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ABSTRACT The information quality is widely used in many applications. However, the existing information
quality can only deal with the probability distribution. Compared with probability distribution, the basic
probability assignment (BPA) in evidence theory is more efficient to handle uncertainty. As a result, it is
necessary to generalize the existing information quality. In this paper, a new expression for information
quality is proposed to measure the information quality of BPA. When the BPA degenerates into a probability
distribution, the proposed generalized expression for information quality in this paper is degenerated into
the information quality proposed by Yager. Numerical examples are used to demonstrate the effectiveness of
the generalized expression for information quality. In addition, a weighted average combination rule based
on the new expression for information quality is presented. A numerical example in target recognition is
illustrated to show its validity in combining conflicting evidence.

INDEX TERMS Information quality, Dempster-Shafer theory, basic probability assignment, Gini entropy,
information fusion, target recognition.

I. INTRODUCTION
Dealing with uncertainty is an open issue in real applica-
tion [1], [2]. Lots of math tools, such as fuzzy sets [3]–[5],
belief structure [6], Z-numbers [7], [8] and R-numbers are
presented. Probability theory has been heavily studied for
hundreds years and is widely used in lots of engineering.
As a measure of uncertainty of probability distribution, The
information quality proposed by Yager [9] has been applied
to decision making [10], [11], pattern classification [12], [13]
and maximum fusion [14] etc [15].

There are many different types of uncertainty [16]–[19].
Compared with probability distribution, the basic probability
assignment in Dempster-Shafer evidence theory [20], [21]
can be seen as a generalization and is more efficient to deal
with uncertain information [22].

However, Dempster-Shafer evidence theory [20], [21] as
a complete theory for dealing with uncertainty problems has
greater flexibility in dealing with uncertainty, while the infor-
mation quality proposed by Yager [9] does not apply to the
measurement of BPAuncertainty. In addition, how tomeasure
the uncertainty of BPA is also an open issue. Therefore, this
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paper proposes a generalized expression for information qual-
ity based on the framework of evidence theory.When the BPA
degenerates into a probability distribution, the generalized
expression for information quality in this paper is degenerated
into the information quality proposed by Yager [9].

The rest of the article is organized as follows. In the sec-
ond section, the combination rules in the evidence theory,
two average combination rules and the information quality
proposed by Yager [9] are introduced. In the third section,
the generalized expression for information quality proposed
in this paper is introduced, and the effectiveness of gener-
alized expression for information quality in measuring BPA
uncertainty is illustrated by a large number of examples.
In the fourth section, a weighted average combination rule
based on information quality will be proposed and a numeri-
cal example will be used to illustrate it. The fifth section is a
brief conclusion.

II. PRELIMINARIES
This section will introduce some preliminary knowl-
edge, including evidence theory, combination rules, Gini
entropy [23] and the information quality proposed by
Yager [9].
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A. DEMPSTER-SHAFER EVIDENCE THEORY
Dealing uncertainty and complexity in real world is not
inevitable [24]–[27]. Evidence theory is widely used due to
its efficiency tomodel uncertainty [28]–[31]. such as decision
making [32], evidential reasoning [33], [34], target recog-
nition [35], risk evaluation [36]. In addition, it provides a
bridge to connect different type of uncertain information such
as Z-numbers [7], D numbers [37], [38] and belief structure
[39]. However, some open issues are not well solved, such
as how to determine whether the frame of discernment is
incomplete or not is still an open issue [40].
Definition 1: The basic probability assignment is defined

as follows, assume A is a subset of X, let A mapping a number
m where m ∈ [0, 1], and satisfies [20], [21]:

m(φ) = 0 and
∑
A⊆X

m(A) = 1 (1)

The mass m(A) indicates the degree of support for evidence
A.
Definition 2: Given two basic probability assignment,

the Dempster’s combination rule, defined as follows [21]:

m(C) = m1(A)⊕ m2(B)

=


0 A ∩ B = ∅∑

A∩B=C
m1(A)m2(B)

1− k
A ∩ B 6= ∅

(2)

where

k =
∑

A∩B6=∅

m1(A)m2(B) (3)

k is the conflict among the evidences.

