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ABSTRACT Trust inference is essential in a plethora of data mining and machine learning applications.
Unfortunately, conventional approaches to trust inference assume trust networks are available, while in
practice they must be derived from social network features. This is however a difficult task which has to
cope with challenges relating to scarcity, redundancy and noise in the available user interactions and other
social network features. In this work, we introduce the new problem of Trust Network Inference (TNI), that
is, inferring a trust network from a sequence of timestamped interaction networks. To solve the TNI problem,
we propose a principled approach based on a preference learning paradigm, under a preference-based racing
formulation. The proposed approach is suitable for addressing the above challenges, moreover it is versatile
(i.e., independent from the social network platform) and flexible w.r.t. the use of topological and content-
based information. Extensive experimental evaluation focusing on two distinct ground-truth scenarios, has
provided evidence of the meaningfulness and uniqueness of our TNI approach, which can be regarded as
key-enabling for any application that requires to handle a trust network associated with a social environment.

INDEX TERMS Trust computing, dynamic social networks, network inference, preference-based racing
algorithm.

I. INTRODUCTION
The term trust-based social network, or simply trust network,
commonly refers to a graph of entities (i.e., individuals) that
are linked through asymmetric relationships that correspond
to subjective trust statements. Given a trust network, trust
inference is the task of predicting a new relation between two
nodes, so that the locally inferred trust score can be regarded
as a personalized opinion of one user (trustor) with respect
to another user (trustee). Trust inference is an essential task
in many data analysis and machine learning applications,
from social influence propagation and opinion spreading to
recommender systems and privacy preserving, whose impact
extends also to peer-to-peer networks and mobile ad-hoc
networks [20].

A. CHALLENGES IN TRUST INFERENCE
The conventional approach to trust inference is to compute
the trust between any two non-adjacent nodes in a trust
network by considering the different paths from one node
to the other, as well as strategies for trust propagation and
for aggregating the propagated trust values through different
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paths [20], [22]. Unfortunately, all existing trust-inference
approaches rely on the assumption that a trust network has
been already formed, while in reality trust networks are not
naturally available. Rather, trust relations must first be deter-
mined from the available information in a social environment,
e.g., the history of users’ activities and their interactions.

Computing trust relations is however a particularly dif-
ficult task, because of a number of challenges that already
arise at data source level (i.e., not considering the inevitable
bias of the particular algorithmic solution to the problem).
In fact, the amount of information representing the observed
interactions and activities of users in a social network, could
be limited in size as well as in quality. More specifically,
a social network may contain a significant amount of redun-
dant or irrelevant relations as well as noise in the information
that express the strength of interaction between any two users.

B. CONTRIBUTIONS
In this work, we face the above challenges by addressing
a new problem we named Trust Network Inference (TNI).
Given a sequence of timestamped interaction networks as
input, the goal of TNI is to infer from this sequence a directed
weighted network, whose nodes are the users in the temporal
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networks and links denote trust relationships with associated
trust scores.

It should be emphasized that in TNI there is no dependency
on existing trust relations to make predictions on trustworthi-
ness scores or on new trust relations. Therefore, TNI emerges
as a divergence from the conventional trust inference and trust
link prediction problems (e.g., [7], [12], [15], [16]). Also, TNI
differs from trust ranking methods (e.g., [8], [10], [17]), since
in TNI the building of trust relations is extended to all nodes in
a network, not only to the most trusted or reputable ones. Fur-
thermore, our TNI problem is different from the one treated
in [6], which considers trustworthiness and untrustworthiness
inference through clustering all entities into two groups (i.e.,
good and misbehaved), under various representative attack
models.

We propose to solve the TNI problem based on a gener-
alized preference learning paradigm. We believe that pref-
erence learning provides key advantages in addressing all
the aforementioned issues, i.e., limitedness, redundancy and
noisy of the information about the users’ interactions from
which a trust network is to be inferred. More specifically,
under a preference-based top-k selection problem, our pro-
posed approach aims to find a ranking of the preferential
pairings that each target entity would choose to form its trust
relationships. To this purpose, we resort to an adaptive sam-
pling strategy, and instatiate it according to three canonical
ranking models that correspond to different levels of ranking
pairwise preferences. One further key feature of our approach
is domain-independency, as it does not rely on platform-
specific types of user interactions. Nonetheless, our approach
is designed to exploit both topological information and, when
available, content information relating to the user interaction
dynamics.

Evaluating inferred trust relations and associated scores is
another critical aspect in research contexts related to trust
computing. In this work, we also cope with such a challenge
and devise two scenarios based on distinct notions of ground-
truth: the one referring to the availability of trust classes
(i.e., cohesive groups of mutually trusted users), and the other
corresponding to the availability of a reference trust network.
Our extensive, ground-truth-driven experimental evaluation
has shown the meaningfulness of our proposed approach
in both evaluation scenarios, on several dynamic interaction
networks and against competing methods.

C. PLAN OF THE PAPER
The remainder of this paper is organized as follows. Section II
briefly discusses related work on trust inference — note that,
given the relative novelty of the TNI problem under con-
sideration, we shall provide a deliberately concise summary
of major existing notions and approaches to trust inference,
without any ambition to survey methods for trust comput-
ing. Section III introduces the problem of Trust Network
Inference, and Section IV describes our proposed approach.
Sections V and VI present methodology, data and results of

our experimental evaluation. Finally, Section VII concludes
the paper.

II. RELATED WORK ON TRUST INFERENCE
Trust inference has attracted much attention in data mining
and related fields, and a variety of studies have been pro-
posed in literature [20]. One way of interpreting the problem
of trust inference is to model it in terms of either edge
feature or node feature, a.k.a. ‘‘local’’ and ‘‘global’’ trust
computing. In the first case, a trust relation is to be created
for any two non-adjacent nodes in a network, through a
mechanism of inference, resp. prediction, if the network is
modeled on existing trust relations (i.e., it is a trust network)
(e.g., [7], [12], [15], [16]), resp. on social network features
(e.g., [2], [21]). Conversely, trust inference at node-level
corresponds to computing a trust score for each node in a
network, and hence it is more appropriately regarded as a
trust-oriented global ranking of the users, which can be useful
to build trust communities [17], or in general to discriminate
between objectively trust and distrust entities in a network
(e.g., [8], [10], [19]).

Our work refers to the local-trust computing perspec-
tive. However, as already mentioned in the Introduction,
we address the trust network inference problem, for which the
trust network is the output, rather than the input as in conven-
tional trust inference approaches. Note also that our work is
substantially different from previous attempts to TNI-related
problems, such as [12]: in that work, a user-domain-based
trusted acquaintance chain discovery algorithm is developed
to make the computation of short trusted paths more efficient;
however, unlike our approach, the method in [12] strongly
depends on the definition of domains/categories for the con-
tent in the input social network. Also, our inference problem
is different from the one considered in [6], which assumes that
all entities are clustered into two groups (i.e., good andmisbe-
haved entities), and a belief propagation method is developed
to estimate that one entity belongs to different groups, simul-
taneously inferring its trustworthiness and untrustworthiness
values, according to different attack models in interactional
networks.

