2007, pp. 3–14.

[10] S. Chavan, A. Hopeman, S. Lee, D. Lui, A. Mylavarapu, and E. Soyle-
mez, ‘‘Accelerating joins and aggregations on the oracle in-memory
database,’’ in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE), Apr. 2018,
pp. 1441–1452.

[11] L. Chen, Y. Gao, X. Li, C. S. Jensen, and G. Chen, ‘‘Efficient metric
indexing for similarity search and similarity joins,’’ IEEE Trans. Knowl.
Data Eng., vol. 29, no. 3, pp. 556–571, Mar. 2015.

[12] L. Chen, Y. Gao, A. Zhong, C. S. Jensen, G. Chen, and B. Zheng, ‘‘Indexing
metric uncertain data for range queries and range joins,’’ VLDB J., vol. 26,
no. 4, pp. 585–610, 2017.

[13] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, ‘‘Efficient
indexing methods for probabilistic threshold queries over uncertain data,’’
in Proc. 13th Int. Conf. Very Large Data Bases (VLDB Endowment),
vol. 30, 2004, pp. 876–887.

[14] A. S. Chiou and J. C. Sieg, ‘‘Optimization for queries with holistic func-
tions,’’ in Proc. IEEE 7th Int. Conf. Database Syst. Adv. Appl. (DASFAA),
2001, pp. 327–334.

[15] D. Comer, ‘‘Ubiquitous B-tree,’’ ACM Comput. Surv., vol. 11, no. 2,
pp. 121–137, 1979.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[17] Transaction Processing Performance Council. (Sep. 25, 2019). TPC
BENCHMARK H Decision Support, Standard Specification, Revision
2.18.0. [Online]. Available: http://www.tpc.org/tpc_documents_current
_versions/pdf/tpc-h_v2.18.0.pdf

[18] A. Cuzzocrea, ‘‘Providing probabilistically-bounded approximate answers
to non-holistic aggregate range queries in OLAP,’’ in Proc. ACM DOLAP,
2005, pp. 97–106.

[19] G. Di Battista and B. Palazzi, ‘‘Authenticated relational tables and authen-
ticated skip lists,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy.
Berlin, Germany: Springer, 2007, pp. 31–46.

[20] A. Eisenberg and J. Melton, ‘‘SQL: 1999, formerly known as SQL3,’’ ACM
SIGMOD Rec., vol. 28, no. 1, pp. 131–138, 1999.

[21] D. Eppstein, M. T. Goodrich, and J. Z. Sun, ‘‘Skip quadtrees: Dynamic
data structures for multidimensional point sets,’’ Int. J. Comput. Geometry
Appl., vol. 18, nos. 1–2, pp. 131–160, 2008.

[22] P. Flajolet and R. Sedgewick, ‘‘Mellin transforms and asymptotics: Finite
differences and rice’s integrals,’’ Theor. Comput. Sci., vol. 144, nos. 1–2,
pp. 101–124, 1995.

[23] J. Goldstein and P.-Å. Larson, ‘‘Optimizing queries using materialized
views: A practical, scalable solution,’’ ACM SIGMOD Rec., vol. 30,
pp. 331–342, 2001.

[24] M. Grassl, I. Ilić, S. Magliveras, and R. Steinwandt, ‘‘Cryptanalysis of the
Tillich–Zúmor Hash Function,’’ J. Cryptol., vol. 24, no. 1, pp. 148–156,
2011.

[25] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh, ‘‘Data cube: A relational
aggregation operator generalizing group-by, cross-tab, and sub-totals,’’
Data Mining Knowl. Discovery, vol. 1, no. 1, pp. 29–53, Mar. 1997.

[26] A. Gupta, V. Harinarayan, and D. Quass, ‘‘Aggregate-query process-
ing in data warehousing environments,’’ in Proc. 21st Int. Conf. Very
Large Data Bases. San Mateo, CA, USA: Morgan Kaufmann, 1995,
pp. 358–369.

[27] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, ‘‘Maintaining views
incrementally,’’ ACM SIGMOD Rec., vol. 22, no. 2, pp. 157–166, 1993.

[28] A. Y. Halevy, ‘‘Answering queries using views: A survey,’’ VLDB J.,
vol. 10, no. 4, pp. 270–294, 2001.

[29] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, ‘‘Generalized search trees
for database systems,’’ in Proc. 21st VLDB Conf., Zürich, Switzerland.
San Francisco, CA, USA: Morgan Kaufmann, Sep. 1995, pp. 562–573.

