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ABSTRACT In this paper, an improved residual chi-square test fault isolation approach is proposed.
In order to improve reliability of strapdown inertial navigation system (SINS), redundant SINS composed
of redundant inertial sensors is applied. Among redundant SINS, four-gyro SINS has a wide range of
applications as it supplies big reliability considering cost and volume. Fault isolation (FI) can isolate a fault
when a fault occurs in redundant SINS. Generalized likelihood test (GLT) fault isolation based on kalman
filter (KF) effectively isolate a fault because of its high sensitivity, small calculation and easy implementation.
Nevertheless, GLT fault isolation based on KF cannot recognize a fault in four-gyro SINS. In this paper, first,
a new observation model is introduced based on error models of a redundant SINS. In addition, a residual
vector for isolation based on KF generated by gyros and star sensors is designed. Second, a separate residual
chi-square test fault isolation approach for each gyro is proposed to recognize a fault. Third, an average
separate residual vector and new isolation threshold are designed to reduce isolation time. At last, a star
sensor is employed to obtain angular velocity, which provides angular velocity baseline information for the
proposed isolation approach. Simulation shows that the proposed approach is useful to recognize a fault in
four-gyro SINS.

INDEX TERMS SINS, FI, GLT, residual chi-square test, KF, reliability.

I. INTRODUCTION
As the most common navigation system, SINS can pro-
vide attitude, velocity and position of a vehicle, such as
a ship, a spacecraft and an aircraft [1]. To get correct
navigation information, high reliability of SINS is needed.
However, SINS suffers a lot due to poor working environ-
ment or improper operation. In consequence, high reliability
of SINS cannot be guaranteed all the time [2].

Among all components of SINS, inertial sensors (including
gyros and accelerometers) are the most critical and easily
damaged components [3]. As a result, redundant SINS is
developed to increase reliability of SINS, which is obtained
by utilizingmultiple inertial sensors in SINS [4]. In redundant
SINS, four-gyro SINS has a wide range of application as it
supplies big reliability considering cost and volume [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiao-Sheng Si .

In four-gyro SINS, navigation result can be calculated from
eight inertial sensors’ outputs. Incorrect navigation results
will be obtained if any one of the gyros or accelerom-
eters fails. The International Federation of Automatic
Control (IFAC) Safe Process Technical Committee defines a
fault as an unpermitted deviation of at least one characteristic
property or parameter of the system from the acceptable/
usual/standard condition [7]. There are two ways to describe
a fault: hard fault and soft fault. Hard faults present a sudden
change on the basis of the normal outputs of sensors. Hard
faults generally result from hardware damage, and make
sensors fail immediately. Soft faults present a slow change
on the basis of the normal outputs of sensors. Soft faults gen-
erally result from complex reasons, and cannot be detected
immediately [7], [8].

FI is necessary when a fault occurs in four-gyro SINS.
FI is to determine which sensor has a fault and judge the
fault’s type in redundant SINS. Current FI approaches are
mainly for single fault. There are three kinds of FI approaches
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for redundant SINS: direct comparison approach, signal pro-
cessing approach and parity space approach. Direct compar-
ison approach isolates a fault through linear relationship of
multiple sensors. However, in four-gyro SINS, there is only
one group of linear FI equation, and no FI truth table can
be built up. As a result, direct comparison approach cannot
isolate a fault in four-gyro SINS [9]–[11]. In addition, direct
comparison approach cannot be applied when considering
errors of inertial sensors.

Signal processing approach, such as linear estimation
approach [12], variance identification approach [13] and
wavelet transform approach [14], [15], can be applied to
FI in four-gyro SINS. While they are only useful to a
hard fault. Moreover, they show bad isolation performance
when SINS change its motion state. Yan proposed mean test
approach [16] to isolate a fault by testing mean value of an
inertial sensor. However, the isolation results is not correct
when considering errors of inertial sensors. In general, signal
processing approach are all especially suitable for a hard
fault, and they lose effectiveness when a soft fault happens.

Parity space approach, such as local estimation approach,
optimal parity vector (OPT) approach, singular value decom-
position (SVD) approach and GLT, is the most popular FI
approach. They are useful when there is a hard fault or a
soft fault. Local estimation approach can detect and isolate a
small fault, but its amount of calculation is large, and it cannot
diagnose a fault in time [17]. OPT has good robustness, but
the rate of correct isolation is lower than that of correct
detection [18], [19]. SVD cannot diagnose a fault with an
opposite direction [20], [21].

GLT becomemost widely used in FI as it achieves high sen-
sitivity, small calculation and easy implementation [22]–[24].
Lots of researchers apply KF algorithms to GLT, making GLT
useful when considering errors of inertial sensors [25], [26].
However, GLT isolation approach based on KF cannot be
applied to isolate a hard fault or a soft fault in four-gyro SINS.