III. PROBLEM STATEMENT
We are given a set V of entities in a social environment
(i.e., users), and a temporal network G as a series of graphs
over discrete time steps (G1,G2, . . . ,GT ), with time horizon
T , where Gt = 〈Vt ,Et ,wt 〉, with 1 ≤ t ≤ T , is the
graph at time t , with set of nodes Vt and set of directed
edges Et . Each node in Vt corresponds to a specific instance
from the subset V t of entities that occur at time t . Note that
entities might occasionally appear and disappear in different
time steps. Each edge e = (vi, vj) ∈ Et corresponds to
an observed interaction between nodes vi, vj, which can be
of different type depending on the specific functionalities
and information available from the online social environ-
ment under consideration (e.g., mentions, answers/replies, re-
posts, etc). The snapshot graphs Gt are also associated with
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an edge weighting function wt (·) to quantify the strength of
each interaction; by default, the weight of an edge is set to 1.

We consider the Trust Network Inference (TNI) problem,
that is, generating a new network from interactional dynamics
observed through G, whose nodes correspond to the entities V
in G and links are inferred to denote a trust/distrust relation-
ship between any two entities that satisfy certain relational
constraints. Such constraints are meant to be specified w.r.t. a
predetermined scheme of selection of trust-context, denoted
as C.

The trust-context is a model for inducing a subgraph of G
from each entity v, denoted asCv, whose structural expansion
intuitively corresponds to the extent of trust that v can exert
towards other entities. Note that the induced trust-context
subgraphs of any two entities are not to be necessarily dis-
joint.

We will refer to the trust network inferred from G, w.r.t.
a trust-context scheme C, as a weighted directed graph T =
〈V, E, ω〉, with set of trust links E =

⋃
v∈V Ev, where Ev is

a set of edges between entities in the node-set of the induced
subgraph Cv for v in accord with C, and ω : E → [0, 1] is a
weighting function that specifies the trust level of each link,
where 0 means total lack of trust (i.e., distrust) and 1 means
fully trust from a source to a target node. We intuitively
formulate the TNI problem as follows:
Problem 1 (Trust Network Inference (TNI)): Given a tem-

poral network G built over interactions observed in a time
period T between entities in a set V , and given a trust-
context scheme C, infer a trust network T for all entities in
V by exploiting the topological information available from
each snapshot of G (along with, optionally, content-based
information of the interactions) according to the trust-context
scheme C.

IV. OUR PROPOSED METHOD FOR TRUST NETWORK
INFERENCE
We propose to solve the TNI problem through a general-
ization of the preference-based top-k selection problem over
each entity in the input temporal network. Next, we provide
background on that, then we discuss details on our proposal.
Table 1 summarizes main notations used throughout the rest
of the paper.

A. BACKGROUND ON PREFERENCE-BASED TOP-K
SELECTION
Consider a finite set of decision alternatives, or options,
O = {o1, . . . , oN }, for which the following assumptions
hold: (i) the options in this set are pairwise comparable,
(ii) there exists a finite number of samples, from an unknown
pairwise-preference distribution, that provide information
about whether or not an option might be preferred to another
one, and (iii) the samples could be ‘‘noisy’’ (i.e., they could
significantly vary w.r.t. the unknown distribution model).

The preference-based top-k selection problem is to choose
the set of k options (k < N ) that maximize the preference
over all alternatives, which is formally equivalent to the

TABLE 1. Main notations and their descriptions.

following optimization problem:

argmax
S⊂O,|S|=k

∑
oi∈S

∑
oj∈O∧j 6=i

I{oj ≺R oi}, (1)

where ≺R is a strict preference order relation according to a
predefined ranking model R, such that oj ≺R oi means the
option oi is preferred to oj, and I{·} is the indicator function
which is equal to 1 if the argument is true, 0 otherwise. Note
also that, given that the outcomes of the pairwise comparisons
could be noisy and the available number of samplings are
limited, the optimality of the solution to Eq. 1 should be
guaranteed with probability at least 1− δ, for any predefined
probability δ; typically, δ = 0.1.

To quantify the pairwise preferences, the outcome of a
comparison between oi and oj is modeled as a random vari-
able Yi,j, which assumes value 0 (resp. 1) if oi ≺ oj (resp. oi �
oj), and a ‘‘neutral’’ 1/2 otherwise. Given a pair oi, oj and a set
of ni,j realizations of their comparison {y(1)i,j , . . . , y

(ni,j)
i,j } of Yi,j,

assumed to be independent, the expected value yi,j := E[Yi,j]
can be estimated as:

ȳi,j =
1
ni,j

ni,j∑
l=1

y(l)i,j . (2)

1) RANKING MODELS
A ranking modelR produces a complete order of the options
in O upon the preference relation matrix Y = [yi,j]N×N ∈
[0, 1]N×N . Following [4], we consider three different models:
(i) Copeland’s ranking (CO), (ii) weighted voting, or sum of
expectations (SE), and (iii) random walk (RW) ranking.
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FIGURE 1. Overview of our proposed framework for trust network inference.

Copeland’s ranking determines that option oi is preferred
to option oj (oj ≺CO oi) if and only if bj < bi, where
bi = |{oh ∈ O | yi,h > 1

2 }|, i.e., whenever oi beats
more options that oj does. According to sum of expectations
ranking, oj ≺SE oi holds if and only if

∑
h 6=j yj,h <

∑
h 6=i yi,h.

Random walk ranking first requires a left-stochastic version
S = [sij]N×N of the matrix Y, such that si,j =

yi,j∑N
l=1 yl,j

.

Then, the ranking of options is determined as the stationary
probability distribution π = (π1, . . . , πN ) of the Markov
chain underlying S. Finally, the options are ranked according
to the computed probabilities, i.e., oj ≺RW oi iff πj < πi.

B. THE TNI ALGORITHM
Given a temporal network G, we solve the TNI problem as
a generalized preference-based top-k selection problem, for
each entity in G, under constraints given by a predefined
trust-context scheme C. The model C is used to determine the
optionsO for pairing each target entity with its ‘‘trustworthy’’
entities.

Our idea is to generate the edges and associated scores of
the trust network to be inferred on the basis of the solution
of a preference-based racing (PBR) algorithm applied to
each target entity. PBR is a particular approach to the top-k
selection problem based on an adaptive sampling strategy.