[30] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant, ‘‘Range queries in
OLAP data cubes,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
vol. 26, 1997, pp. 73–88.

[31] P. Jesus, C. Baquero, and P. S. Almeida, ‘‘A survey of distributed data
aggregation algorithms,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 381–404, 1st Quart., 2014.

[32] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, ‘‘Disk schedulers for
solid state drivers,’’ in Proc. 7th ACM Int. Conf. Embedded Softw., 2009,
pp. 295–304.

[33] M. Kornacker, C. Mohan, and J. M. Hellerstein, ‘‘Concurrency and recov-
ery in generalized search trees,’’ ACM SIGMOD Rec., vol. 26, pp. 62–72,
Jun. 1997.

[34] T. Kraska,M. Alizadeh, A. Beutel, E. H. Chi, J. Ding, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan, ‘‘SageDB: A learned database sys-
tem,’’ SpringerOpen, 2019.

[35] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, ‘‘Dynamic authenti-
cated index structures for outsourced databases,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2006, pp. 121–132.

[36] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, ‘‘No pane,
no gain: Efficient evaluation of sliding-window aggregates over data
streams,’’ ACM SIGMOD Rec., vol. 34, no. 1, pp. 39–44, Mar. 2005.

[37] K. Li and G. Li, ‘‘Approximate query processing: What is new and where
to go?’’ Data Sci. Eng., vol. 3, no. 4, pp. 379–397, 2018.

[38] I. F. V. Lopez, R. T. Snodgrass, and B. Moon, ‘‘Spatiotemporal aggregate
computation: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 17, no. 2,
pp. 271–286, Feb. 2005.

[39] R. C.Merkle, ‘‘A digital signature based on a conventional encryption func-
tion,’’ in Proc. Conf. Theory Appl. Cryptograph. Techn. Berlin, Germany:
Springer, 1987, pp. 369–378.

[40] S. Müller, L. Butzmann, S. Klauck, and H. Plattner, ‘‘Workload-aware
aggregate maintenance in columnar in-memory databases,’’ in Proc. IEEE
Int. Conf. Big Data, Oct. 2013, pp. 62–69.

[41] Metamorphy. (Jun. 21, 2019). Does
∑
∞

i=0 i
(
(1 − pi+1)m − (1 − pi)m

)
go to Infinity as m? Mathematics Stack Exchange. [Online]. Available:
https://math.stackexchange.com/q/3269979

[42] B. Palazzi, M. Pizzonia, and S. Pucacco, ‘‘Query racing: Fast completeness
certification of query results,’’ in Proc. IFIP Annu. Conf. Data Appl. Secur.
Privacy. Berlin, Germany: Springer, 2010, pp. 177–192.

[43] M. Paleczny, C. Vick, and C. Click, ‘‘The Java hotspot TM server com-
piler,’’ in Proc. Symp. Java TM Virtual Mach. Res. Technol. Symp., vol. 1,
2001, p. 1.

[44] D. Papadias, P. Kalnis, J. Zhang, andY. Tao, ‘‘Efficient OLAP operations in
spatial data warehouses,’’ in Proc. Int. Symp. Spatial Temporal Databases.
Berlin, Germany: Springer, 2001, pp. 443–459.

[45] Y. Park, B. Mozafari, J. Sorenson, and J. Wang, ‘‘VerdictDB: Universal-
izing approximate query processing,’’ in Proc. ACM Int. Conf. Manage.
Data, 2018, pp. 1461–1476.

[46] D. Pennino, M. Pizzonia, and F. Griscioli, ‘‘Pipeline-integrity: Scaling
the use of authenticated data structures up to the cloud,’’ Future Gener.
Comput. Syst., vol. 100, pp. 618–647, Nov. 2019.

[47] W. Pugh, ‘‘A skip list cookbook,’’ Univ. Maryland Inst. Adv. Comput.
Stud., College Park, MD, USA, Tech. Rep. CS–TR–2286.1, 1990.

[48] Quassnoi. (Feb. 7, 2019). Query Performance While Using Oracle Aggre-
gate Function, Stack Overflow. [Online]. Available: https://stackoverflow.
com/a/16034737/1439016

[49] R. Ramakrishnan and J. Gehrke, Database Management Systems.
New York, NY, USA: McGraw-Hill, 2000.

