
Received November 6, 2019, accepted November 28, 2019, date of publication December 2, 2019,
date of current version December 18, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2957203

Pruning Blocks for CNN Compression and
Acceleration via Online Ensemble Distillation
ZONGYUE WANG 1, SHAOHUI LIN 2, (Member, IEEE), JIAO XIE 3, AND YANGBIN LIN 1
1Computer Engineering College, Jimei University, Xiamen 361021, China
2Department of Computer Science, National University of Singapore, Singapore 117417
3Department of Automation, Xiamen University, Xiamen 361005, China

Corresponding author: Shaohui Lin (shaohuilin007@gmail.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFC0502902, in part
by the National Natural Science Foundation of China under Grant 61701191, in part by the Key Technical Project of Fujian Province under
Grant 2017H6015, in part by the Natural Science Foundation of Fujian Province under Grant 2018J05108, and in part by the Foundation of
Xiamen Science and Technology Bureau under Grant 3502Z20183032.

ABSTRACT In this paper, we propose an online ensemble distillation (OED) method to automatically
prune blocks/layers of a target network by transferring the knowledge from a strong teacher in an end-
to-end manner. To accomplish this, we first introduce a soft mask to scale the output of each block in
the target network and enforce the sparsity of the mask by sparsity regularization. Then, a strong teacher
network is constructed online by replicating the same target networks and ensembling the discriminative
features from each target as its new features. Cooperative learning between multiple target networks and the
teacher network is further conducted in a closed-loop form, which improves their performance. To solve
the optimization problem in an end-to-end manner, we employ the fast iterative shrinkage-thresholding
algorithm to fast and reliably remove the redundant blocks, in which the corresponding soft masks are equal
to zero. Compared to other structured pruning methods with iterative fine-tuning, the proposed OED is
trained more efficiently in one training cycle. Extensive experiments demonstrate the effectiveness of OED,
which can not only simultaneously compress and accelerate a variety of CNN architectures but also enhance
the robustness of the pruned networks.

INDEX TERMS Fast iterative shrinkage-thresholding algorithm, model compression and acceleration,
network pruning, online ensemble distillation.

I. INTRODUCTION
In recent years, convolutional neural networks (CNNs) have
achieved remarkable success in many computer vision tasks,
for instance image recognition [24], [39], [70], [72], object
detection [13], [65], semantic segmentation [69], etc. They
usually have very deep and/or wide architectures with a
large number of parameters [24], [77], [82]. For instance,
ResNet-152 [24] classifies one color image of a resolution
size 224× 224, which requires a 230 MB storage cost and
11B FLOPs.1 This restricts their usage on resource-limited
devices, such as mobile phones. To address this prob-
lem, several CNN compression techniques have been pro-
posed to achieve compact yet accurate models including
network pruning [21], [44], parameter quantization [8], [9],

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhaoxiang Zhang.

1FLOPs denotes the number of floating-point operations.

[15], [64], and low-rank decomposition [11], [35], [36]. Thus,
model compression has attracted increasing attention in both
academia and industry.

Network pruning is a simple and effective method for
reducing the network complexity and can be categorized
as either non-structured or structured. Non-structured prun-
ing [21] aims to prune the unimportant weight connections
with small magnitudes in the pre-trained neural networks,
but it may generate sparse CNNs with irregular convolu-
tional filters that require special software/hardware acceler-
ators for inference speedup [19], [55]. In contrast, structured
pruning [27], [44], [56], [58], [75] aims to prune structured
weights, including 2D kernels, filters or blocks, by which
the pruned networks do not require special packages for
fast inference. Therefore, it is very efficient and friendly in
the deployment platform and implementation. In this paper,
we focus on structured pruning, especially on pruning resid-
ual blocks with skip-connections. This is due to the residual

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 175703

https://orcid.org/0000-0003-2409-7065
https://orcid.org/0000-0003-0284-9940
https://orcid.org/0000-0002-1488-2118
https://orcid.org/0000-0003-3407-4756

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

FIGURE 1. Multi-stage pruning v.s. one-shot pruning. Multi-stage pruning
produces compact networks by iteratively pruning and retraining, while
one-shot pruning removes the redundant structures at once in a global
way to obtain compact ones without any iterative pruning and retraining.

