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ABSTRACT Point cloud semantic segmentation is a challenging task in 3D understanding due to its
disorder, unstructured and nonuniform density. Currently, most methods focus on network design and feature
extraction. However, it is difficult to capture the point cloud features of complex objects comprehensively
and accurately. In this paper, we propose a multiscale hierarchical network (MHNet) for 3D point cloud
semantic segmentation. First, a hierarchical point cloud feature extraction structure is constructed to learn
multiscale local region features. Then, these local features are subjected to feature propagation to obtain the
features of the entire point set for pointwise label prediction. To take fully advantage of the correlations of
propagated information between the different scale coarse layers and the original points, the local features
of each scale are characterized by feature propagation to obtain the features of the original point clouds at
the corresponding scale. The global features propagated from different scales are integrated to constitute
the final features of the input point clouds. The concatenated multiscale hierarchical features, including both
local features and global features, can better predict the segmentation probability of each point cloud. Finally,
the predicted segmentation results are optimized using the conditional random filed (CRF) with a spatial
consistency constraint. The efficiency of MHNet is evaluated on two 3D datasets (S3DIS and ScanNet), and
the results show performance comparable or superior to the state-of-the-art on both datasets.

INDEX TERMS Point cloud, multiscale hierarchical network (MHNet), conditional random field (CRF),
semantic segmentation.

I. INTRODUCTION
Point cloud semantic segmentation plays a critical role in
autonomous driving, robot navigation, augmented reality and
3D reconstruction. Currently, with the development of deep
learning technology, semantic segmentation has made great
progress, but it also faces many difficulties. The unordered
and unstructured properties of 3D point clouds make it diffi-
cult to be presented as 2D images. Therefore, it is impossible
to directly apply the existing image segmentation framework
to the point clouds. Moreover, its large scale and nonuniform
density also present numerous challenges in 3D point cloud
understanding. Previous solutions mainly transform 3D point
clouds into 2D images [1]–[4] and regular voxel grids [5]–[7].
However, converting point clouds to 2D formats results in
the loss of information. Voxelization assigns the points in
the same voxel with the same semantic label, which tends to
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discard small details. Due to the sparsity of point clouds, vox-
elization often leads to heavy calculation and low efficiency.

PointNet [8] was the first work to directly address 3D point
clouds. Without transforming to a 3D voxel grid or mesh,
the network takes raw points as input and outputs the semantic
label of each point. The whole network structure is simple
but can effectively realize semantic segmentation, based on
which many deep network structures dealing with raw point
clouds are derived [9]–[15]. However, only global informa-
tion is extracted in PointNet, and the relationship between
neighboring point clouds is not considered. To overcome this
problem, PointNet++ [16] was proposed. The improved net-
work increased the ability to capture local features at different
scales by exploiting metric space distance. In recent years,
inspired by this algorithm, many networks for 3D point cloud
semantic segmentation have emerged [13], [17], [18].

However, there are still some shortcomings in local feature
capture of point clouds in PointNet++ [16]. In PointNet++,
all of the point clouds are first downsampled randomly
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FIGURE 1. Illustration of feature extraction and propagation:
(a) hierarchical point cloud feature extraction; (b) the method of original
point set feature propagation in PointNet++; and (c) the improved
method of original point set feature propagation in MHNet.

through iterative farthest point sampling (FPS) to obtain the
centroids of local regions. Then, local region sets are con-
structed by searching neighborhood points around centroids.
Finally, a mini PointNet is used to extract local region fea-
tures of the point clouds in each local region. After several
such operations, the number of points in each local region
decreases, while the features extracted from each point gradu-
ally increase. This process is named the Set Abstraction (SA)
module in PointNet++. For instance, in Fig. 1(a), we illus-
trate the process of obtaining local features of two scales
through two SA operations, in which N is the number of
original point clouds, N1 and N2 refer to the sampling points
at two scales, F1 and F2 are corresponding local features,
respectively, and each circle represents the scope of the local
region searched by each centroid. Point cloud features of dif-
ferent scales obtained by the SAmodule in PointNet++ need
to propagate to the original point features for per-point label
prediction. The features of the original points in PointNet++
are obtained by a continuous upsampling layer by layer
through several Feature Propagation (FP) modules. As shown
in Fig. 1(b), to obtain the original point features, the second
scale point cloud features N2 × F2 are first upsampled to the

features of the first levelN1×F2, and then the same operation
is performed on the first scale features to obtain the original
point features N ×F2. However, it fails to take full advantage
of the correlations of propagated features between different
scales and the original points. Additionally, local features and
global features are not well integrated to describe point cloud
information.