Algorithm 1 Trust Network Inference(G=(G1, .,GT ), C, R,
k , nmax , δ)
1: ϒ ← ∅

2: for all v ∈ V do
3: Ov← computeTrustContextOptions(G, v, C)
4: Y← PDPP(G, v, Ov) {Probability distributions of

pairwise preferences for v}
5: Ȳ← PBR(Y, v,Ov, k , nmax , δ,R) {Preference-based

racing to compute the ranking scores}
6: ϒ ← ϒ ∪ {Ȳ}
7: end for
8: 〈E, ω〉 ← computeTrustEdges(ϒ,R)
9: return T = 〈V, E, ω〉

A schematic depiction of the proposed framework for
trust network inference is presented in Figure 1, whereas
Algorithm 1 shows the pseudo-code of our TNI method. The

algorithm works as follows: for each entity v in the temporal
network G, it starts with the identification of the entity-
options for v according to a predefined trust-context model C
(Line 3). Then, the probability distributions of pairwise pref-
erences (PDPP)Y are computed for v based on its interaction
activities observed in G (Line 4). Using a preference-based
racing algorithmic scheme, a ranking of trust relations is
computed for v according to a selected rankingmodelR (Line
5). Finally, the solutions provided by the racing procedure
for all entities are used to determine both the edges and the
trust scores (Line 8) to output the trust network T . We now
elaborate on each of the main steps in Algorithm 1.

1) COMPUTING THE TRUST-CONTEXT OF ENTITIES
The trust-context model C corresponds to the search space
for the entity-options to identify as the trustworthy ones for
any given target entity. One intuitive way of defining C is
to instantiate it as the ego-network of the target entity. This
notion is also supported by previous studies on trust inference
which have provided evidence on that shorter paths from
the trustor are more accurate to predict trust [7], and that
the dilution of trust through the propagation process tends to
weaken the predicted trust [13].

In the following, we will refer to the above definition of
trust-context model, restricted to the out-neighborhood of any
target entity v, i.e., all entities occurring as out-neighbors of
v in at least one snapshot graph in G. Clearly, the search
space for the TNI problem can also be defined accord-
ing to other topological structures, such as expanded ego-
networks or community structures. This is left as a further
direction of research.

2) BUILDING THE PREFERENCE DISTRIBUTIONS
As previously discussed in Sect. IV-A, the true pairwise
preference distributions are assumed to be unknown, however
their realizations (i.e., outcomes of random variables Yi,j)
can be estimated as the observations of interaction at each
snapshot Gt .
Given a target entity v in G, every pair of entities occurring

within its trust-contextCv are regarded as options for v, which
can be compared at most T times. For entities vi and vj,
we denote the outcomes of these comparisons (w.r.t. v) as
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Yi,j = y(1)i,j , . . . , y
(T )
i,j . To build each of the pairwise preference

distributions for any entity v, we consider, for each snapshot
Gt = 〈Vt ,Et ,wt 〉, the set of v’s outgoing nodes, denoted as
Nt (v), and evaluate the following outcomes for the variables
Yi,j associated to v:

Outcome 1: vi /∈ Nt (v) ∧ vj /∈ Nt (v). In this case, the two
entities vi and vj are not comparable at time t , although, being
both in Cv, they will be in some other snapshot. But at time t ,
vi and vj will not be considered to determine y(t)i,j .
Outcome 2: vi ∈ Nt (v)∨vj ∈ Nt (v). Let us consider a node-

similarity function sim(t)
: Vt × Vt 7→ [0, 1] and define it as

a linear combination of two functions:
• a structural affinity function sim(t)

S : this can efficiently
be computed by resorting to standard neighborhood-
based overlapmeasures; for instance, Jaccard similarity,
i.e., sim(t)

S (v, vi) =
|Nt (v)∩Nt (vi)|
|Nt (v)∪Nt (vi)|

), or Adamic-Adar index,

i.e., sim(t)
S (v, vi) =

∑
u∈Nt (v)∩Nt (vi) log(|Nt (u)|)

−1. One
alternative is to consider a vector similarity function
to apply to the multidimensional representations of any
two nodes, which would be obtained through node-
embedding techniques in graphs, such as, e.g., node2vec
(see [5] for a comprehensive survey).

• a content affinity function sim(t)
C : the edge-weighting

function wt expresses the strength of content-based
interaction for any two nodes in Gt , therefore
sim(t)

C (v, vi) := wt (v, vi). To this aim, we might consider
the opportunity of computing a sentiment score associ-
ated with the available text content (cf. Sect. V). Note
that, if no content-based information is associated with
the interaction between v and vi at time t , wt (v, vi) is
assumed to be 1.

The two above functions are hence combined as follows:

sim(t)(v, vi) = α · sim
(t)
C (v, vi)+ (1− α) · sim(t)

S (v, vi), (3)

for any pair (v, vi), with α ∈ [0, 1] (by default set to 0.5).
Finally, we compute the v’s preference of choosing vi

over node vj at time t as the probability value given by the
following logistic function:

y(t)i,j :=Pr(vi � vj)=
1

1+ e−f (i,j)·(sim(t)(v,vi)−sim(t)(v,vj))
, (4)

where f (i, j) corresponds to the steepness of the logistic,
we define as f (i, j) = λ · (sim(t)(v, vi)+ sim(t)(v, vj)), where
λ is a scaling factor. Our motivation behind this analytical
choice is twofold. First, since the similarity values range in
[0, 1], and hence their differences range in [−1, 1], the full
domain of values of the logistic function would not be used if
the steepness value was 1. Therefore, we introduce a scaling
factor to better distribute the y(t)i,j values within (0, 1); for this
purpose, we set λ to 10, which ensures the spanning through
the interval (0, 1). Moreover, our definition of the steepness
function and λ setting is such that the sum of similarities
is considered to weight more pairwise comparisons between
more similar entities than dissimilar ones. Note also that Eq. 4
is symmetric, i.e., Pr(vi � vj) = 1− Pr(vj � vi).