A few researchers come upwith an idea for FI—using other
kinds of sensors to provide angular velocity baseline infor-
mation. Fault can be isolated by checking difference between
angular velocity baseline information and gyro outputs. Since
1990s, lots of domestic and foreign scholars do research on
star sensors to get accurate angular velocity of a vehicle
in non-gyro system, and many research results have been
obtained [27]–[30]. In recent years, with the development of
star sensors and the maturity of angular velocity’s algorithm
based on a star sensor, the accuracy of angular velocity can
reach 10−6rad/s [31], [32]. These make star sensors pro-
vide accurate angular velocity baseline information for FI.
A few researchers utilize star sensors to isolate a faulty gyro.
Faulty gyro can be detected and isolated through comparison
between gyro outputs and angular velocity from star sen-
sor [33], [34].This FI approach is applied in SINS, however,
it cannot be used in redundant SINS when considering errors
of sensors.

In this paper, with the aid of star sensors, an improved
residual chi-square test fault isolation approach improves the

thought of residual chi-square test, which has been widely
applied to detect a fault for integrated navigation system
(INS) [35], [36]. This approach first modifies the model of
GLT considering the errors of inertial sensors, and redesigns
a residual vector generated by gyros and star sensors for
four-gyro SINS. Second, a separate residual chi-square test
approach is designed to isolate a fault for each gyro. Third,
to reduce soft fault isolation time, an average separate resid-
ual vector and new isolation threshold are designed. Fourth,
star sensors provide accurate angular velocity baseline infor-
mation to generate residual vector for FI in four-gyro SINS.

The contribution of our research are as follows. To recog-
nize a fault in four-gyro SINS, first, a new observation model
for isolation is designed. Second, separate residual chi-square
test fault isolation approach is proposed to isolation a fault in
four-gyro SINS. Third, average separate residual chi-square
test fault isolation approach improves separate residual chi-
square test approach, and reduce the isolation time of a soft
fault.

The rest of this paper is organized as follows. In part II,
the limitation of GLT algorithm based on KF is proved.
In part III, an improved residual chi-square test fault isolation
approach for four-gyro SINS is proposed. Part IV describes a
redundant model, tetrahedral structure. Experimental results
and discussions are presented in part V. Finally, conclusions
are summarized in Part VI.

II. GLT ALGORITHM AND LIMITATION
In this part, GLT algorithm is first presented. Second, GLT
algorithm based on KF is described. Third, limitation of GLT
isolation algorithm is proved.

A. GLT ALGORITHM
m measurements are generated by a number of redundant
inertial sensors:

Z = HX + f + ε, (1)

where Z ∈ Rm denotes inertial sensors’ measurements. X ∈
Rn is the angular velocity. H ∈ Rm×n is the inertial sensors’
measurement matrix. f is a fault vector. ε is a measurement
noise vector satisfies:

E(ε) = 0, E(εεT ) = R. (2)

A (m − 3)-dimensional parity vector P is determined to
detect and isolate a fault.

P = VZ = VHX + Vf + Vε, (3)

where V is a (m − 3) × m-dimensional parity matrix that
satisfies

VVT
= Im−3VH = 0. (4)

(3) can be rewritten as

P = Vf + Vε. (5)

The parity vector P is a vector only related to fault and
noise, and P has no relationship with angular velocity.

VOLUME 7, 2019 174401



J. Cheng et al.: Improved Residual Chi-Square Test Fault Isolation Approach in Four-Gyro SINS

GLT fault detection decision function is [22]:

FDGLT =
1
σ 2

(
PTP

)
.

If FDGLT ≥ TD, a fault occurs;

if FDGLT < TD, no fault occur. (6)

where FDGLT ∼ χ2(m − n). TD denotes a fault detection
threshold derived from Chi square distribution table accord-
ing to the given false alarm rate and degree of freedom (m−n).
GLT fault isolation function is shown:

FIGLT(i) =
(PTV i)2

σ 2VT
i V i

, (7)

faulty sensor has the maximum of FIGLT(i). V i is the ith
column of V .

B. GLT ALGORITHM BASED ON KF
In traditional GLT algorithm, the errors of sensors-input mis-
alignment, scale factor and bias are not taken into considera-
tion. As a result, traditional GLT algorithm cannot detect and
isolate a fault. KF has been applied to compensate the errors
in GLT, and makes GLT work.