To address these problems, we propose a Multiscale Hier-
archical Network (MHNet) for 3D point cloud semantic seg-
mentation. In MHNet, the original point feature propagation
method is improved to better capture local region features and
fully fuse local features and global features of point clouds.
A brief description of the improved method in MHNet is
shown in Fig. 1(c). The first scale features N1 × F1 obtain
the original points features N × F1 through one FP module,
and the second scale features N2 × F2 obtain the original
points featuresN×F2 after two FPmodules. Then, the global
features obtained from these two scales are concatenated to
form the multiscale features N × (F1 + F2). The concate-
nated features obtained by our method not only consider
the relationship between different scale features and original
point features but also effectively integrate the global features
obtained by different scales to express point cloud informa-
tion more comprehensively.

In this paper, a hierarchical structure composed of a
number of SA levels is first built for point set feature
learning. Through this process, we obtain sampling points
and local features of different levels. For point cloud FP,
we adopt the distance based interpolation and across level
skip links strategy, which is used in PointNet++ [16],
to transfer features from a coarse layer to a dense layer.
We propagate the local features generated by each scale
in the hierarchical structure to the features of original
points through several FP operations. Then, we concatenate
the features of each level to obtain multiscale hierarchical
features, which include the local and global information
of point clouds. Finally, semantic prediction labels of
input points are obtained by processing the connection
features.

In many works of point cloud semantic segmentation,
a Conditional Random Filed (CRF) is used as the post-
processing operation to optimize the semantic prediction
results [2], [5], [10]. The CRF can label the input samples
sequentially by considering the spatial consistency of point
clouds. In our method, CRF is used to further optimize the
segmentation results of points, which can remove noise points
by calculating the probability distribution.

The main contributions of our work are listed below:
• We design a new network MHNet, which can fully
incorporate both local and global multiscale hierarchi-
cal features for highly accurate point cloud semantic
segmentation.

• In our method, we constructed a CRF model with a
spatial consistency constraint to obtain the global con-
text for global label optimization to further improve the
segmentation result.
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The remainder of this paper is organized as follows.
We first review the related works in Section II. The archi-
tecture details of our proposed methods are described in
Section III. Section IV demonstrates the effectiveness of the
proposed network in experiments using two datasets. Finally,
the conclusion is given in Sections V.

II. RELATED WORKS
Due to the irregularity, disorder, and inconsistent density
of point clouds, there are few 3D CNN models in com-
parison with 2D images. Traditional point cloud semantic
segmentation algorithms mainly rely on hand-crafted fea-
tures [19]–[26]. Currently, motivated by the development of
deep learning technology and the large collection of scene
datasets, an increasing number of works that adopt end-to-
end deep learning algorithms have been proposed to address
point clouds. Previous works covert point clouds to other
formats, such as 2D multiview format or 3D volumetric
grids. In recent years, networks that directly address raw
point clouds have been endlessly emerging. Here, we mainly
review the research related to our work.

A. 3D VOLUMETRIC GRIDS
The voxelization of point clouds is the first attempt in deep
learning. Many works [7], [27]–[32] convert point clouds
into regular volumetric grids and then apply 3D convolution
networks. The 3D analysis includes 3D classification, object
recognition, shape representation, point cloud labeling, shape
reconstruction and scene segmentation. However, the sparse
data and expensive computation of 3D convolutions constrain
this type of approach. Some works have proposed easing the
computational intensity. The author of [33] utilized a hybrid
grid octree, which can effectively handle higher-resolution
3D voxel grids. Klokov and Lempitsky [34] proposed a
Kd-networks method, which is a feedforward bottom-up
computational representation. Li et al. [35] designed a
method to reduce computations by sampling spare points
before feeding into the network. In [36], [37], a spare convo-
lution network was proposed for 3D point cloud segmenta-
tion. These works focused more on easing the computational
intensity, and the loss of information in voxelization was not
considered. The accuracy of the voxel-based methods is far
less than that of point-level methods.

B. 2D MULTIVIEW FORMAT
Su et al. [38] converted 3D point clouds into several 2D
images, and then used the 2D CNN for 3D shape recognition.
Qi et al. [29] designed a 2D CNN for 3D object classification,
and compared the performance of 2D multiview CNN with
the 3D volumetric CNN. Pang and Neumann [39] designed
a multiview CNN for object detection. Guerry et al. [31]
achieved 3Dmultiview semantic labeling by directly process-
ing RGB-D snapshots in numerous views. These studies are
achieved by projecting 3D data into 2D images, which results
in the loss of geometric details information, which is not

conducive to target recognition and semantic segmentation.
In addition, it requires extra 2D to 3D remapping.