B. AVERAGE COMBINATION RULES
Data fusion technology can increase the system performance
and improve the efficiency of decision making [41], [42].
When there is a large conflict between the two evidences,
the Dempster’s combination rule will get counter-intuitive
results [43], [44]. To solve this problem, Dubois [45], Yager
[46], Smets [47], Murphy [48], Deng et.al [49] and other
researchers have proposed new methods [50]. This article
would mainly introduce Murphy’s average approach [48] and
modified average approach proposed by Deng et.al [49].

Murphy proposed a average combination rule [48] that
suggests that if n pieces of evidence are available at the same
time, the quality can be averaged and the average will be
combined n−1 times using the Dempster’s combination rule.
On the basis of Murphy, A weighted average combination

rule proposed by Deng et al. [49] based on evidence distance
function [51].

The calculation process for the weighted average combi-
nation rule proposed by Deng et al. [49] is shown in Algo-
rithm 1, as follows:

Algorithm 1 The Weighted Average Combination Rule Pro-
posed by Deng et.al [49]
Given some evidence m1, m2, . . ., mn
step 1 sim(mi,mj) = 1− d(mi,mj)
step 2 sup(mi) =

∑n
j=1j 6=i sim(mi,mj)

step 3 Crdi =
sup(mi)∑n
i=1 sup(mi)

step 4 MAE(m) =
∑n

i=1(Crdi × mi)
step 5 combine the evidence n-1 times

C. GINI ENTROPY AND INFORMATION QUALITY
Entropy can be used as a measure of information uncertainty
[52]. The greater the uncertainty of information, the larger the
value of entropy. There are many measurement methods for
entropy, such as Shannon entropy [53], Gini entropy [23] and
Deng entropy [54].
Definition 3: Let pi be the vector form of the probability

distribution, the Gini entropy is defined as follows [23]:

G(pi) = 1−
n∑
j=1

‖pij‖2 (4)

It can be seen from the Definition 3 that when all pj = 1/n,
its value is the largest; when pj = 1, its value is the smallest.
From the definition of the Gini entropy, it can be known

that as the value of
∑n

j=1 ‖pij‖
2 increases, the value of the

Gini entropy is smaller. The smaller the entropy, the smaller
the uncertainty and the larger the information. Therefore,
Yager proposed to use ‖pij‖2, named NegEnt , as a way to
measure information or uncertainty [9].
Definition 4: Given a probability distribution, the infor-

mation quality is defined as follows [9]:

IQpi = ‖pi‖
2
=

n∑
j=1

‖pij‖2 (5)

where

‖pi‖ =
√
(pi ∗ pi) = (

n∑
j=1

‖pij‖2)
1/2

(6)

III. THE PROPOSED METHOD
In this section, the proposed method will be described in
detail. The concept of information quality presented by Yager
and Petry [9] is efficient to measure the information quality of
probability distribution. However, in themuchmore uncertain
situation modelled by BPA, the existing information quality
can not work. To solved the question, this paper proposes a
generalized expression for information quality to measure the
uncertainty of BPA. The generalized expression for informa-
tion quality will be introduced below.
Definition 5: Given a basic probability allocation, the gen-

eralized expression for information quality is defined as fol-
lows:

IQmi =
∑
A⊆X

(
mi(A)
2|A| − 1

)2 (7)
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where mi is a mass function defined on the frame of discern-
ment X, and |A| is the cardinality of A.
As mentioned above, the generalized expression for infor-

mation quality is very similar to the information quality
proposed by Yager [9], but the belief of each focal element
is divided by an item (2|A|− 1), which represents the number
of potential states in A.
Assumem1 andm2 are two probability vectors on the space