When faults are not taken into consideration, (1) will be
rewritten as:

Z = (I +Hse)[(H +Hme)X + b1 + ε1], (8)

where Hse ∈ Rm×m is a scale factor error matrix. Hme ∈

Rm×n is an input misalignment error matrix. b1 is a bias
vector. ε1 is Gaussian white noise with zero mean.

b = (I +Hse)b1
ε = (I +Hse)ε1

Hm = H +Hme +HseH . (9)

From (3) and (4), parity vector is expressed:

P = VZ = VHmX + Vb+ Vε + Vf , (10)

where estimation X̂ is:

X̂ = (HTH)−1HTZ. (11)

The state vector e related to VHm and Vb satisfies the
Discrete Markov process [25]:

ek = ek−1 + wk−1. (12)

From KF, the estimation ê can be obtained.
After compensation, compensated parity vector, GLT fault

detection function and isolation function based on KF are

P∗ = P − VHmX − Vb = Vε + Vf . (13)

FDGLT =
1
σ 2

(
P∗TP∗

)
. (14)

FIGLT(i) =
(P∗TV i)2

σ 2VT
i V i

. (15)

C. LIMITATION OF GLT ISOLATION BASED ON KF
GLT algorithm can only detect a fault, but fails to isolate a
fault in four-gyro SINS. Here is a proof of the conclusion.

From (4) and (13), the fault vector f ’s projection onto the
column space of V is described:

f̂ null = Vf . (16)

Assuming that gyro i has a fault. The fault’s projection onto
the column space of V is shown as f̂ i:

f̂ i = Vf i = V (f ei) = f V i, (17)

where f is the inertial sensor’s fault magnitude. e is a m-
dimensional column vector. The ith element of ei is 1, and
the others are 0.

According to (15), (17) can be rewritten as:

FIGLT(i) =
(P∗TV i)2

σ 2VT
i V i
=
f 2(VT

i V i)2

σ 2VT
i V i

. (18)

From the property of V , the rank of V is 1 in four-gyro
SINS. Thus,V i in (18) is only a scalar but not a vector. At this
time, (18) is rewritten as:

FIGLT(i) =
f 2(VT

i V i)2

σ 2VT
i V i

=
f 2(VT

i V i)
σ 2 =

P∗TP∗

σ 2 . (19)

From (19), no matter which inertial sensor fails in four-
gyro SINS, GLT fault isolation function value will remain the
same. There is no maximum value in the isolation functions.
Thus, GLT isolation function based on KF cannot isolate a
fault in four-gyro SINS.

From (15), GLT isolation works through judging which
column of V has the same direction with the parity vector P∗.
Since P∗ is a scalar in four-gyro SINS system, it cannot have
a direction. Thus, parity vector can’t be applied to isolate a
fault in four-gyro SINS system either.

Simulations are conducted to verify the limitation of GLT
isolation based on KF. Assuming that gyro 4 has a hard fault
in the thirtieth second. The results are shown below. The
gyro providing the biggest isolation value is the faulty one.
Fig.1 shows that gyro 4’s isolation function value is the same
as others. As a result, we can’t tell which gyro is faulty.
The results demonstrate that fault isolation are wrong. Same
situation happens when there is a soft fault in four-gyro SINS.

From these above, we can see that GLT fault isolation
based on KF cannot be applied to FI in four-gyro SINS.
In order to isolate a fault in four-gyro SINS, a new fault
isolation approach must be designed.

III. IMPROVED RESIDUAL CHI-SQUARE TEST FAULT
ISOLATION APPROACH
Improved residual chi-square test fault isolation approach,
first, designs a residual vector based on KF, which is for
isolating faulty gyro. Second, separate residual vector chi-
square test fault isolation algorithm is proposed to isolate
a fault for four-gyro SINS system. Third, average residual
vector chi-square test fault isolation algorithm is designed
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FIGURE 1. GLT fault isolation based on KF for a hard fault.

FIGURE 2. Improved residual chi-square test fault isolation approach
brief flowchart.

to improve isolation performance of a soft fault. At last, an
approach to obtain angular velocity of a vehicle with the
aid of star sensor is presented, which can provide important
observation baseline information for isolation approach.

A. RESIDUAL VECTOR BASED ON KF
In this part, first, a new isolation observation model and
the state vector are designed. Second, on the basis of KF, a
residual vector can be obtained through KF algorithm.

From part II, both parity vector and isolation function of
GLT fail to isolate a fault in four-gyro SINS. As a result,
the observation model in (10) cannot be applied to isolation
anymore. A new observation model should be considered.

From (8), when there is no fault, (8) can be presented as:

Z = HX +HmX + b+ ε. (20)

Different from (12), X is from star sensors, and details are
presented in D, part III.