C. POINT CLOUDS
In the seminal work of PointNet [8], the authors utilized the
shared multilayer perceptions to extract features of raw point
clouds directly, and then aggregated them into global features
by a max pooling layer. This work failed to capture the local
features of point clouds. To solve this drawback, PointNet++
[16] proposed a hierarchical network to obtain the multiscale
local details of point sets. Additionally, inspired by the work
of PointNet [8], Engelmann et al. [11] incorporated the neigh-
borhood information by using multiscale windows or neigh-
boring cell positions. The following works PointCNN [40],
RSNet [41], 3P-RNN [42] and DGCNN [43] further focused
on exploring the local context. PointCNN [40] is a generaliza-
tion of typical CNNs that is capable of leveraging spatial local
correlation from data represented in point clouds. RSNet [41]
combined the slice pooling, RNN layer and a slice unpool-
ing layer to equip a lightweight local dependency model.
3P-RNN [42] captured local structure information of different
densities in a multiscale neighborhood by constructing the
efficient pointwise pyramid pooling module. DGCNN [43]
presented a novel EdgeConv operation for capturing local
geometric features of point clouds while still maintaining
permutation invariance. These extensions of PointNet largely
focus on capturing local features while neglecting the the
geometric relationships among points. Effective point cloud
semantic segmentation requires a combination of local and
global information. Recently, a series of effective archi-
tectures have been proposed that effectively combine the
local and global features of the point cloud to improve
the segmentation accuracy. For example, PC-CNNI and PC-
CNNII [9] integrated local and global features comprehen-
sively to enhance the expression ability of the model, and thus
improved the semantic segmentation accuracy. Wang [10]
proposed an improved PointNet structure to connect the point
cloud features of different dimensions to realize the aggre-
gation of global features and local features. In our proposed
method, the local and global features of point clouds are
integrated for better semantic labeling.

D. CONDITIONAL RANDOM FIELD
The CRF model has been commonly used as a postprocess-
ing step for semantic segmentation [2]. Recently, with the
rapid development of deep learning, it has become possi-
ble to embed CRF into neural networks, such as semantic
segmentation [5], [10], [44], object segmentation [45], and
point cloud classification [46]. The basic CRF structure is
limited in building long-range connections within the model
and generally results in excessive smoothing of object bound-
aries. Compared to the basic neighbor connected CRFmodel,
dense CRF [47] can model long-range relationships and has
become a popular tool for semantic segmentation [48], [49].
CRF is also extended with high-order potentials to further
improve coherency in the label prediction. For example,
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Pham et al. [50] integrated semantic segmentation into real-
time indoor scanning by optimizing the predictions from a
2D neural network with a novel higher-order CRF model.
Yang et al. [51] utilized a high-order CRF model to optimize
3D grid labels for fast outdoor scene segmentation, in which
superpixels were used to enforce smoothness and form robust
high-order potential. However, the computational complexity
of high-order CRF is relatively large. The CRF model we
proposed in this work is a dense CRF that can build long-
range connections among the point clouds in the model to
ensure clear object boundaries. Our idea is to obtain a coher-
ent, high-quality segmentation result that will pave the way
for our future contour extraction work.

III. METHODOLOGY
We design an architecture for 3D point cloud semantic seg-
mentation, which directly uses raw point clouds as input
data. In our method, a multiscale hierarchical network is
constructed to fully capture features of different scales for
semantic label prediction. Through the established MHNet,
we obtain multiscale hierarchical features with local fea-
tures and global features, which can better predict the label
probability of a point cloud. To eliminate the influence of
noise points in the segmentation process, the input points
are regarded as a nondirectional probability graph, based on
which a CRF model is constituted. The predicted label prob-
ability of the point cloud obtained from MHNet is optimized
globally using the CRF model with a spatial consistency
constraint. The overall flowchart of our proposed method is
shown in Fig. 2.

FIGURE 2. The flowchart of our proposed method.

A. HIERARCHICAL POINT CLOUD FEATURE EXTRACTION
To aggregate the features of the whole point set, we build a
hierarchical structure that can gradually abstract increasingly
local regions. The hierarchical structure is composed of a
number of feature encoding modules, which is similar to the
SA module introduced in PointNet++ [16]. The SA module
is a downsampling stage. At each SA level, the input points
Nl×(d+Cl) (that isNl points with d dimensional coordinates
and Cl dimensional features) are processed through the sam-
pling layer, grouping layer and PointNet layer to obtain the
sampled points and their local region features. In the sampling
layer, Nl centroids are fund by the FPS. Then, k points in the
neighborhood of each centroid are queried to form the local
region. In this process, a k Nearest Neighbor (kNN ) search
or radius based ball query is used to obtain the groups of
point sets Nl−1 × k × (d + Cl−1). The ball query searches

all points within a radius to the query point, and the kNN
search finds a fixed number of neighboring points. Compared
with kNN , the local neighborhood of the radius based ball
query provides a fixed region scale. Therefore, local region
features are more generalized in space, which is helpful for
point cloud semantic labeling. Finally, local region features
of centroids Nl−1 × (d + Cl−1) are fed through the PointNet
layer. The obtained downsampled points in each level with d
dimensional coordinates and Cl−1 dimensional local region
features.

In our network, four consecutive downsampling operations
(namely, SA module) decrease the size of the point set to N1,
N2, N3, N4. The corresponding local region features of each
SA level are C1, C2, C3, and C4, respectively. Through the
hierarchical structure, we obtain different scales of sampled
points and local region features. The architecture of the hier-
archical structure can be seen in Fig. 3, and the details are
listed in TABLE 1.