X and that the relation between these is

m1(a) = m2(a)− α

m1(b) = m2(b)+ α

The rest of m1 and m2 are the same.∑
A⊆X

(
m1(A)
2|A| − 1

)2 = (m2(a)− α)2 + (m2(b)+ α)2

+

∑
A⊆X ,A6=a,b

(
m1(A)
2|A| − 1

)2

By simplifying:∑
A⊆X

(
m1(A)
2|A| − 1

)2 −
∑

B⊆X
(
m2(B)
2|A| − 1

)2

= 2α(m2(b)− m2(a))+ 2α2

= 2α((m2(b)− m2(a))+ α)

When m2(b) > m2(a), there is m1 > m2, and the certainty
increases. Therefore, the move of the BPA from the focal
element with small value to the focal element with large
value increases the certainty. When m2(b) = m2(a), there is
m1 > m2. Therefore, if two focal element have the same BPA
value, shifting some BPA from one focal element to another
increases the certainty. When m2(b) < m2(a), the situation is
complex. If | m2(a)−m2(b) |> α, then the certainty decrease.
If | m2(a)− m2(b) |< α, then the certainty increase.
Example 1: Assuming the mass function m(a) = 1, Its

information quality can be calculated by Definition 4 and
Definition 5 as follows:

IQp = (1)2 = 1

IQm = (
1

21 − 1
)2 = 1

Example 2: Given an framework of discernment X =
{a, b, c, d}, where the mass function is m(a) = m(b) =
m(c) = m(d) = 1/4,

IQp = (
1
4
)2 + (

1
4
)2 + (

1
4
)2 + (

1
4
)2 = 0.25

IQm = (
1/4

21 − 1
)2 + (

1/4
21 − 1

)2 + (
1/4

21 − 1
)2

+ (
1/4

21 − 1
)2 = 0.25

From Example 1 and Example 2, it can be seen that when
the BPA degenerates into a probability distribution, the values
calculated by the two information qualities are the same.
In this case, the generalized expression for information qual-
ity is degenerated into the information quality proposed by
Yager [9].

Example 3: Given an framework of discernment
X = {a, b, c, d}, where the mass function is

m1 = [(a, 1/4), (b, 1/4), (c, 1/4), (a, d, 1/4)]

m2 = [(a, 1/4), (b, 1/4), (c, 1/4), (a, b, d, 1/4)]

m3 = [(a, 1/4), (b, 1/4), (c, 1/4), (a, b, c, d, 1/4)]

IQm1 = (
1/4

21 − 1
)2 + (

1/4
21 − 1

)2 + (
1/4

21 − 1
)2

+ (
1/4

22 − 1
)2 = 0.1944

IQm2 = (
1/4

21 − 1
)2 + (

1/4
21 − 1

)2 + (
1/4

21 − 1
)2

+ (
1/4

23 − 1
)2 = 0.1888

IQm3 = (
1/4

21 − 1
)2 + (

1/4
21 − 1

)2 + (
1/4

21 − 1
)2

+ (
1/4

24 − 1
)2 = 0.1878

By comparison of Example 2 and Example 3, it can been
seen that the value of Example 2 is significantly larger than
the value of Example 3. This also is correspondent with our
intuitive experience. To a certain extent, it can be proved that
the generalized expression for information quality has good
validity.
Example 4: Given an framework of discernment X =
{a, b, c, d}, where the mass function is m(a, b, c, d) = 1,

IQm1 = (
1

24 − 1
)2 = 0.0044

By comparison of Example 3 and Example 4, it can
been seen that the value of Example 3 is larger than the
value of Example 4. The result is reasonable. Because
m(a, b, c, d) = 1 represents the information is totally
unknown. Therefore, Example 3 has higher information qual-
ity value than Example 4.
Example 5: When the identification frame is X =

{a1, a2, . . . aN }, the value of the information quality is con-
sidered in four special cases as follows:

m2(a1) = m4(a2) = · · · = m4(aN ) =
1
N

m3(a1) = m2(a2) = . . . = m2(aN ) = m2(a1, a2)

= . . . = m2(X ) =
1

2N − 1
m4(X ) = 1

As the value of N changes, the value of the generalized
expression for information quality also changes. The law of
variation between them will be shown in Figure 1. Further-
more, in order to make the image easier to be understood,
the ordinate in Figure 1 will be represented in logarithmic
form

From Figure 1, it can be seen that if N is the same, m3
has the smallest information quality value, that is, it has the
greatest uncertainty. As N increases, the value of information
quality becomes smaller, which is reasonable.
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TABLE 1. Information quality of the above BPA.