From (20), there exists

Z−HX = HmX + b+ ε. (21)

Supposing there is a vector q, and its form is presented as
below:

q = [q11 q12 q13 q21 . . . qm3]T, (22)

where qij denotes Hm’s element. The first part of (21) is
rewritten as:

HmX = Wq, (23)

whereW ∈ Rm×3m can be denoted as:

W =


XT 000 . . . 000
000 XT . . . 000
. . . . . . . . . . . .

000 000 . . . XT

 . (24)

(21) can be expressed as:

Z−HX̂ = Ŵq+ b+ ε. (25)

A new state vector c can be extended from q and b,

c =
[
q
b

]
. (26)

Substituting (26) into (25), we can derive an observation
model:

Z−HX̂ = M̂c+ ε, (27)

where ˆM =
[
Ŵ I

]
.

A dynamic model is needed to get the state vector c.
Supposing that c can be modeled as a discrete-time Markov
process [25]:

ck = 8k|k−1ck−1 + wk−1. (28)

where wk denotes a white noise, and its noise covariance
matrix is Qk . 8k|k−1 is a state transition matrix.
The estimation ĉk can be derived from KF:

ĉk|k−1 = 8k|k−1ĉk−1 (29)

Ek|k−1 = 8k|k−1Ek−18T
k|k−1 + Qk−1 (30)

Kk = Ek|k−1M̂
T
k [M̂kEk|k−1M̂

T
k + Rk ]

−1 (31)

ĉk = ĉk|k−1 + Kk [Zk −HX̂k − M̂k ĉk|k−1] (32)

Ek = [I − KkM̂k ]Ek|k−1. (33)

The practical observation is

Zpk = Zk −HX̂k , (34)

and the predicted observation is

Zpk|k−1 = M̂k ĉk|k−1, (35)

The residual vector can be contained from the difference
between the practical observation outputs and the predicted
observation [35]

r = Zpk−Zpk|k−1 = Zk −HX̂k − M̂k ĉk|k−1, (36)

where r refers to a residual vector generated by gyros and star
sensors.
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B. SEPARATE RESIDUAL CHI-SQUARE TEST FAULT
ISOLATION APPROACH
In traditional residual chi-square test, the function can only be
used to detect a fault in INS, but it is never used to isolate a
fault. In traditional residual chi-square test approach, the fault
detection function [35] is

λ = rTA−1k r, (37)

where the residual vector r satisfies Gaussian noise with zero
mean when there is no fault, and its covariance matrix is

Ak = M̂kEk|k−1M̂
T
k + Rk .

If λ ≥ TD1, there is a fault;

if λ < TD1, there is no fault. (38)

where λ ∼ χ2(m), as the dimension of r is m. TD1 denotes
a fault detection threshold. It can be obtained through Chi
square distribution table.

From (37), the detection function λ contains the resid-
ual information of redundant SINS. Traditional residual chi-
square test approach designs a residual vector for redundant
SINS. The function cannot determine which gyro has a fault.
Thus, a new fault isolation approach is required to isolate a
fault effectively in four-gyro SINS.

In order to achieve isolation, separate residual chi-square
test fault isolation approach designs a separate residual vector
for each gyro. The problem of isolation can be realized by
checking whether one gyro is faulty or not. Consequently,
the proposed approach can not only isolate a fault in four-gyro
SINS, but also isolate a fault in any other redundant SINS.

Obviously, (36) can be rewritten as

r = Zk −HX̂k − M̂k ĉk|k−1 = [r1 r2 . . . ri]T , (39)

where ri(i = 1, 2 . . .m) refers to a separate residual vector of
gyro i.
In (39), the separate residual vector ri satisfies Gaussian

with zero mean when there is no fault, and its covariance
matrix is

Ai = Ak (i, i). (40)

From (39), when there is no fault, ri is a linear function of
ε. ri is subject to 1-dimensional normal distribution. When
there is a fault, the mean value of ri is not zero. As a result,
fault isolation function can be determined according to the
property of ri.
The statistical property of ri presents differently under two

situation. The normal situation is denoted as H0, and the
failure situation is denoted as H1:

H0 : E(ri) = 0, E(rirTi ) = Ai (41)

H1 : E(ri) = f , E[(ri − f )(ri − f )T] = Ai. (42)

where f is faulty magnitude of gyro i.
A log-likelihood ratio function related to ri is defined

3(ri) = ln
Pr (ri/H1)
Pr (ri/H0)

, (43)

where Pr (·/·) means normal conditional probability density
function. From (43) and (44),

3(ri) =
1
2
[rTi ri − (ri − f )T(ri − f )]. (44)

From (44), the maximum likelihood estimation of f can be
obtained

f̂ = ri. (45)

Substituting (45) into (44), we obtain (46) as follows:

3(ri) =
1
2
rTi ri (46)

Thus, separate residual chi-square test fault isolation func-
tion can be derived:

FRi = rTi A
−1
i ri.