FIGURE 3. Hierarchical point cloud feature extraction.

B. FEATURE PROPAGATION FOR PER-POINT
LABEL PREDICTION
In the semantic segmentation task, we need to predict point-
wise labels. A method to propagate features from a subsam-
pled point to a denser point is needed to obtain features for the
original input points. PointNet++ [16] adopts a hierarchical
propagation strategy to propagate local features to the original
point set through several FP modules. The purpose of the
FP module is to propagate features from sparse points to
dense points. The inverse distance weighted average based on
k-nearest neighbor linear interpolation is used to upsample
the point clouds, as seen in Eq. (1). It propagates points from
size Nl to Nl−1, and the feature dimension is not changed
in this stage. The interpolated features on Nl−1 points are
concatenated with skip linked point features from the SA
level, and then passed through a PointNet unit. This process is
repeated until the features of the original points are obtained.

f (j)(x)=

∑k
i=1 wi(x)f

j
i∑k

i=1 wi(x)
,wi(x)=

1
d(x, xi)2

, j=1, 2, . . . ,C

(1)

As mentioned above, in PointNet++ [16], the features
of original points are obtained through the level by level
propagation, which dose not fully consider the correlations
of propagated features from the different levels and the fea-
tures of original points. Point cloud semantic segmentation
requires a combination of local and global knowledge.We can
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TABLE 1. Architecture details of MHNet.

FIGURE 4. Point cloud feature propagation.

achieve this by a simple yet highly effective method. Unlike
PointNet++ [16], we conduct the FP operation several times
on local region features of each level in the hierarchical
structure until we have the propagated features to the original
set of points. As shown in Fig. 4, local features of the four
scales obtained through the hierarchical structure, N1 × C1,
N2 × C2, N3 × C3, and N4 × C4, are propagated level by
level through the FP module to obtain the corresponding
scale original set features N × C1, N × C2, N × C3, and
N × C4. After capturing the original point cloud features
from different levels, we concatenate the features propagated
from different SA levels to obtain the multiscale hierarchical
features N × (C1 + C2 + C3 + C4).

The FP module consists of three main parts: interpolation,
skip links and PointNet unit. The details of the FP process
are shown in Fig. 5. The point features Nl × Cl output
from SA level l are first interpolated to obtain the features
Nl−1 × Cl in the denser layer. The interpolated features
on Nl−1 points are concatenated with skip linked point fea-
tures Nl−1 × Cl−1 from the SA level l − 1. Then, the con-
catenated features Nl−1 × (Cl + Cl−1) are conducted on a

PointNet unit to obtain the features Nl−1 × Cl−1 in a FP
module. At each level, the FP module is repeated to gradually
transfer features from a coarse level to a finer level until
we obtain the features of the original points N × Cl−1.
By combining the original point cloud features obtained at
different scales, we obtain the multiscale point cloud features.
With this modification, our network can predict per-point
quantities that rely on both local and global semantics.

To collect key features from the integrated features for
efficient semantic prediction of the point set, we replaced the
fully connected layer in PointNet++ with three convolution
layers. The concatenated features are input into the last three
convolution layers, which are followed by a dropout (DP)
layer with drop ration 0.5. Finally, through the last score
prediction layer convolution for per-point label prediction.
The overall architecture of MHNet is shown in Fig. 5. The
details of MHNet are shown in TABLE 1.

To avoid the disappearance of the gradient and shorten the
training time, in our model, batch normalization (BN) and
ReLU processing are performed in each input layer except
for the final score prediction layer, the specific principle is
shown in Fig. 6. Let B = {x1,2,...,m} be the value of a batch,
the definitions of mean value µB, variance σ 2

B , standardiza-
tion x̂i and linear transformation of all point clouds in each
batch are shown in Eq. (2)-(5). When the activation input
of each neuron forms a normal distribution, that is, with a
mean value of 0 and variance of 1, the expression ability of
the network will decline, and then the usage of Eq. (5) can
avoid this situation. The two newly added parameters γ and
β in Eq. (5) are obtained through training, and they are used
to invert the input value of the transformed activation, which
can effectively enhance the network expression ability.

µB =
1
m

m∑
i=1

xi (2)
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FIGURE 5. Illustration of our MHNet architecture.

FIGURE 6. BN and ReLU processing in each input layer.

σ 2
B =

1
m

m∑
i=1

(xi − µ2
B) (3)

x̂i =
xi − µB√
σ 2
B + ε

(4)

yi = γ x̂i + β = BNγ,β (xi) (5)

C. CRF OPTIMIZATION SEMANTIC LABEL
CRF is a nondirectional probability graph model, which is
usually used to label and analyze sequential data. Each point
must be assigned a unique label in point cloud semantic
segmentation to indicate its class, so it also belongs to the
category of labeling sequential data. To optimize the point

cloud segmentation results, we construct a CRF model with
space consistency to optimize the category label of each point
in the point clouds.