blocks are widely used in ResNets [24], ResNeXts [77],
and compact networks (e.g., MobileNet V2 [68] and Shuf-
fleNet [59], [85]), which have strong track records for com-
puter vision tasks [10], [23], [24] and their tolerance to the
removal of blocks [31], [74]. Actually, these skip-connections
make CNNs skip the computation of specific layers without
cutting off the information flow and behave like ensembles of
many shallow networks. Veit et al. [74] found that the removal
of a single residual block generally has a minor impact on
performance. However, the accuracy drops significantly if too
many residual blocks are removed. To reduce the decrease
in accuracy, learning-based structured pruning is proposed to
train the networks from scratch, with sparse constraints on
the weights [2], [75] or the scaling factors [31], [56], [78],
using supervised class labels. It provides limited knowledge
for learning the sparse networks, resulting in limited improve-
ment of the performance. Moreover, the existing structured
pruningmethods typically adopt iterative pruning and retrain-
ing with multi-stage optimizations, as shown in Fig. 1.
It is extremely inefficient to prune a very deep and wide
network.

How can we acquire more knowledge to effectively learn
the structured sparse networks in a one-shot manner? Moti-
vated by knowledge distillation [28], a small student net-
work can mimic a powerful teacher network by obtaining
the knowledge from the teacher’s soft predictions [28] or
feature representations [66], [83]. However, this distillation
process requires a static pre-trained teacher model and relies
on multi-stage training, which are commercially unattractive
with the complex training strategy [3].

To this end, we propose an online ensemble distillation
(OED) method to automatically prune redundant structures
at once in a global way without any iterative pruning and
retraining, as shown in Fig. 1(b). Our key innovation lies in
the online construction of a strong teacher network formed
by ensembling multi-student and automatically learning the
sparse structures in a one-shot manner. Fig. 2 demonstrates
the workflow of the proposed method. We first introduce and

initialize a soft mask randomly after each block2 in the target
(a.k.a. student or branch in Fig. 2) network, and then enforce
the sparsity of the mask with `1−regularization. Our strong
teacher network is constructed online by replicating the same
target network with a different initial condition, in which
the last convolutional features from each branch are concate-
nated to be the new features of the teacher network. Further-
more, cooperative learning between each student network and
teacher network is conducted to improve their performance in
a closed-loop form. Actually, it merges the training processes
of the student and teacher models and uses the peer student
network to provide knowledge. On the one hand, knowledge
from the strong teacher (i.e., soft output in the green box of
Fig. 2) can be transferred to improve the accuracy of each
target network. On the other hand, each improved target net-
work can learn more discriminative features, which increases
the diversity of the teacher’s feature representation. Thus,
it improves the accuracy of the teacher network. By forcing
more scaling factors in the soft mask to be zero and pruning
the target network in a one-shot manner, we can leverage the
fast iterative shrinkage-thresholding algorithm (FISTA) [5],
[14] to fast and reliably remove the redundant blocks.

The proposed OED is evaluated on a variety of network
architectures, including ResNets [24], MobileNet V2 [68]
and ResNeXts [77]. Compared to the state-of-the-art struc-
tured pruning methods [27], [31], [44], [53], [56], [58], [76],
[81], [84], the proposed OED achieves a superior perfor-
mance. For example, on CIFAR-10, the pruned ResNet-56
and ResNet-110 achieve increases in the classification error
of only 0.68% and 0.5%, with FLOPs savings of 41.4% and
54.1% and parameters savings of 43.5% and 48.8%, respec-
tively. On ImageNet ILSVRC 2012, the pruned ResNet-
50 achieves a 9.97%Top-5 error and results in a factor of 1.9×
compression. Moreover, we also evaluate the robustness of
the pruned networks using OED. Compared to the origi-
nal networks, the pruned networks achieve more robustness
against adversarial attacks.

The rest of this paper is organized as follows. Related
works are briefly summarized in Section II. The pro-
posed online ensemble distillation method is introduced in
Section III. Section IV presents the experimental results.
Finally, conclusions are drawn in Section V.

II. RELATED WORK
A. NETWORK PRUNING
In early time, network pruning mainly focused on
non-structured pruning, which removes weights indepen-
dently to achieve a highly sparse network. For instance, the
work [22], [43] proposed a saliency measurement to remove
redundant weights determined by the second-derivative infor-
mation of weights. Han et al. [20], [21] iteratively pruned the
unimportant weights with small absolute values and retrained

2This soft mask can also be added after other structures, such as
the channel/filter. For simplicity and better discussion, we only consider
courser-grained pruning by removing the residual blocks.