If FRi ≥ TIi, gyro i has a fault;

if FRi < TIi, gyro i has no fault. (47)

where FRi ∼ χ2(1), as the dimension of ri is 1. TIi denotes
gyro i’s fault isolation threshold. It can be obtained through
Chi square distribution table when probability of false alarm
is given.

C. AVERAGE SEPARATE RESIDUAL CHI-SQUARE TEST
FAULT ISOLATION APPROACH
Separate residual chi-square test fault isolation approach can
isolate a hard or a soft fault. As a soft fault can only be isolated
when it accumulated to some degree, its isolation time is later
than the time that the fault happens. To reduce the isolation
time for a soft fault, an average separate residual chi-square
test fault isolation approach is proposed.

The proposed approach can be divided into two parts: one
is the proposal of an average separate residual vector, and the
other is the calculation of new isolation threshold.

To decrease the influence of noise, an average separate
residual vector is proposed based on the thought of weighted
average. By calculating the mean value of separate resid-
ual vector through sliding data window, an average separate
residual vector can be obtained.

From (39), average separate residual vector can be
expressed:

rai(k)=
1
p
[ri(k+1− p)+ ri(k+2− p)+ . . .+ ri(k)] . (48)

From (48), (41), and (42), the statistical property of
rai(k) is:

H0 : E([rai(k)]) = 0,E([rai(k)] [rai(k)]T) = Ai (49)

H1 : E([rai(k)]) = f ,E[[rai(k)− f ] [rai(k)− f ]T] = Ai
(50)

From (47), average separate residual chi-square test fault
isolation function can be obtained:

FRAi(k) = rai(k)T · Ai(k)−1 · rai(k) (51)
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The new isolation threshold is the key to average separate
residual chi-square test fault isolation. In B, part III, the
isolation threshold is obtained by limiting the probability of
false alarm, but it is usually too large. To get a proper isolation
threshold, two steps are designed.

At the first step, the magnitude of a tolerable fault should
be calculated. In redundant SINS, navigation result are cal-
culated from three-axis inertial sensors’ outputs, which are
obtained by least square approach from multiple inertial sen-
sors. The accuracy of navigation results are decided by the
errors of three-axis inertial sensors’ outputs. As C.K Yang
said [37], if the errors of three-axis inertial sensors’ outputs
are the same whether there is a fault or not in redundant SINS,
the fault is tolerant, and it needn’t to be isolated.

When the faulty gyro is included, the error covariance
C+i is:

C+i = E[(x+i − x)(x+i − x)T], (52)

where x = (HTH)−1HTZ, x+i = x+ (HTH)−1HT(f + ε).
When faulty gyro is not included, the error covariance

C−i is:

C−i = E[(x−i − x)(x−i − x)T] (53)

where x−i = x + (HTW iH)−1HTW iε, and W i is an n × n
diagonal matrix with (i, i) component set to 0 and others are 1.
When (52) is equal to (53), tolerable fault can be performed

(details can be found in [37]):

f 2 =
R
||V i||

2 (54)

Only when the magnitude of fault is bigger than tolerable
fault, it can be isolated.

At the second step, new isolation threshold can be obtained
from fault isolation function in (51) and tolerable fault in (54).
As shown in (45), separate residual vector ri is the maximum
likelihood estimation of f . Once the tolerable fault is settled,
the smallest average separate residual vector and isolation
function are confirmed.

Substituting (54) into (51), new isolation threshold can be
designed:

TRi = Ai(k)−1
R
||V i||

2 (55)

where denotes gyro i’s new isolation threshold.

D. ANGULAR VELOCITY ESTIMATION USING STAR SENSOR
The key to make improved fault isolation approach work
is the determination of three-dimensional angular velocity
X in (36). The angular velocity X provides angular motion
baseline information to get residual vector in (36) and (39).

In GLT approach based on KF algorithm, angular velocity
X is confirmed by the least squares estimation (LSE) of Z,
as (11) presented. We may find angular velocity X is used as
an observation matrix in (10). When a fault occurs, the prop-
erty of observation P changed. Fault can be detected through

different property of P. Thus, using LSE to get angular veloc-
ity X can be applied to GLT approach based on KF algorithm
to detect a fault.

While in improved fault isolation approach, using LSE to
get angular velocity X can’t be applied. It is because angular
velocity X is not only used as an observation matrix, but also
as a part of the observation. From (11) and (21), once there is a
fault in Z, there would be faulty information in every element
of observation in (21). In other words, LSE pollute every
element of observation, and we can’t tell which element of
observation has a fault, which makes improved fault isolation
cannot work. Hence, it’s important to get angular velocity X
without faulty information.