The segmentation results of our network are inevitably
influenced by noise, which are isolated points with differ-
ent categories from the surrounding points. The CRF can
remove noise points by calculating the probability distribu-
tion. We construct a graph G = (V ,E) based on the point
clouds, in which each node V corresponds to each point in
the point clouds, and the edges E are added between the point
and its k-nearest points in the scenario of point cloud.

Let X = {X1,X2, . . . ,XN } be a set of random variables
corresponding to the 3D points i ∈ {1, 2, . . . ,N }.Each ran-
dom variable Xi takes a label from L = {l1, l2, . . . , lk} when
considering k different classes. We construct a CRF model
(P,X ) based on the graph G = (V ,E) of the point clouds,
where Pis the global observation of G = (V ,E). Based on
the CRF, the probability distribution for a possible labeling
X ∈ LN given a point cloud p is defined by:

p(X = l|P) =
1

Z (p)
exp(−E(l|P)) (6)

where E(l|P) is the Gibbs energy defined on the CRF graph
and Z (P) is the normalized index. P = {p̂1, p̂2, . . . , p̂N } is
the predicted class probability of the point clouds, which is
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obtained from our MHNet. The Gibbs energy of label l is
defined on the unary and pairwise cliques in the graph given
by:

E(l|P) =
∑
i∈V

φ(p̂i, li)+
∑

(i,j)∈E

ψ(li, lj) (7)

where φ(p̂i, li) is the unary potential, which is the predicted
class probability of the point cloud obtained from ourMHNet.
ψ(li, lj) is the pairwise potentials describing the relationship
between points, which encourages assigning the same label
to adjacent points. In our work, this distance is defined by
calculating the Euclidean distance between two points. The
pairwise energies make up for the shortcomings of MHNet
segmentation, which can be calculated by the following
equation:

ψ(li, lj) = µ(li, lj)
M∑
m=1

wmKm
G (fi, fj) (8)

where each Km
G for m = 1, 2, . . . ,M is a Gaussian kernel

used to measure the similarity of feature vectors of points i
and j. The feature vector of points i and j, denoted by fi and
fj, is represented by point features, such as coordinate loca-
tion and RGB values [47]. The function µ(li, lj) represents
a compatibility measure between different pairs of labels,
wm represents the linear combination weights.

The optimal point cloud segmentation result can be
obtained by minimizing the energy function E(l|P) with the
mean-field iteration algorithm [47]. The output after the CRF
energy minimization provides us predictions for each 3D
point that takes smoothness and consistency into account.

IV. EXPERIMENTS AND ANALYSIS
Two commonly used datasets and three evaluation criteria are
chosen to verify the effectiveness of MHNet in our experi-
ments. We compared our segmentation results with state-of-
the-art methods. The experimental results of the two datasets
are shown in Section IV. B and Section IV. C. We also
validated the effects of different architecture choices and
testing schemes in ablation experiments. Finally, we analyzed
the inference speed and GPU memory consumption in our
method.

A. EXPERIMENTAL SETTINGS
1) DATASETS
We benchmark our network on two commonly used
large-scale realistic 3D segmentation datasets: the Standford
Large-Scale 3D Indoor Spaces (S3DIS) dataset [52] and
the ScanNet dataset [27]. The S3DIS dataset contains six
large-scale indoor areas of RGB-D point clouds from dif-
ferent buildings, which in total includes 272 rooms. Each
point is annotated with semantic labels from 13 categories.
The ScanNet dataset is also used to evaluate our method.
This dataset contains 1,513 scanned 3D indoor scenes and
21 categories. Our method follows the experimental settings
in ScanNet [27]: 1,201 scenes for training and 312 scenes for
testing.

TABLE 2. Segmentation result comparisons on the S3DIS dataset (6-fold
cross validation).

2) EVALUATION METRICS
In the validation of S3DIS dataset experiments, k-fold cross
validation strategy was used for train and test, and we also
used area 6 validation to evaluate our model, as has been
used in [9], [10]. Three widely used metrics, mean per-class
accuracy (mAcc), mean intersection over union over all
classes (mIoU) and overall accuracy (OA), are used to mea-
sure the segmentation performance. Per-class accuracy and
mAcc are defined as:

acci =
TPi
Ti
, mAcc =

1
N

N∑
i=1

acci (9)

where TPi is the number of true positives, Ti is the number
of ground truth positive points, Pi is the number of predicted
positives, N is the number of classes. We defined per-class
IoU and mIoU as:

IoUi =
TPi

(Ti + Pi − TPi)
, mIoU =

1
N

N∑
i=1

IoUi (10)

The overall accuracy of semantic segmentation is defined
as:

OA =

N∑
i=1

TPi

N∑
i=1

Pi

(11)

3) EXPERIMENTAL DETAILS
In the experiments of the S3DIS dataset, we use the method
in PointNet [8] to process the training dataset. For the S3DIS
dataset, each input point is represented by a 9-dim vector,
namely, XYZ, RGB and normalized coordinate informa-
tion X’Y’Z’. Since in the PointNet++ [16] ScanNet dataset
experiment, only XYZ information of point cloud was used,
to make a fair comparison, each point is represented by a
3-dim vector (XYZ) in our ScanNet dataset experiments.
In our experiments, we do not use any data augmentations.
We set the input data size N to 4,096 and 8,192 for the S3DIS
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TABLE 3. IoU for all categories on the S3DIS dataset.