Algorithm 2 PDPP (G = (G1, . . . ,GT ), v,O)
1: Initialize Y = [Yi,j]N×N with empty lists
2: for t = 1 to T do
3: for (vi, vj) ∈ O ×O, vi 6= vj 6= v, vi 6= v do
4: if vi ∈ Nt (v) ∨ vj ∈ Nt (v) then
5: Compute sim(t)(v, vi) and sim(t)(v, vj)
6: y(t)i,j ← Pr(vi � vj) {Using Eq. 4}

7: add(Yi,j, y
(t)
i,j )

8: return Y

Algorithm 3 PBR (Y, v,O, k, nmax , δ,R)
1: S = D← ∅ {Set of selected (S) and discarded (D)
options}

2: Initialize with zeros: B = [ci,j]N×N , Bu =

[ui,j]N×N , B` = [li,j]N×N {Confidence bound
matrices}

3: ni,j← 0, ∀oi, oj ∈ O {Sample counts}
4: A← {(oi, oj)|i 6= j, 1 ≤ i, j ≤ |O|} {Set of active option
pairs}

5: while (ni,j ≤ nmax ,∀i∀j) ∧ |A| > 0 do
6: for all (oi, oj) ∈ A do
7: ni,j← ni,j + 1
8: y

(ni,j)
i,j ∼ Yi,j {Sample from the pairwise preference
probability distribution}

9: end for
10: Update Ȳ = [ȳi,j]N×N with the new samples {Using

Eq. (2)}
11: for i, j = 1 to N do
12: ci,j←

√
1

2ni,j
log 2N 2nmax

δ
{Update Hoeffding

confidence bounds Bu,B`,B}
13: li,j← ȳi,j − ci,j, ui,j← ȳi,j + ci,j
14: end for
15: (A, S,D)← SamplingStrategy

(R,A, Ȳ,N , k,Bu,B`,B,D) {Algorithm 4}
16: end while
17: return S, Ȳ

Upon the above definitions, we build the pairwise pref-
erence distributions for a target node v as shown in Algo-
rithm 2. Sampling from these distributions will correspond
to randomly extracting an element from the lists Yi,j. It
should be emphasized that this sampling is important to
ensure robustness of the whole approach w.r.t. noisy com-
parisons; we shall discuss this point later in Sect. IV-B.3
The output of Algorithm 2 then becomes the input for the
preference-based racing algorithm (Algorithm 3). It should
be noted that our approach to the computation of pairwise
preference distributions diverges from the one adopted in [4]:
here, while we still do not evaluate single options quanti-
tatively (as in value-based racing), we let any variable Yi,j
assume values within the range (0, 1), to express a degree
of preference of oi over oj, rather than a 0/1 (or ternary)
decision (cf. Sect. IV-A).
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3) PREFERENCE-BASED RACING
Following [4], the preference-based racing (PBR) procedure,
shown in Algorithm 3, is responsible for identifying, among
the entities in the context O of an input target entity, the top-
k trustworthy ones (or equivalently the top-k trust edges)
according to a predefined ranking model R. Besides k,R,
and the probability guarantee (δ, cf. Sect. IV-A), the algorithm
requires an additional parameter, nmax , to control the number
of samplings for each pairwise preference probability distri-
bution (i.e., Yi,j, with oi, oj ∈ O).
As mentioned before, the sampling step from each of the

pairwise preference probability distributions lends the algo-
rithm more robust to the presence of ‘‘noise’’, i.e., irrele-
vant node-relations such as sporadical links and/or wrongly
observed links that may occur across the input temporal
network.

The algorithm alsomaintains a set of active pairs of options
(A), i.e., options whose pairwise preference distributions
need to be sampled more in order to decide which one is bet-
ter, with enough high degree of confidence. Racing methods
employ confidence intervals, typically computed through the
Hoeffding bound, derived from the concentration property of
themean estimate [4]. To this purpose, Algorithm 3maintains
the estimates yi,j with their confidence intervals [`i,j, ui,j] and
iteratively samples from the pairwise preference distribution
until there is enough confidence about the top-k nodes or the
maximum number of samplings is reached (Line 5). Accord-
ing to the updates values of confidence bounds, the set of
current selected options S (i.e., top-k ones) and discarded
options D (not top-k) are updated. This is handled by pro-
cedure SamplingStrategy (Line 15), which is sketched in
Algorithm 4.

Algorithm 4 SamplingStrategy (R,A, Ȳ,N , k,Bu,B`,
B,D)
1: S ← optionsToSelect(A,B`,Bu,N , k,R)
2: D← D ∪ optionsToDiscard(A,B`,Bu,N , k,R)
3: for (oi, oj) ∈ A do
4: if not isStillToUpdate((oi, oj), S,D,B`,Bu,B, Ȳ,R)

then
5: A = A \ {(oi, oj)}
6: S ← top-k options according to R
7: return (A, S,D)

According to [4], Algorithm 4 initially checks if some
options can be included among the top-k or discarded ones
with high enough probability (Lines 1 and 2). This step
is performed differently according to the ranking model R
(cf. Sect. IV-A), whereby the confidence intervals are used to
decide with high probability that an option is better or worse
than another. Next we provide details about the different
sampling strategies.
• CO-based strategy: the aforementioned step is per-
formed by counting, for each option oi, the set of better
options wi = |{oj | li,j > 1/2, i 6= j}| and worse

options zi = |{oj | ui,j < 1/2, i 6= j}|. Then, an option
oi is among the top-k options with high probability if
|{oj | |O|−zi < wj}| > |O|−k while it is to be discarded
if |{oj | |O| − wi < zj}| > k .

• SE-based strategy: in this case, first the ranking score
definition is applied to lower/upper bounds, i.e., for each
option oi, the averages li = 1

|O|−1
∑

j 6=i li,j and ui =
1

|O|−1
∑

j 6=i ui,j are computed. Then, similarly to the CO
case, an option oi is included among the top-k options
with high probability if |{oj | uj < li}| > |O| − k and
discarded if |{oj | ui < lj}| > k .

• RW-based strategy: when RW is used as ranking model,
selecting and discarding of option is based on the
exploitation of properties of the stationary distribution
of transition matrices. An upper bound on the difference
between the estimated stationary distribution and the
unknown true one is used in order to select the next
pairwise preference distributions to sample from: the
pairs selected are those whose sampling enable as much
decrease as possible of this upper bound. Moreover,
the same bound is exploited in order to determine the
stopping criterion of the PBR procedure. Formal details
are reported in Appendix.

For each active pair of options (oi, oj), a condition is
checked (Line 4) to decide whether it is not necessary any-
more to sample from the pairwise preference distribution of
(oi, oj) — this holds either because with high probability oi is
better (resp. worse) than oj or because one of the two options
need to be selected (resp. discarded).
The Role of k in the PBR Procedure: It is worth noting

that Algorithm 3 outputs the top-k trustworthy nodes together
with the whole preference estimates Ȳ, which are fed into
the computeTrustEdges function to finally compute the trust
edge-weights in the trust network. This is done since, besides
identifying the top-k trust edges (i.e., trust relationships), our
goal is also to infer distrust links, which can be extracted
through Ȳ. In other terms, k takes the role of model parameter
in the PBR procedure and only within the scope of this
procedure; by contrast, in order to infer the trust network,
all preference estimates may be taken into account so that
each node may have more than k trust/distrust outgoing
links.