As we metioned in part I, a star sensor is a high accurate
and autonomous sensor, which provides attitude information
(or cateloged vector). Lots of researchers study how to get
accurate angular velocity information based on star sensors.
Among these studies, Liu proposed an adaptive Kalman Filter
(AKF) to estimate angular velocity, and accuracy can reach
10−6rad/s. Thus, we can apply Liu’s approach to improve the
accuracy of the angular velocity. Here is the brief introduction
of Liu’s approach.

The measurement model of the star sensor can be consid-
ered as a pinhole imaging system. The star’s direction vector
is provided in the star sensor reference [32]:

v(t) = M(t)r, (56)

where r and v(t) represent the cataloged vector in inertial
frame and the measurement direction vector in the star sensor
frame, respectively.M(t) is an attitude matrix of star sensor.
And r and v(t) satisfy

v(t) =
1√

x2(t)+ y2(t)+ h2

−x(t)−y(t)
h

 , (57)

and

r =

 cosα cos δ
sinα cos δ

sin δ

 , (58)

where α and δ are star’s right ascension and declination in
inertial frame, respectively. x(t) and y(t) are star’s projection
in the star sensor frame. And h represents focal distance.
The derivative with respect to t in (57)

∂v(t)
∂t
=
∂M(t)
∂t

r = −[X(t)×]M(t)r = [v(t)×]X(t), (59)

where X(t) is angular velocity.
The observation model and measurement model are

X(t)k+1 = X(t)k + w(t)k (60)

and

Z1(t)k = H1(t)kX(t)k + V (t)k ,

Z1(t)k =
1√

x2(t)k + y2(t)k + h2

[
−x(t)k
−y(t)k

]
(61)
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FIGURE 3. Improved residual chi-square test fault isolation approach.

FIGURE 4. Four-gyro tetrahedral structure.

where

−
1√

x2(t)k−1 + y2(t)k−1 + h2

[
−x(t)k−1
−y(t)k−1

]

and H1(t)k = 1√
x2(t)k+y2(t)k+h2

[
0 −h y(t)k
h 0 −x(t)k

]
.

FromAKF algorithm, angular velocityX(t) can be derived.
Detailed improved residual chi-square test fault isolation

approach is displayed as follows:

IV. REDUNDANT MODEL
In order to verify the proposed approach, we take four-gyro
SINS as an example. Fig.4 shows a four-gyro tetrahedral
structure [38]. The frame of this structure is a tetrahedron.
Its bottom is a regular triangle, and its side is an isosceles
triangle. The angle between bottom and side is 70.53◦. The
four gyros are installed on planes of the tetrahedron. In Fig.4,
the axis of gyro 1 and ozb are in opposite direction, the axis of
gyro 2 is in xbozb plane. The angle between projection of gyro
3’s axis onto xboyb plane and oxb is 120◦. The angle between
projection of gyro 4’s axis onto xboyb plane and oxb is 240◦.

The measurement matrix H is:

H =


0 0 −1

0.9428 0 0.3333
−0.4714 0.8165 0.3333
−0.4714 −0.8165 0.3333

 . (62)

Compared with other redundant SINS, four-gyro tetrahe-
dral structure’s advantages are displayed:

Compared to other four-gyro SINS, a tetrahedral structure
achieves greatest reliability and optimal navigation accuracy
norm [39]:

HTH =
m
3
I3, (63)

where I is equal to an identity matrix, and m denotes the
number of gyros in SINS.

It is noticeable that any three of the gyros’ sensitive axes
are not in a plane in four-gyro tetrahedral structure. This four-
gyro SINS is able to work after isolating any one of the gyros.
Consequently, four-gyro tetrahedral structure is good for FI.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL CONDITION
Semi-physical simulation is conducted to test the perfor-
mance of the proposed approach. Two kinds of data are
needed in the experiment: the gyro outputs and star sensor
outputs.

The gyros’ outputs can be described as follows:

ω̂
b
ib = ωb

ib + δω
b
ib (64)

where b denotes the SINS’s body frame. ω̂b
ib represents prac-

tical angular velocity. δωb
ib is the noise of gyro, which can be

obtained from experiment in semi-physical simulation. ωb
ib is

the true angular velocity, which is from simulation in semi-
physical simulation.

In Fig.5, IMU, which is composed of three-axis gyros
and three-axis accelerometers, is used for experiments.
Four-gyro’s noise can be obtained from two experiments.
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FIGURE 5. IMU of SINS.