FIGURE 7. The benefits of CRF in the segmentation results on the S3DIS dataset: (a) the segmentation result of base
MHNet without CRF; and (b) the segmentation result with CRF global optimization.

dataset and ScanNet dataset, respectively. The network is
trained for 50 epochs and 201 epochs, respectively, with batch
size 8, learning rate 0.001, and momentum 0.9. The learning
rate decay is set to 0.5 in two datasets. The Adam solver is
adopted to optimize the network on a single GPU.

B. SEGMENTATION ON THE S3DIS DATASET
The segmentation results on the S3DIS dataset are shown in
TABLE 2, in which the superscript C denotes using the CRF
optimization. TABLE 2 shows that our method achieves the
best segmentation results on the S3DIS dataset. In particular,
even without CRF, MHNet improves PointNet by 3.17% in
mAcc, 10.89% in mIoU, and 6.42% in OA. Compared with
PointNet++ [16] (single scale grouping, SSG), our base
method (without CRF) improves the mAcc, mIoU and OA
by 2.32%, 4.00% and 3.89%, respectively. Per-class IoUs are
shown in TABLE 3, in which the best IoUs of classes are
shown in bold. Compared with all methods, our method is
not the best in most of the categories in this dataset, but it
has a strong adaptability to the segmentation of all categories.
Compared with any method, our method achieves superior
results in most categories. The semantic segmentation effect
of each class achieves almost the level of the most advanced
methods, with mAcc of 69.37% and mIoU of 58.49%.

From the above analysis, we know that our base MHNet
achieves state-of-the-art performance. In this section, we

analyze the influence of CRF on the segmentation results.
The CRF offers a relative improvement of 1.48% mAcc,
2.40% mIOU, and 0.72% OA for this dataset. An example
of an openspace in area 6 shows the benefits of the CRF in
segmentation results. Fig. 7(a) is the MHNet segmentation
result which contains some noise on the chair and column.
The combination with the CRF in the MHNet can remove the
noise and provide a cleaner segmentation of the point cloud,
as shown in the Fig. 7(b). To show the results before and after
CRF optimization more clearly, we select four most obvious
parts, as shown in the black bounding boxes in Fig. 7. Then,
we select some points from the four parts and enlarge them
to illustrate the influence of CRF. TABLE 4 clearly shows the
comparison of the change in noise points in the point clouds
before and after the use of CRF in these four parts. After
the CRF global optimization, many noise points are correctly
reclassified and fused with the surrounding points.

The comparisons between PointNet++ and our method
are visualized in Fig. 8, in which the ceiling, part of the
walls and beams are hidden for clarity. From left to right are
the input scenes, the results produced by the PointNet++,
MHNet, MHNet with CRF (MHNetC ), and the ground truth.
These visualizations show that our network achieves a better
segmentation effect and can achieve more accurate results in
classes, such as door, table, board, column and bookcase. The
CRF global optimization also shows its advantages in point
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TABLE 4. Segmentation result comparisons between with CRF and without CRF.

FIGURE 8. Visualization of results on the S3DIS dataset.

cloud noise removal, which can be seen in categories such as
ceiling, door, wall, chair, etc.

The segmentation results on the area 6 fold are shown in
TABLE 5, and the best results are shown in bold. Compared

with other methods, our method performs better in this test
area, with 83.77%mean per-class accuracy, mIoU of 73.45%,
and overall accuracy of 89.92%. The semantic segmentation
performance of our model is better than that of PointNet [8]
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TABLE 5. Segmentation result comparisons on the S3DIS dataset (Area 6
validation).

TABLE 6. Neighborhood query: kNN vs. ball query.

TABLE 7. Segmentation accuracy of different k in the kNN query.

and PointNet++ [16], and the mean per-class accuracy,
mIoU, and overall accuracy are improved by 0.99%∼8.79%,
1.26%∼8.75%, and 0.51%∼3.40%.

In our method, we compare two options to select a local
neighborhood on the Area1∼Area5 training set, including
a radius based ball query and a kNN based neighborhood
search. The segmentation result comparisons are shown in
TABLE 6. In the kNN based neighborhood search, we also
consider different k values to choose the best result, as seen
in TABLE 7. We can see that even in the best result in
the kNN query (when k is 32), the ball query method still
performs slightly well. Thus, we use a radius based ball query
in our method. To reduce the computational burden, the input
point is represented by 3-dim coordinate information in this
comparison experiment.