175704 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

FIGURE 2. An illustration of OED. For simplicity, we describe two branches here. Each target network is a branch with the same structure but a
different initial condition, in which we add a soft mask λ after each block. A strong teacher network is constructed online by concatenating the last
convolutional features of all branches and adding one fully-connected layer and classifier. Furthermore, cooperative learning between each student
network and teacher network is conducted in a closed-loop manner to improve their performance. On the one hand, the knowledge from the strong
teacher can be distilled back to enhance each target model learning. On the other hand, each improved target network can learn more
discriminative features, which increases the diversity of the teacher’s feature representation. Finally, we train all target and teacher models from
scratch and employ the fast iterative shrinkage-thresholding algorithm to fast and reliably remove the redundant blocks, the scaling factors of which
in the soft mask are 0 (i.e., red dotted block). In the test, we select a branch with the best trade-off between accuracy and parameter/FLOPs
reduction for evaluation.

the sparse network. Guo et al. [18] proposed dynamic net-
work surgery to reduce themodel size by pruning and splicing
the connections. As introduced in Section I, non-structured
pruning generates irregular sparse CNNs, in which the special
software/hardware accelerators must be required for fast
network inference. In contrast, structured pruning is more
friendly and efficient on various off-the-shelf deployment
platforms, simultaneously speeding up network inference and
reducing the memory overhead of CNNs. It can be further
categorized into greedy-based pruning [25], [27], [30], [44],
[52], [58], [60], [81], search-based pruning [17], [26], [54],
[57], dynamic pruning [7], [12], [47], [63], [73], [76], and
sparsity regularization-based pruning [31], [42], [45], [46],
[51], [53], [56], [75], [78], [80], [84].

For greedy-based pruning, the work in [44] proposed a
magnitude-based pruning to remove filters and their corre-
sponding feature maps by measuring the `1-norm of filters in
a layer-wise manner. He et al. [25] proposed to calculate the
saliency of filters with their `2-norm. Hu et al. [30] proposed
the sparsity of the feature map to determine the importance
of a filter. Luo et al. [58] and He et al. [27] utilized statistics
computed from the next layer to guide a greedy layer-wise
pruning. A Taylor-expansion based criterion was proposed
in [60] to iteratively prune one filter and then retrain the
pruned network. Recently, a neuron importance score prop-
agation (NISP) [81] criterion is proposed to propagate the
importance score of each neuron from the high-level layers
to the low-level layers. Lin et al. [52] proposed a global and
dynamic pruning scheme to reduce the number of redundant
filters by greedy alternative updating. All these greedy-based
pruning methods iteratively prune each filter or layer and
retrain the remaining models in a multi-stage manner, which
is prohibitively costly when compressing deeper networks.

Different from them, the proposed OED method globally
prunes the redundant blocks at once without iterative pruning
and retraining, which is significantly efficient when pruning
deeper networks.

For search-based pruning, AutoML for model compression
is used to automatically find the compression rate of each
layer by reinforcement learning [26] or the evolutionary algo-
rithm [57]. Motivated by MobileNet, [29] using the fixed and
same width multiplier to reduce the widths of all channels,
Gordon et al. [17] presented MorphNet to iteratively shrink
the target network via a sparsity regularization and expand
it via a uniform width multiplier, which is searched to sat-
isfy the constraints on the computational complexity or the
model size. Recently, Lin et al. [54] proposed the macroblock
scaling method to find the optimal width multiplier for each
convolutional layer. Compared to these search-based pruning
methods with two separated steps for searching for the opti-
mal pruning rate and the subsequent pruning, our method is
much simpler to obtain a thinner network by only training the
ensemble network from scratch.

Dynamic pruning reduces model inference complexity by
selectively using only parts of the model conditioned on each
input. Generally, an additional gate network [7], [12], [47],
[63], [73], [76] is introduced to select activating structures
based on each image for network inference. For example, Rao
et al. [63] proposed a generic runtime network routing (RNR)
framework to dynamically select an optimal path/branch
based on each input for fast inference. The optimal path
selection primarily resorts to the simple decision/gate net-
work with the encoder-RNN-decoder structure, which can
be represented as a Markov decision process and solved
by reinforcement learning. Although dynamic pruning can
achieve a better trade-off between accuracy and speedup,

VOLUME 7, 2019 175705

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

it is difficult to reduce the model size, which restricts its
usage on memory-limited devices. Different from them, our
method prunes the redundant structures in a permanent man-
ner, simultaneously speeding up the computation and reduc-
ing the memory overhead of CNNs.