When considering gyros’ error in (8), the errors informa-
tion should be considered. They are set as follows:

The scale factor error matrix is

Hse =


0.005 0 0 0
0 0.005 0 0
0 0 0.005 0
0 0 0 0.005

 . (65)

The input misalignment error matrix is given in (66), as
shown at the bottom of this page, where the installation error
angles are a1 = a2 = b1 = b2 = c1 = c2 = d1 = d2 = 60′′.
As bias is 0.2◦/h, the bias vector is:

b1 = [0.2 0.2 0.2 0.2 0.2 0.2]T . (67)

Then gyro outputs can be confirmed considering sensor
errors.

Star sensors’ outputs can be modeled as follows:

r̂s = rs + δrs. (68)

where s denotes the star sensor’s body frame. r̂s represents
practical cataloged vector. δrs is the noise of star sensor,
which is assumed to be Gaussian white noise, and its covari-
ance is set to be 0.1 pixels. rs is the true cataloged vector,
which is from simulation. To reduce the calculation, it’s
assumed that the SINS’s body frame and star sensor’s body
frame are in the same direction. The designed focal distance
is 105.75 mm. The star sensor data rate is 10 Hz.

Other detailed conditions are displayed as follows:
(1) The vehicle moves in a straight line, and the velocity

is set to 6.17m/s. The initial latitude and longitude are
45◦ and 126◦, relatively. The resulting attitudes, pitch,
roll, and heading angle of vehicle are modeled as sine
functions. The amplitude/period are 9◦/5s, 8◦/7 s and
10◦/9s, respectively.

(2) The time of fault isolation is 50 seconds, and simulation
step is 0.1 seconds.

(3) The detection threshold and isolation threshold are TD =
TI = χ2

0.999(1) = 6.63 when given false alarm rate is
0.001, and the degree of freedom is m− n = 4− 3 = 1.

FIGURE 6. Separate residual chi-square test fault isolation for a hard
fault (by LSE from gyro).

(4) A fault happens at the thirtieth second, and 2 kinds of
fault conditions are shown below:

Condition A: gyro 4 has a hard fault with amplitude 10◦/h.
Condition B: gyro 4 has a soft faults with slope 1◦/h.

B. RESULT AND DISCUSSION
The proposed approach improves residual chi-square test
algorithm to isolate a fault. This part first verifies the incor-
rectness and effectiveness of separate residual chi-square
fault isolation in different condition. Second, average sepa-
rate residual chi-square fault isolation is verified for four-gyro
SINS in improving the isolation performance of a soft fault.

1) SEPARATE RESIDUAL CHI-SQUARE TEST
FAULT ISOLATION
a: ANGULAR VELOCITY FROM GYRO
This part verifies the incorrectness of separate residual chi-
square fault isolation when the angular velocity is provided
by LSE from gyro. The results are shown as follows.

Separate residual chi-square test fault isolation functions
in condition A are shown in Fig.6 when angular velocity
is provided by LSE from gyro. Table 1 shows the detailed
isolation value in Fig.6.

Separate residual chi-square test fault isolation works after
GLT detect a fault in redundant SINS. The proposed approach
is to determine which gyro has a fault. When a gyro’s separate
residual chi-square test isolation function value is bigger than
isolation threshould, the gyro has a fault.

As shown in Fig.6 and table 1, gyros’ isolation function
values are almost the same. We cannot know which gyro
is faulty. While angular velocity is calculated by LSE from

H +Hme =


sin(a2) cos(a1) sin(a2) sin(a1) − cos(a2)

sin(α + b2) cos(b1) − sin(α + b2) sin(b1) cos(α + b2)
− sin(α + c2) cos(c1 + π − β) sin(α + c2) sin(c1 + π − β) cos(α + c2)
− sin(α + d2) cos(−d1 + π − β) − sin(α + d2) sin(−d1 + π − β) cos(α + d2)

 (66)
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TABLE 1. Separate residual chi-square test fault isolation for a hard fault (by lse from gyro).

TABLE 2. Separate residual chi-square test fault isolation for a soft fault (by lse from gyro).

FIGURE 7. Separate residual chi-square test fault isolation for a soft fault
(by LSE from gyro).

gyro, every element of observation in (25) is polluted by some
gyro’s faulty information. At this time, no faulty one can be
determined.

The simulation results show that when angular velocity
is from gyro, separate residual chi-square test fault isolation
fails to isolate a hard fault in four-gyro SINS.

Simulations are conducted for a soft fault in condition B.
The results are displayed as follows. Separate resid-
ual chi-square test fault isolation functions are presented
in Fig.7 when angular velocity is provided by LSE from gyro.
Table 2 shows the detailed isolation value in Fig.7.

Fig.7 and table 2 show that gyros’ isolation function values
are nearly the same.We cannot tell which gyro has a fault. The
simulation results show that separate residual chi-square test
fault isolation fails to isolate a soft fault in four-gyro SINS
when angular velocity is from gyro.