To verify the influence of different input vectors of the
point cloud on the segmentation results, we conduct sev-
eral groups of comparative experiments on the base MHNet.
In our experiments, we use 3-dim XYZ, 6-dim XYZ-RGB,
and 9-dim XYZ-RGB-X’Y’Z’ information to represent the
input point cloud, and analyze the semantic segmentation
results of different dimension input vectors. The results are
shown in TABLE 8.We can see that the increased RGB infor-
mation of the point cloud improves the segmentation accu-
racy by 4.75%, 5.35%, 3.02%, respectively. The normalized
coordinate information X’Y’Z’ can also slightly contribute to
increasing the segmentation effect of our method.

C. SEGMENTATION ON THE SCANNET DATASET
The performance of MHNet on the ScanNet dataset is
reported in TABLE 9. Here, we also present the results
of other state-of-the-art methods, including G+RCU [11],
PointNet [8], 3DCNN [27], PointNet++ (SSG) [16], Engel-
mann [54], 3P-RNN [42], RSNet [41] and PointConv [18].

TABLE 8. The segmentation results of different input information on the
S3DIS dataset.

TABLE 9. Segmentation result comparisons on the ScanNet dataset.

TABLE 9 shows that our base MHNet achieves the best
segmentation results on the ScanNet dataset with mAcc of
73.07%, mIoU of 58.19%, and OA of 82.01%. Compared
with PointNet++ [16], our method improves the mAcc,
mIoU and OA by 29.30%, 23.93% and 7.71%, respectively.
The CRF global optimization slightly improves the mAcc
by 0.79%, mIoU by 0.87%, and OA by 0.90%. IoUs for all
categories of ScanNet dataset are shown in TABLE 10. The
results show that ourmethod outperforms all other methods in
most of the categories, and show a good advantage even in the
categories with poor segmentation results in other methods,
such as desk, bathtub, door, refrigerator, and cabinet. The
comparisons between PointNet++ and our method are visu-
alized in Fig. 9. Our method performs better segmentation
results in the categories of door, table, refrigerator, desk
than other methods, which is consistent with the results in
TABLE 10.

Furthermore, considering that only XYZ information was
used in the ScanNet dataset experiments, the effectiveness
of RGB information is not verified. In this part, we com-
pare the segmentation results of two groups of experiments,
in which the input information is XYZ and XYZ-RGB. The
results in TABLE 11 show that when the input informa-
tion is XYZ-RGB, the segmentation accuracy is 60.28% for
mAcc, 43.63% for mIoU, and 74.68% for OA. Compared
with the XYZ experiment results, we can see that the RGB
information does not improve the segmentation results on the
ScanNet dataset. Thus, in our ScanNet experiment, we choose
the coordinate information to represent the input points.

D. ABLATION EXPERIMENTS
We perform more ablation experiments for our method using
the S3DIS dataset. In this section, we validate the effects
of various architecture choices and testing schemes. In our
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FIGURE 9. Visualization of results on the ScanNet dataset.

TABLE 10. IoU for all categories of the ScanNet dataset.

ablation experiments, several key parameters are considered:
1) the size of the striding block; 2) the stride size of the sliding
window; 3) the impact of the input order; and 4) the effect of
data augmentation.

TABLE 11. The segmentation results of different input information on the
ScanNet dataset.

1) SIZE OF THE SLIDING BLOCK
We report the results of three different block sizes, 1 m, 2 m,
and 3 m in TABLE 12. The segmentation accuracy tends to
decrease with increasing block size. This is because a larger
block size produces more slices, which makes it hard to build
the model. Among various settings, the optimal block size
for the S3DIS dataset is 1 m. Thus, to prepare training data,
we first split points by room and then sample rooms into
blocks with an area of 1 m by 1 m.

2) STRIDE SIZE OF THE SLIDING WINDOW
In the segmentation experiment of the S3DIS dataset,
we sample 1.5 m×1.5 m×3 m cubes from the initial scene
to generate the training data. We train our model with
4,096 points randomly sampled from a cube and evaluate
the model exhaustively to choose all points in the cube in a
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TABLE 12. The accuracy of different block sizes on the S3DIS dataset.

TABLE 13. The accuracy of different stride sizes of sliding windows on
the S3DIS dataset.

TABLE 14. The segmentation results of different input orders on the
S3DIS dataset.

sliding window fashion through the XY-plane with different
stride sizes. Here, we set the sliding stride into three values:
0.2 m, 0.5 m, and 1.0 m. The first two options require splitting
the scenes into overlapping cubes during testing, which is
also used in PointNet++ [16]. Like PointNet [8], the last
option produces nonoverlapping cubes. The experimental
results are reported in TABLE 13. Experimental results show
that using overlapped division can slightly increase the per-
formance with 1.49%∼1.55% in mean per-class accuracy,
1.30%∼1.66% in mean IoU, and 1.86%∼2.55% in overall
accuracy on the S3DIS dataset. However, testing using over-
lapped division requires more computations as there are more
cubes to process. Thus, we set the stride size to 1.0 m; namely,
there is nonoverlap sliding in our MHNet.