VOLUME 7, 2019 175669

D. Pennino et al.: Overlay Indexes: Efficiently Supporting Aggregate Range Queries and Authenticated Data Structures

[50] S. Sarawagi, ‘‘Indexing OLAP data,’’ IEEE Data Eng. Bull., vol. 20, no. 1,
pp. 36–43, Mar. 1997.

[51] J. Shanmugasundaram, U. Fayyad, and P. S. Bradley, ‘‘Compressed data
cubes for OLAP aggregate query approximation on continuous dimen-
sions,’’ in Proc. KDD, vol. 99, 1999, pp. 223–232.

[52] D. Ślęzak, R. Glick, P. Betliński, and P. Synak, ‘‘A new approximate
query engine based on intelligent capture and fast transformations of
granulated data summaries,’’ J. Intell. Inf. Syst., vol. 50, no. 2, pp. 385–414,
2018.

[53] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy, ‘‘Answering queries
with aggregation using views,’’ in Proc. VLDB, vol. 96, pp. 318–329,
1996.

[54] H. Su, M. Zait, V. Barrière, J. Torres, and A. Menck, ‘‘Approximate aggre-
gates in oracle 12C,’’ in Proc. 25th ACM Int. Conf. Inf. Knowl. Manage.,
2016, pp. 1603–1612.

[55] R. Tamassia, ‘‘Authenticated data structures,’’ in Proc. ESA, vol. 2832.
Berlin, Germany: Springer, 2003, pp. 2–5.

[56] A. Thomasian, ‘‘Survey and analysis of disk scheduling methods,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 8–25,
May 2011.

[57] J.-P. Tillich and G. Zémor, ‘‘Hashing with SL2,’’ in Proc. Annu. Int.
Cryptol. Conf. Berlin, Germany: Springer, 1994, pp. 40–49.

[58] V. Tropashko, ‘‘Nested intervals tree encoding in SQL,’’ ACM SIGMOD
Rec., vol. 34, no. 2, pp. 47–52, 2005.

[59] G. von Biiltzingsloewen, ‘‘Translating and optimizing SQL queries having
aggregates,’’ in Proc. 13th Int. Conf. Very Large Databases, Brighton,
U.K., Sep. 1987, pp. 235–245.

[60] H. Wang, P. Huang, S. He, K. Zhou, C. Li, and X. He, ‘‘A novel
I/O scheduler for SSD with improved performance and lifetime,’’ in
Proc. IEEE 29th Symp. Mass Storage Syst. Technol. (MSST), May 2013,
pp. 1–5.

[61] R. Wesley and F. Xu, ‘‘Incremental computation of common win-
dowed holistic aggregates,’’ Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1221–1232, Aug. 2016.

[62] X. Yun, G. Wu, G. Zhang, K. Li, and S. Wang, ‘‘FastRAQ: A fast approach
to range-aggregate queries in big data environments,’’ IEEE Trans. Cloud
Comput., vol. 3, no. 2, pp. 206–218, Apr./Jun. 2014.

DIEGO PENNINO received the M.S. degree
in computer science from Università degli Studi
Roma Tre, in 2016, where he is currently pursuing
the Ph.D. degree in computer science with the
Engineering Department. His research is involved
in the field of integrity and security of the data,
and in the field of blockchain and smartcontracts.
He participated and won a contest in the Scientific
School on Blockchain and distributed ledger tech-
nology of Pula in June 2018.

MAURIZIO PIZZONIA is currently an Assistant
Professor with Università degli Studi Roma Tre,
Italy. His research interests include design of algo-
rithms and software systems for cybersecurity,
internet analysis, and information visualization.
He published more than 40 papers in scientific
conferences and journals. He served as a Coordi-
nator for research units and work packages in two
European projects. He is very much oriented in
solving real problems and in devising innovative

solutions that can lead to applications. In 2011, he co-founded a start up in
cloud security. He has been teaching cybersecurity courses, since 2004.

ALESSIO PAPI received the bachelor’s degree
(Hons.) in computer science from the Engineer-
ing Department, Università degli Studi Roma Tre,
Italy. He is currently pursuing the M.Sc. degree
in computer science program, willing to deepen
his knowledge about cybersecurity, artificial intel-
ligence and distributed systems. Patient and eclec-
tic, he always prefers the challenging path, rather
than the trivial one. He is interested in data
structures, optimization, operating systems, and
computer networks.

175670 VOLUME 7, 2019