4) COMPUTING THE TRUST EDGE-WEIGHTS
For any given target entity v, the edge-weights in the trust
network being generated are differently computed depending
on the chosen ranking model and sampling strategy. For each
vi in the Ȳ matrix associated to v, using the Copeland’s

ranking, we set ω(v, vi) =
|ȳi,j:ȳi,j> 1

2 ,i 6=j|
|Ov|

. Note that the
normalization is required since we want trust scores ranging
in [0, 1]. For the other two sampling strategies, no normal-
ization is required since the ranking scores are already in
[0, 1]. In fact, for the SE-based strategy, we set ω(v, vi) =
ȳi,j, whereas for the RW-based strategy, we set the edge
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TABLE 2. Ground-truth based evaluation types.

weights to the values stored in the stationary distribution π ,
i.e., ω(v, vi) = πvi .

C. COMPUTATIONAL COMPLEXITY ASPECTS
The time complexity of TNI is determined by the cost of
its two main phases: computing the preference probability
distributions and preference-based racing.

Given a target entity v and its context Ov, the time com-
plexity of building its preference distributions (Algorithm 2)
isO(T |Ov|

2τsim), where τsim is the cost of similarity computa-
tion. This is explained since we need tomake |Ov|(|Ov|−1)/2
pairwise preference comparisons (through Eq. 3) between
entities vi, vj ∈ Ov for each of the T timesteps, and each of
these comparisons involves two structural similarity compu-
tations (i.e., sim(v, vi) and sim(v, vj)).
The asymptotic cost of the second phase (Algorithm 3) is

determined by the loop which, in the worst case, is executed
nmax times when a satisfactory (according to δ) solution to
the PBR problem cannot be found before. The cost of each
iteration is O(|Ov|

2
+ τSS ), where τSS is the cost of the

sampling strategy. Moreover, τSS = O(|Ov|
2) for each of

the sampling strategies we considered, because we need to
check (in constant time) a condition for each pair of options
(Line 4 in Algorithm 4). Thus, the cost of the second phase
is O(nmax |Ov|

2).
The temporal cost of TNI for each entity v is O(T |Ov|

2

τsim + nmax |Ov|
2) = O(|Ov|

2(T · τsim + nmax)), and the total
cost is O(

∑
v∈V |Ov|

2 (T τsim + nmax)).
The spatial cost to solve TNI for each target entity v is

determined by the space needed to store the pairwise prefer-
ence distributions, thus its asymptotic growth is O(T · |Ov|

2),
since we need to store for each timestep theO(|Ov|

2) pairwise
preference realizations which made up the distributions. The
overall space complexity is O(T · (maxv∈V |Ov|)2), since we
can sequentially and independently solve the set of |V| PBR
problems. Nonetheless, the approach is easily parallelizable
by partitioning the set of entities, independently solving the
PBR subproblems, then merging the results.

V. EVALUATION METHODOLOGY
We present our ground-truth-based methodology (Sect. V-A),
the evaluation criteria (Sect. V-B) and datasets (Sect. V-C).
Also, in Sect. V-D, we discuss the methods involved in a stage
of comparative evaluation with TNI.

A. GROUND-TRUTH FOR TRUST NETWORK INFERENCE
To assess the meaningfulness of the results obtained by
our TNI, we conducted different stages of evaluation based

on two general, all-inclusive notions of ground-truth. These
are hereinafter referred to as trust-class ground-truth and
trust-network ground-truth. As reported in the summary of
Table 2, a ground-truth in our setting is either based on the
notion of trust class or on the availability of a reference trust
network for the input dynamic network.
The former corresponds to trust relations existing within a

cohesive group of users in the input dynamic network, i.e., a
trust class is regarded as a group of individuals whereby it is
likely that they trust each other while they do not trust individ-
uals outside the group. As exemplary domains, we recognize
inferring trust network from interactions in real-life parties
(i.e., contact networks) and from interactions occurring in
collaborative networks (Table 2). Notably, given the relation
of trust classes with the time-evolving interaction data, this
ground-truth-based approach can help assess the discovery
of trust/distrust relationships that are latent in the interaction
data.

Trust-network ground-truth instead relies on a finer-grain
type of trust relation, i.e., between pairs of users, which cor-
responds to the availability of a trust network that is regarded
as a reference for the input dynamic network. The challenge
in this case is that the ground-truth network may not be
necessarily derived from interactions observed in the input
time-evolving network data (i.e., two users may trust each
other even though they never had a direct connection).

It should be emphasized that both the ground-truth classes
and the reference trust networks were used not to infer a trust
network, but only for evaluation purposes.

B. ASSESSMENT CRITERIA
Given a trust network T = 〈V, E, ω〉 inferred from a dynamic
interaction network G, we define a ground-truth trust classifi-
cation as a partitioning 0 of the set of entities V into disjoint
trust classes. Also, we denote with 0(v) the trust-class of
entity v. We considered the following trust-class ground-truth
based assessment criteria, for each entity v:
• Binary preference (Bpref) [3], which measures how
many judged relevant candidates Rel are retrieved (i.e.,
occur in T ) ahead of judged irrelevant candidates
notRel:

bpref (v) =
1
|Rel|

∑
vr∈Rel

1−
|rankedHigher(vr )|

|Rel|
,

where vr is a relevant retrieved candidate, vi is a member
of the first |Rel| irrelevant retrieved candidates, and
rankedHigher(vr ) = {vi ∈ notRel | ω(v, vi) > ω(v, vr )}.
We define Rel (resp. notRel) as the set of out-neighbors

VOLUME 7, 2019 174589



D. Mandaglio, A. Tagarelli: Generalized Preference Learning for Trust Network Inference

TABLE 3. Main structural features of our evaluation network datasets.

of v in T such that0(u) = 0(v) (resp.0(u) 6= 0(v)). The
global bpref of a trust network is computed as the aver-
age entity bpref, i.e., bpref (V) = 1

|V |
∑

v∈V bpref (v).
• Average intra-class trust, as the average trust amount
settled by v towards individuals within the same trust-
class:

�0(v) =
1
|Rel|

∑
vr∈Rel

ω(v, vr ).

• Average extra-class trust, as the average trust amount
settled by v towards individuals outside the v’s trust-
class:

�¬0(v) =
1

|notRel|

∑
vi∈notRel

ω(v, vi).

For the second type of ground-truth-based evaluation,
given the availability of a reference trust network, we used it
for a network similarity evaluation task, measuring Precision,
Recall and F1-score. For any given T produced by TNI and
reference network T ∗, both with set of nodes V , precision
(resp. recall) corresponds to the fraction of edges in T (resp.
T ∗) shared with the other network, whereas F1-score is the
harmonic mean of precision and recall.