TABLE 2. Results of different combination rules of evidence.

FIGURE 1. Information quality.

IV. APPLICATION
In this section, a weighted average combination rule based on
information quality is proposed, an example will be used for
the combination. The results will be compared to the results of
a combination of three different rules by Dempster, Murphy
and Deng et al. [21], [48], [49].
For Dempster’s combination rule [21], when evidence con-

flicts, counter-intuitive results will result. This is because of
the existence of extreme evidence. Due to the characteristics
of information quality, the larger the value of information,
the smaller the uncertainty. Therefore, using 1

IQ as a weight-
ing factor can be used as a method to reduce the impact of
extreme evidence. The calculation process for the proposed

weighted average combination rule is shown in Algorithm 2,
as follows:

Algorithm 2 The Proposed Weighted Average Combination
Rule
Given some evidence m1, m2, . . ., mn
step 1 IQmi =

∑
A⊆X (

mi(A)
2|A|−1 )

2

step 2
∑n

i=1
1
IQi

step 3 mw =
∑n

i=1

1
IQi∑n
i=1

1
IQi

mi

step 4 combine the evidence n-1 times
which is calculated by Definition 2

An example will be used to illustrate the effectiveness
of the method. In the multi-sensor based automatic target
recognition system, assuming the real target is A, the system
collects five different pieces of evidence from different five
sensors, as follows [49]:

m1 = ([A, 0.5], [B, 0.2], [C, 0.3])

m2 = ([A, 0], [B, 0.9], [C, 0.1])

m3 = ([A, 0.55], [B, 0.1], [A,C, 0.35])

m4 = ([A, 0.55], [B, 0.1], [A,C, 0.35])

m5 = ([A, 0.6], [B, 0.1], [A,C, 0.3])

The generalized expression for information quality of the
above five BPAs will be calculated and expressed in Table 1.

The results obtained using the four different combination
rules is shown in Table 2.
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FIGURE 2. Comparison of results of different combination rules.

Table 2 shows that Dempster’s combination rules [21] get
counter-intuitive results when there is a conflict between the
evidences. In the numerical example, m2 is in high conflict
with other evidence. Even if there is more evidence to support
Target A, the results of the Dempster’s combination rule [21]
cannot reflect this fact, which is obviously unreasonable.
It can also be seen from the figure that the results obtained
using the other three methods are reasonable. By comparing
the combined results of m1 and m2, it can be seen that the
weighted average combination rule based on information
quality is effective in reducing the impact of extreme evidence
on the results. In addition, Figure 2 plots the evidence of high
support in the calculations of the four methods. Through the
analysis of Figure 2, the support of Dempster’s combination
rule for target C is gradually increased, which is counter-
intuitive. The other three methods are reasonable, However,
when the number of evidence is not adequate, the proposed
method is superior to Murphy’s average approach [48] and
modified average approach proposed by Deng et al. [49]. It is
shown in figure 2 that the proposed method have much more
belief on the target A than the other methods.

V. CONCLUSION
The information quality proposed byYager [9] can effectively
measure the uncertainty of probability distribution. But how
to measure the information quality of the basic probability
distribution is still an open question. Therefore, this paper
proposes a generalized expression for information quality that
can be applied to BPA uncertainty measurement. Some exam-
ples show the effectiveness of the proposed information qual-
ity in BPA uncertainty measurement. In addition, by using
1
IQ as the weighting factor, a weighted average combination
rule based on generalized expression for information quality
is proposed, and its validity is proved by numerical examples
in dealing with conflict evidence in target recognition.
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