FIGURE 8. Separate residual chi-square test fault isolation for a hard
fault (by AKF from star sensor).

b: ANGULAR VELOCITY FROM STAR SENSOR
In this part, the effectiveness of separate residual chi-square
test fault isolation approach is verified when angular velocity
is provided by AKF from star sensor. The results are shown
as follows.

Separate residual chi-square test fault isolation functions
in condition A are in Fig.8 when angular velocity is provided
by AKF of star sensor.

As shown in Fig.8, only gyro 4’s fault isolation function
value is bigger than isolation threshold. As a result, gyro 4
has a fault. Simulations show that when angular velocity is
provided by star sensor, separate residual chi-square test fault
isolation approach can isolate a hard fault in four-gyro SINS.

Next simulations are for soft fault in condition B. The
results are presented. Separate residual chi-square test fault
isolation functions in condition B are presented in Fig.9 when
angular velocity is provided by AKF from star sensor.

174408 VOLUME 7, 2019



J. Cheng et al.: Improved Residual Chi-Square Test Fault Isolation Approach in Four-Gyro SINS

FIGURE 9. Separate residual chi-square test fault isolation for a soft fault
(by AKF from star sensor).

FIGURE 10. Separate residual chi-square test fault isolation for a soft
fault (detailed).

From Fig.9, gyro 4’s isolation function value is much big-
ger than isolation threshold. We can see that gyro 4 has a soft
fault. Simulations demonstrate that when angular velocity is
provided by star sensor, separate residual chi-square test fault
isolation approach can isolate a soft fault in four-gyro SINS.

From Fig.8, the hard fault can be isolated when the fault
occurs. This approach shows good performance when there is
a hard fault. However, for the soft fault in Fig.9, the fault iso-
lation time is usually later than the time fault occurs as the soft
fault always presents a slow change. Consequently, although
separate residual chi-square test fault isolation approach can
isolate a fault in four-gyro SINS, it cannot isolate a soft fault
in time.

2) AVERAGE SEPARATE RESIDUAL CHI-SQUARE TEST
FAULT ISOLATION
This part verifies the good isolation performance of average
separate residual chi-square test fault isolation approach for
a soft fault.

Fig.10 shows a clearer view of Fig.9. Average separate
residual chi-square test fault isolation functions are presented
in Fig.11. Fig.12 shows a clearer view of Fig.11.

FIGURE 11. Average separate residual chi-square test fault isolation for a
soft fault.

FIGURE 12. Average separate residual chi-square test fault isolation for a
soft fault (detailed).

As shown in Fig.10, when a soft fault occurs at the thir-
tieth second, the isolation time of gyro 4’s separate residual
chi-square test function is at the thirty-fifth second. In this
situation, the isolation threshold is 6.63, which is obtained
by checking chi-square distribution table. Obviously, sepa-
rate residual chi-square test fault isolation approach cannot
achieve good isolation performance for a soft isolation. From
Fig.11 and Fig.12, we may find that the isolation time of gyro
4’s average separate residual test function is at the thirty-
second second. The new isolation threshold is 4, and it is
calculated from (55).We can Obviously find that the isolation
time of average separate residual chi-square test is less than
that of separate residual chi-square test approach.

Comparing Fig.12 with Fig.10, on the one hand, the iso-
lation curves in Fig.12 is much more smoother than that
in Fig.10. Average separate residual chi-square test function
decrease the influence of noise. On the other hand, the new
threshold value is 4 in Fig.12, which is smaller than the iso-
lation threshould (6.63) in Fig.10. Average separate residual
chi-square test approach gets a proper isolation threshold for
a soft fault. Thus, average separate residual chi-square test
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fault isolation approach achieves good isolation peformance
when a soft fault happens.

VI. CONCLUSIONS
In this paper, we propose an improved residual chi-square test
fault isolation approach to solve the problem that GLT fault
isolation approach based on KF cannot effectively isolate a
fault in four-gyro SINS. First, the proposed approach designs
a residual vector based onKF for isolation. Second, a separate
residual chi-square test fault isolation approach correctly rec-
ognize a fault. Third, an average separate residual chi-square
fault isolation approach reduce the soft fault isolation time.
At last, a star sensor has been employed to get the angular
velocity, which provides observation baseline information in
the proposed isolation approach. The experimental results
demonstrate that the new approach can successfully recog-
nize a fault in four-gyro SINS.

The proposed isolation approach are designed to isolate a
fault in four-gyro SINS. From part III, we may infer that the
isolation approach can also isolate multiple faults in redun-
dant SINS.

In future, more experiment should be conducted in dif-
ferent complex environment to verify the proposed isolation
approach. Meanwhile, adaptive algorithm can be combined
with the proposed isolation approach, which would improve
the performance of the isolation approach in different
situation.
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