C. CASE STUDIES AND DATASETS
Weused 3 real-world, publicly available datasets:DKpol [11],
WikiEdit, and CiaoDVD [9]. According to Table 2, the former
two were used for the trust-class ground-truth evaluation, the
latter for the trust-network ground-truth evaluation. Table 3
provides a summary of structural characteristics of our evalu-
ation networks. Also, we considered content-based variants,
for a total of 8 networks used in our evaluation.

1) DKPOL: TRUST INFERENCE FOR POLITICAL PARTIES
DKpol contains Twitter following and activity data (i.e.,
tweets, retweets and replies) originally collected from the
profiles of Danish politicians during the month leading to
the parliamentary election in 2015. The profiled 494 politi-
cians are distributed across 10 parties, each of which was
regarded as one trust-class, i.e., politicians who are affiliated
to the same party are supposed to trust each other, while
distrusting politicians of other parties. By aggregating the
user interactions on a daily basis, we extracted 30 directed

networks such that, in the t-th snapshot, an edge from u
to v is drawn if, at time t , u mentioned v, retweeted a v’s
tweet, or replied to a v’s tweet. Starting from DKpol, we built
a weighted network variant, dubbed DKpol-c, whereby the
tweet contents are subjected to tool for sentiment analysis in
Danish texts [18]. Each edge (u, v) in DKpol-c is weighted
with a float value in [0, 1] corresponding to the highest mood-
score computed by the tool for the text of the tweet(s) posted
by v and mentioned/replied/retweeted by u.

In order to stress our approach, we added noise to the
data by simulating amulticast propagation of tweets/retweets
made by a user towards her/his followers. In this scenario,
which resulted in the DKpol-exp network, a tweet/retweet
of user u triggers a set of links from u’s followers to u. In
addition, we built a content-based weighted variant, DKpol-
exp-c, whose follower links are weighted with the neutral
score of 0.5. Our rationale is that such links correspond to
weak ties and, therefore, they would not be considered for
the direct linkage contribution in Eq. 3 (i.e., sim(t)

C set to zero),
however they are still considered in the structural similarity
computations.

2) WIKIEDIT: TRUST INFERENCE FOR A COLLABORATION
SYSTEM
Our second case study concerns the context of Wikipedia
page editing, which normally gives rise to either contro-
versy or agreement among the editors. Our goal was to infer a
trust network by observing the editing activities made by a set
of users over a selection of pages of VIPs (from politics, sport,
and other categories). The possible edit events are ‘add’,
‘delete’ or ‘restore’ content. The amount of text involved in
each edit is quantified by the number of used words. Based on
this information, we built the temporal network WikiEdit by
considering the edits related to 10 among the top-edited pages
and aggregating the events on a monthly basis. The WikiEdit
network was obtained by modeling each edit event (of any
type) made by a user u at time t as a set of edges in the t-th
snapshot directed from u to each other user involved in the
edit. In particular, the ‘add’ event involves only the active user
(who performs the edit) while each ‘delete’ or ‘restore’ event
is also annotated with the target user (the one who previously
added/deleted the text). Each interaction e between two users
is also labeled with a sign: ‘positive’ if they agree with the
edit corresponding to the interaction, ‘negative’ otherwise.
We exploit this additional information, togetherwith the num-
ber of words nwe involved in the edit, in order to compute the
weight we of the interaction by means the following logistic
function:

we = (1+ e−sign(e)·log10(1+wce))−1,

where sign(e) = +1 if e is a positive interaction, -1 other-
wise. Note that positive (resp. negative) interactions will have
weights higher (resp. lower) than 0.5.

We also considered an expanded version of WikiEdit,
dubbed WikiEdit-exp. In this case, for each ‘add’ edit to
page p made by user u at time t , we created weak ties
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(with neutral weight 0.5) from u to each other user that added
content to p before t in order to represent a weak form of
agreement of u towards the past ‘add’ edits made to p.

We created a graph where nodes are the page editors and
links correspond to positive interactions between editors.
On this graph, we applied the well-known Louvain commu-
nity detectionmethod [1] to obtain a partitioning of nodes that
we consider as ground-truth communities for the evaluation.

3) INFERRED TRUST NETWORK VS. REFERENCE TRUST
NETWORK
For the trust-network ground-truth evaluation task, we con-
sidered the CiaoDVD dataset where users provide movie rat-
ings (from 0 to 5) and can define their own local trust network
by adding other users to their trust circle. The latter is consid-
ered as the ground-truth trust network for our evaluation.

We derived two temporal networks, CiaoDVD and
CiaoDVD-c, where we aggregated the ratings on a monthly
basis and extracted an edge from node u to v, in the
t-snapshot, if there is at least one movie rated by both users in
that month and v rated it before u. The rating similarity of the
users is exploited to quantify the strength of interaction in the
weighted version of the network, dubbed CiaoDVD-c. More
specifically, given two users u and v and a set of M movies
rated by both users at time t , and let ru = [ru,1 . . . , ru,M ]
and rv = [rv,1, . . . , rv,M ] be the associated ratings vectors,
we quantify the strength of the interaction as:

w(u, v) = 1−
1
M

M∑
i=1

∣∣∣ ru,i
5
−
rv,i
5

∣∣∣.
D. COMPETING METHODS
We finally considered a comparative evaluation stage with a
twofold goal: comparing the trust network inferred by our TNI
w.r.t. a trust network built by (i) a data-driven baseline and (ii)
a local-trust inference method (cf. Sect. II).

Our defined data-driven baseline (DDB) infers a trust
network by aggregating the interactions observed in an input
temporal network over all timesteps. In particular, for DKpol
and CiaoDVD networks, the trust score of an edge (u, v) is
computed as Wu,v/Wu, where Wu,v here denotes the sum of
weights of the interactions from u to v over all timesteps and
Wu is the total sum of weights of interactions of u with any
other node. For WikiEdit networks, the trust score of an edge
(u, v) is computed as W+u,v/(W

+
u,v + W−u,v) where W

+
u,v is the

sum of weights of positive edits between u and v, whileW−u,v
is the sum of the complement-one values of the weights of
negative edits. This is explained to balance the numerical
contributions given by positive interactions (i.e., edgeweights
above 0.5) vs. negative interactions (edge weights below 0.5).
For example, suppose node u has one positive interactionwith
node v with weight 0.9 and five negative interactions all with
weight 0.02: without complementing the negative interaction
weights, the trust score of u to v would be 0.9/(0.9 + 5 ∗
0.02) = 0.9 (i.e., high trust, which is counterintuitive);
otherwise, it would be 0.9/(0.9 + 5 ∗ 0.98) = 0.155, which

is more reasonable since it likely denotes a distrust relation
rather than a trust one.