3) THE IMPACT OF THE INPUT ORDER
To verify the impact of the order of input point sets on the seg-
mentation performance of the network model, we compare
the effect of semantic segmentation under two conditions:
unsorted, and sorted by 3D coordinate (namely, Sorted-
XYZ). In the comparison experiments, we show the segmen-
tation results of two sorting modes in TABLE 14. The results
show that the order of input point sets can affect the segmenta-
tion performance of the MHNet. Compared with the unsorted
input points, the XYZ sorted method is slightly improved the
segmentation result, in which the mean per-class accuracy
and mIoU are increased by 0.3% and 0.21%, respectively,
and the overall accuracy is improved by 0.41%. Since the
model trained by the XYZ sorted point cloud has no obvious
effect on improving the segmentation effect, the unsorted
point cloud is used in our network.

TABLE 15. The effect of data augmentation on the S3DIS dataset.

4) THE EFFECT OF DATA AUGMENTATION
In PointNet [8], different data augmentation methods, includ-
ing random rotation point clouds and jittering of XYZ coor-
dinates, are used to augment point clouds. PointNet++ [16]
adopt rotation along the Z-axis to augment data. We want
to determine the role of data augmentation methods on
the performance of our MHNet architecture. We, therefore,
train the MHNet on Area1∼Area5 training set with two
types of data augmentation methods used in PointNet [8]
and PointNet++ [16] and report their performances in
TABLE 15. The superscript denotes the data augmentation
methods in PointNet (A1) and PointNet++ (A2) are used
in experiments, respectively. We observe that the data aug-
mentation method used in PointNet [8] does play a signif-
icant role in the final performance of PointNet. However,
it does not improve the segmentation accuracy of ourMHNet.
The data augmentation method used in PointNet++ [16]
can slightly improve the segmentation accuracy both in
PointNet++ and in our MHNet. However, even without any
geometric data augmentation, our base MHNet outperforms
the PointNet++ [16] by 1.26 mIOU points.

E. COMPUTATION ANALYSIS
In this section, we demonstrate the effectiveness of our
base MHNet in terms of inference speed and GPU memory
consumption in a batch of points with a size of 4,096×9.
We report the computation time measured on a single GTX
1080Ti GPU in TensorFlow. The computation time and mem-
ory consumption are estimated on the area 6 test data of the
S3DIS dataset. We take the first conference room as an exam-
ple, which contains 18 batches. The first batch is neglected
since there is some preparation for the GPU. Then, the mean
inference time of the remaining 17 batches is chosen as the
final judgment basis. The speed and memory measurements
are reported in TABLE 16.

The results show that the memory consumption of
our method is similar to the single-scale version of
PointNet++ [16] and even lower than PointNet [8]. More-
over, the inference speed of our MHNet is approximately
equal to PointNet++ [16]. These prove the effectiveness of
our model, which does not consume too much memory or
time while the complexity of the model increases, and the
segmentation accuracy is improved.
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TABLE 16. Computation analysis between PointNet, PointNet++, and
MHNet.

V. CONCLUSION
In this paper, we propose a deep learning framework MHNet
for 3D point cloud semantic segmentation. The framework
consists of two important components. In the first part,
a MHNet structure is constructed for feature learning to
predict point label probability, in which the set abstraction
module to learn local features at each level and the feature
propagation module to integrate multiscale hierarchical fea-
tures. The proposed method allows us to create effective and
simple neural networks for learning local and global features
of point clouds. To address the MHNet segmentation incon-
sistency of one object category, a CRF model is constructed
to optimize the predicted class labels. We demonstrate that
MHNet has a significant improvement over state-of-the-art
for semantic segmentation tasks on the S3DIS dataset and
ScanNet dataset. We also conduct comprehensive experi-
ments to justify the effectiveness of our proposed method.

However, there are also many problems that need to be
solved in our network. Although our method improves the
accuracy of semantic segmentation, the computational burden
is large due to the iterate farthest point sampling and ball
query, and it consumes more computations in the higher local
context resolutions. In the future, it is worthwhile to consider
how to accelerate the run time of our proposed network.
Additionally, a robust solution to handle large-scale point
clouds for scene understanding would be an interesting work.
In addition, the CRF only acts as a postprocessing module to
optimize the segmentation results in our method. The CRF
global optimization only improves the overall accuracy by
less than 1.00%. This is because the CRF reclassifies the
noise in point clouds rather than segmenting point clouds
again. Although there are considerable noise points in the
segmentation result of MHNet, the number of noise points
only accounts for a small part of the total point clouds. Even
if all the noise points are corrected, the overall accuracy of
the point clouds will not be greatly improved. In the next
step, embedding it into the network to construct an end-to-end
system should be considered. We expect wide application of
the proposed method in 3D semantic segmentation and hope
the design provides a basis for our future work on indoor
modeling research.
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