We chose the classic TidalTrust [7] (TT in short) as a rep-
resentative local-trust inference method. This is designed to
exploit the topological information in an input trust network
for predicting a trust score for each pair of nodes that do not
have a direct connection. The choice of selecting the shortest
path derives from the hypothesis that reliability of trust values
progressively decays proportionally to their distance from
the source node. The trust between non-adjacent nodes is
inferred by considering only shortest paths through trusted
neighbors. The trust from a source to a destination node is
calculated by calling a recursive trust function on the trusted
neighbors, which terminates when the destination is reached.
When the trust is back propagated to the source, it is averaged
and rounded among the different trusted paths. Also, a path-
pruning threshold is set to the maximum of the lowest trust
values in each individual path from source to destination
node.We used TT as follows: From the trust network obtained
through DDB, repeatedly remove one edge at a time from the
baseline network, then apply TT to compute its trust score,
until all edges in the network are examined.

VI. RESULTS
We present our main experimental results for each of the
ground-truth-based evaluation stages (Sects. VI-A–VI-B). In
this regard, note that a major goal of our experimental anal-
ysis is the assessment of TNI by varying the setting of its
main parameters; nonetheless, unless otherwise specified, we
will present results that correspond to default settings for
parameters δ (0.1), α (0.5), k (|Ov|/2, for any v), nmax (100),
and Jaccard similarity as topological overlap function. In
Sect. VI-C, we also discuss TNI efficiency aspects. Finally,
in Sect. VI-D, we summarize main experimental findings.

A. TRUST-CLASS GROUND-TRUTH EVALUATION
1) TRUST SCORE DISTRIBUTIONS
For each entity (i.e., user in the input temporal network),
we analyzed the distribution of its trust values among entities
in the same ground-truth class and in the other classes. More
specifically, we analyzed the boxplots of the distributions
of �0(v) and �¬0(v) values, over all entities in a network,
for various sampling strategies and varying α. For the sake
of presentation, we report here results corresponding to the
default, balanced setting of α (i.e., 0.5) in Fig. 2, while results
for α ∈ {0.15, 0.85} can be found in Appendix.

One important remark that supports the effectiveness of
TNI is that, on average, an entity v tends to assign higher trust
scores to entities in its ground-truth class (0(v)) than enti-
ties outside. This particularly holds, reagrdless of α in non-
noisy networks (i.e., DKpol, DKpol-c, DKpol-exp) and for
strategies CO and SE, which allowmuch clearer separation of
the two distributions than the RW strategy. By contrast, it is
worth emphasizing that the competitors can have an opposite
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FIGURE 2. Trust-class ground-truth evaluation: Boxplots of the distributions of the average intra-class trust (�0(v )) and of the average extra-class
trust (�¬0(v )) values.

TABLE 4. Trust-class ground-truth evaluation: Global bpref results. Bold text refers to the best values per dataset.

trend, as in DKpol-exp, or even an overly positive-bias, as in
WikiEdit.
Moreover, considering the effect on the distributions by

varying α (Figs. 5–6, in Appendix), while negligible dif-
ferences can be observed between the corresponding cases,
for each network and method, we also found no monotonic
behavior in the distribution overlap by progressively varying
α; for instance, the default value of 0.5 (cf. Fig. 2b) ensures
better separation between the distribution boxplots than the
other settings of α in DKpol-c, whereas for a network like
WikiEdit-exp which was built on content-based collaborative
editing, α = 0.85 (cf. Fig. 5d) might be preferred to other
settings.

2) BPREF ANALYSIS
Table 4 shows bpref results obtained by different variants
of TNI and by competing methods. Several remarks stand
out. First, concerning the sampling strategies, CO and SE
models generally lead to better performance of TNI than
in the RW case, on every dataset and regardless of the α
setting. In particular, CO improves upon SE especially in the
noisy (i.e., expanded) networks, while SE prevails over CO
in content-based networks (DKpol-c and WikiEdit). Second,
TNI performance always increases when the network infor-
mation is combinedwith content information to determine the
preference probabilities (i.e.,DKpol-c vs.DKpol, andDKpol-
exp-c vs. DKpol-exp), regardless of the sampling strategy
and α setting. Third, concerning the impact of parameter α,
the balanced setting (i.e., α = 0.5) leads to performance
results that are comparable or better than for α = 0.85 in the
DKpol networks, while an opposite tendency is observed for
WikiEdit networks, which are indeed more content-oriented
than DKpol ones; analogously, α = 0.15 may behave better

than the balanced setting on noisy structure-oriented net-
works like DKpol-exp. Fourth, TNI significantly outperforms
the competitor methods, at least when equipped with the
CO strategy. DDB can behave better than TT (DKpol-c and
WikiEdit), but the opposite holds on the noisy networks: this
happens since TT is able to exploit the rich connectivity of
expanded networks for inferring new trust links, while DDB
considers the local interactions only.

3) EFFECT OF k AND nmax

Besides investigating the roles of the sampling stategy and of
the α parameter, we also evaluated the impact of k and nmax
on the TNI performance. To this end, we devised two stages: i)
we varied nmax from the default 100 up to 500, while keeping
k fixed to the default of half of the trust-context size, and ii)
we varied k for different percentages of the trust-context size,
with nmax fixed to 100. α was set to the default 0.5.

Figure 3 shows bpref results obtained for various sampling
strategies. At first sight, it stands out that, in both evaluation
stages and for each network dataset, the relative differences
between the sampling strategies follow the same trend when
varying k (Fig. 3a-d) and nmax (Fig. 3e-h), respectively. Also,
our choice of default settings of the two parameters turns
out to correspond to bref results that are very close to the
performance peaks. Overall, this not only suggests relative
robustness of TNI to variations of k and nmax , but also that the
computational burden due to an increase of the values of the
parameters can be avoided, since no particularly significant
performance gain is guaranteed above specific values (i.e.,
default values).

Moreover, as already shown in Table 4, CO turns out to
be the winner strategy for noisy networks (i.e., DKpol-exp-c,
WikiEdit-exp), while SE prevails on other situations.
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FIGURE 3. Trust-class ground-truth evaluation: Global bpref , (a)-(d) varying k (with fixed nmax ) and (e)-(h) varying nmax (with fixed k).

TABLE 5. Trust-network ground-truth evaluation: Precision, recall and F1-score results. Bold text refers to the best values per dataset, for each criterion.

B. TRUST-NETWORK GROUND-TRUTH EVALUATION
For the second stage of evaluation, we filtered out the edges
with trust scores below a certain threshold, which was set
for each entity v as the 25-th percentile of the trust score
of entities linked to v. Then, we derived an unweighted trust
network to enable comparison with the unweighted reference
networks of the CiaoDVD dataset.

Table 5 shows precision, recall and F1-score values w.r.t.
the ground-truth trust network, for TNI (equipped with dif-
ferent sampling strategies and varying α) and competitors.
Looking at the table, we observe that the best scores are
always obtained by TNI, mostly with the RW strategy;
this shows higher recall than the other strategies, while
all three lead to similar performance in terms of precision
and F1-score. Concerning precision in particular, the gap
between TNI and the competitors is relatively small, and all
achieve quite low values in both CiaoDVD networks. This
is explained since the ground-truth network of CiaoDVD
indeed was not derived from interaction data (i.e., a user
may trust another one without interacting with her/him),
thus the inferred trust network may not be in accord with
the ground-truth knowledge. Mid-high values of recall are
instead obtained on both networks, with the RW strategy
outperforming SE and CO. In particular, TNI with RW or SE
(along with CO inCiaoDVD-c) outperforms the two competi-
tors, despite their bias in producing high trust scores for most
edges.

C. EFFICIENCY EVALUATION
Table 6 shows the execution times of TNI, broken down into
the procedures PDPP and PBR, using the default settings.
It can be noted that, regardless of the particular network
and strategy, most of the total running time is due to the
PDPP procedure. Moreover, the RW strategy tends to yield
better time performance of TNI, though of the same order of
magnitude as for the other two strategies.

We also analyzed the time efficiency of TNI by varying
the maximum number of samplings nmax from 100 to 500.
Figure 4 shows time performances on DKpol and WikiEdit
networks.1 In accordwith the computational complexity anal-
ysis (Sect. IV-C), the execution time for SE and CO strategies
grows linearly with nmax . By contrast, the RW execution time
growsmuch slower or even negligibly: this is explained since
the value of nmax is checked by the RW strategy to decide
if a pair of options does not need to be sampled anymore
(Line 4 in Algorithm 4), and this leads the random walk to
convergence faster than the other two strategies.

D. DISCUSSION
We coped with the task of assessing our proposed TNI
by designing ground-truth-based stages of evaluation.
We believe this design is remarkable as it allowed us to define

1Platform Linux (Mint 18), with 2.6 GHz Intel Core i7-4720HQ, 16GB
RAM
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TABLE 6. TNI Execution times (in seconds).

FIGURE 4. TNI runtime performance by varying nmax .

an all-inclusive approach to the exploitation of ground-truth
knowledge for evaluation purposes. Our stages of evaluation
of TNI have indeed been defined upon either a notion of trust-
class (i.e., cohesive group of mutually-trusted users) or on the
availability of a reference trust-network for the input dynamic
network. As a consequence, we identified three representative
application domains for TNI, with corresponding case studies
that refer to relevant scenarios in network analysis.

Upon these premises, experimental results have revealed
important findings about the meaningfulness and effective-
ness of our proposed method. TNI is capable of inferring a
trust network where each entity (i.e., user) observed in the
input time-evolving network is associated with higher trust
scores to entities in its ground-truth class than to entities of
other classes. By contrast, competing methods fail in having
this behavior, showing sometimes an opposite trend or even
an overly positive-bias (i.e., much more trust links than
expected).

Despite having a number of parameters, TNI has shown to
be surprisingly robust to their variation; particularly, the sam-
pling strategies (i.e., ranking models) follow similar trends
when varying the top-k trusted options for every target entity,
and the number of samplings for each pairwise preference
probability distribution (nmax). Also, using a balanced setting
for α (i.e., the smoothing parameter that controls the contri-
butions of structural and content information from the input
network to determine the preference probabilities) has shown
to be an appropriate default choice.

From an efficiency viewpoint, TNI running time grows
linearly with the number of samplings. Overall, considering
a trade-off between impact on the efficiency and impact
on effectiveness of TNI, the sampling strategy based on the
Copeland’s ranking model turned out to be the best choice.

VII. CONCLUSION
We introduced the Trust Network Inference problem and
proposed a preference-learning-based approach to solve it.
Our approach can be regarded as key-enabling for any appli-
cation that needs to build a trust network associated with a
social environment from user interactions observed over time,
in order to exploit the inferred trust relatioships in a variety
of mining tasks.

Several aspects in our approach are worthy to be fur-
ther investigated. Different definitions of trust-context and
of structural/content affinity functions could easily be inte-
grated into our proposed TNI framework; for instance, as we
mentioned earlier in the paper, the trust-context model could
be defined according to various topological structures, such
as expanded ego-networks or community structures. Another
aspect of interest is to extend our method to build a trust net-
work incrementally in online tasks, i.e., inferring and main-
taining/updating a trust network over a stream of interaction
networks.

To encourage further development of our work, we make
available to the community the preprocessed data used in the
evaluation and the source code of TNI, at:
http://people.dimes.unical.it/andreatagarelli/tni/.

APPENDIX
DETAILS OF THE RANDOM-WALK-BASED SAMPLING
STRATEGY
Random walk ranking first requires a left-stochastic version
S̄ = [sij]N×N of the matrix Ȳ, such that si,j =

¯yi,j∑N
l=1 ¯yl,j

. Given

confidence intervals for the entries of matrix Ȳ, denoted with
matrix B = [ci,j]N×N , confidence intervals for elements
in S̄, denoted with matrix B̃ = [c̃i,j]N×N , are computed
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FIGURE 5. Trust-class ground-truth evaluation: Boxplots of the
distributions of the average intra-class trust (�0(v )) and of the average
extra-class trust (�¬0(v )) values, with α = 0.85.

FIGURE 6. Trust-class ground-truth evaluation: Boxplots of the
distributions of the average intra-class trust (�0(v )) and of the average
extra-class trust (�¬0(v )) values, with α = 0.15.

(by applying a result in [23]) as:

c̃ij =
N
3
max
k

ck,j
∑
l

ȳl,j (5)

Note that the elements of a particular column of B̃ are
equal to each other, thus ‖B̃‖1 = maxj

∑
i |c̃i,j| =

N 2

3 maxk,j ck,j
∑

l ȳl,j.
Let π = (π1, . . . , πN ) and π̄ = (π̄1, . . . , π̄N ) be

the stationary distributions of S and S̄ respectively. Then,

by applying the result of [24], it follows that:

‖π − π̄‖max ≤ ‖B̃‖1‖Ā∗‖max (6)

where Ā∗ = [ā∗ij]N×N = (I − S̄ + 1πT )−1 − 1πT .
Notice that, in order to obtain better estimates of the pref-
erences, the bound in Eq. 6 suggests the minimization of
‖B̃‖1 which can be performed by sampling pairs (i, j) =
argmaxi,j ci,j

∑
l ȳl,j. At each time, the pairs of options that

satisfy this condition are maintained as set of active options
to be sampled next.

ADDITIONAL RESULTS FOR SECT.VI-A
Figures 5 and 6 show the boxplots of the distributions of the
average intra-class trust and of the average extra-class trust,
with α = 0.85 and α = 0.15, respectively.
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