In line with our work, sparsity regularization was proposed
to penalize unimportant parameters and prune redundant
filters. Group sparsity regularization on filters (e.g., `2,1-
regularization [42] and `2,0-regularization [51]) or multiple
structures (e.g., filter shapes and layers [75], combination of
group and exclusive sparsity [80] and out-in-channel sparsity
regularization [45]) has been proposed to sparsify them dur-
ing training. The sparse scaling parameters [56], [78] in batch
normalization (BN) are introduced to guide channel pruning
by a threshold. However, all these methods prune redun-
dant structures by iterative pruning and retraining, which
is inefficient in offline pruning. To address these problems,
scaling factors after the specific structures [31], [53] with `1-
regularization are added to train by the accelerated proximal
gradient algorithm, which forces the scaling factors to exact
zeros. However, only the knowledge from label [31] or the
output of the pre-trained model [53] is limited to improve
the performance of the target model. Different from them,
our method proposes a strong teacher network online with-
out pre-training, providing more knowledge to improve the
performance of the target network.

B. KNOWLEDGE DISTILLATION
The proposed online ensemble distillation is related to knowl-
edge distillation (KD) [4], [6], [28]. Hinton et al. [28] trans-
fers knowledge from a large pre-trained model to a small
student network, which uses extra supervision provided by
the softened final output of a pre-trained teacher. The extra
supervision extracted from a pre-trained teacher model is
often in the form of class posterior probabilities [28], feature
representations [37], [49], [66], [83], a distribution of inter-
mediate activations [1], or inter-layer flow [79]). These distil-
lation methods require at least two-stage training, including
pre-training the teacher network and training the student net-
workwith extra supervision, which is computationally expen-
sive during training. Recently, deep mutual learning [87]
has been proposed to conduct online distillation in one-stage
training between two peer student networks. This online dis-
tillation uses each student as the opposing teacher, which is
not a powerful ‘‘teacher’’ that limits the ability of knowledge
discovery. We overcome this limitation by designing a new
online ensemble distillation, in which the strong teacher net-
work is constructed online by ensembling all the same target
networks and cooperative learning between the teacher and
the student model is used to improve their performance.

C. OTHER ORTHOGONAL METHODS
There are some other CNN compression methods (e.g., com-
pact network design [29], [32], [59], [68], [85], low-rank
decomposition [11], [36], [41], [50], [86], [88], and parameter
quantization [8], [9], [34], [64]), which are orthogonal to

our method. For more details, the reader is referred to a
survey [71]. The above orthogonal methods can be integrated
into our approach to achieve higher compression and speedup
rates.

III. PROPOSED METHOD
In this section, we first describe the notations and pre-
liminaries. Then, we present our online ensemble distilla-
tion to prune the residual blocks. Finally, the fast iterative
shrinkage-thresholding algorithm is introduced to solve the
corresponding optimization problem.

A. NOTATIONS AND PRELIMINARIES
Consider a CNN model consisting of L blocks,3 which are
interlaced with ReLU [61], BN [33] and pooling. For con-
venience, we take ResNet-50 as an example. Each residual
block contains bottleneck structures with three convolutional
layers (followed by both batch normalization and ReLU) and
shortcut connections. In the convolutional layer, the convo-
lution transforms an input a ∈ H × W × N into an output
o ∈ H ′ ×W ′ × N ′ by the following linear mapping:

oh′,w′,n′ =
D∑
i=1

D∑
j=1

N∑
n=1

Ki,j,n,n′ahi,wj,n, (1)

where K ∈ D×D×N ×N ′ represents convolutional filters.
Here, D × D are the spatial dimensions, while N and N ′ are
the numbers of input and output channels, respectively. The
height and width of the input are denoted as hi = h′ + i − 1
and wj = w′ + j− 1, respectively. For simplicity, we assume
a unit stride without zero-padding and skip biases. Therefore,
the residual block can be formulated as:

al+1 = F
(
al, {Wl}

)
+ al, (2)

where al and al+1 are the input and output of the l-th block,
respectively. F is a residual mapping that includes three
convolutional layers in Eq. (1), and {Wl} is the set of weights
in the l-th block. We further give a set of training datasets
D = {(xi, yi)}ni with n samples, where xi and yi belong to
an input and a target output to one of C classes yi ∈ Y =
{1, 2, · · · ,C}, respectively. The network with all weightsW
outputs a probabilistic class posterior p(c|xi,W) for a sample
xi over a class c as:

p(c|xi,W) = softmax(zi) =
exp(zci)∑C
j=1 exp(z

j
i)
, (3)

where zi is the logits or the final output before the ‘‘softmax’’
operator based on all network weightsW and the input xi. To
train the networkW with multi-class classification, the cross-
entropy (CE) loss between the predictions and ground-truth
label distributions is typically adopted by:

LCE (W) = −
1
B

B∑
i=1

C∑
c=1

Ic,yi log p(c|xi,W), (4)

3A block is equivalent to one layer for plain networks (e.g., AlexNet [39]
or VGGNets [70]), while a block contains multiple layers for multi-path
networks (e.g., ResNets [24] or GoogLeNet [72]).

175706 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

where Ic,yi is the indicator function, which returns 1 if c equals
to the ground-truth label yi and 0 otherwise. B is the number
of mini-batches.

Generally, we solve the objective function in Eq. (4)
through the stochastic gradient descent (SGD). Each block
weight Wl can be updated by:

Wl =Wl − η
∂LCE (W)
∂Wl

, l = 1, 2, · · · ,L, (5)

where the partial LCE (W) with respect to Wl can be calcu-
lated by back-propagation and η is the learning rate.

B. ONLINE ENSEMBLE DISTILLATION FOR RESIDUAL
BLOCK PRUNING
Aiming to prune residual blocks, we add the soft mask after
each block to determine its importance and propose online
ensemble distillation to acquire more knowledge to improve
the accuracy of the pruned network. As illustrated in Fig. 2,
the proposed online ensemble distillation (OED) consists of
three key components:

1) SOFT MASKS IN A MULTI-BRANCH NETWORK
To construct a strong teacher, we first copy a target/branch
network to form m branches. Each branch has the same
configuration, which serves as an independent classification
model. The soft mask is added after each block as an aux-
iliary parameters to determine the importance of the block.
Compared to the number of network weights, the number of
parameters in the soft mask is negligible, due to each block
having only one parameter. Therefore, the new residual block
obtained after adding the soft mask is reformulated as:

a(i)l+1 = λ
(i)
l F

(
a(i)l , {W

(i)
l }
)
+ a(i)l , (6)

where a(i)l and a(i)l+1 are the input and output of the l-th block
at the i-th branch, respectively. λ(i)l is the scaling factor of
the soft mask at the l-th block of the i-th branch. If λ(i)l =
0, we can reliably prune the corresponding block, as its
corresponding output has no contribution to the subsequent
computation.

The loss function of each branch Lb(i) for a sample xi over
a class c can be further formulated as:

Lb(i) (λ(i),W (i))

= −
1
B

B∑
j=1

C∑
c=1

Ic,yj log
(
softmax(z(i)j)

)
= −

1
B

B∑
j=1

C∑
c=1

Ic,yj log p
(i)(c|xj, λ(i),W (i)), (7)

where z(i)j is the logits at the i-th branch based on the input xj,
the soft mask λ(i) and the branch weights W (i). To learn a
sparse soft mask, we employ the `1-regularization on the soft
mask. Therefore, the overall loss based on all branches is

reformulated as:

Lb =
m∑
i=1

Lb(i) (λ(i),W (i))+ γ
m∑
i=1

‖λ(i)‖1, (8)

where γ is a hyperparameter used to control the number of
pruned blocks, which will be discussed in the experiments.

2) A STRONG TEACHER IS CONSTRUCTED ONLINE
As depicted in Fig. 2, we construct a strong teacher online
by concatenating all the features from the last convolutional
outputs of m branches followed by the BN, ReLU, global
average pooling (GAP) [48] and one fully-connected (FC)
layer. Therefore, the logits z(e) in the strong network are
formulated as:

z(e) = FC
(
g
([
a(1)L , a

(2)
L , · · · , a

(m)
L

])
, θ

)
, (9)

where a(i)L , i = 1, 2, · · · ,m is the last convolutional output
of the i-th branch. g(·) represents a set of operators includ-
ing the BN, ReLU and GAP. The construction based on a
multi-branch design has twomerits for model training. On the
one hand, a strong teacher network is created online, which
can be simultaneously trained with several student networks
in a one-shot manner. On the other hand, we can avoid a
complex asynchronous update between multiple networks.

After obtaining the strong teacher network, we also adopt
the CE loss, Le, between the predictions of the teacher and
the ground-truth class label distributions to improve its per-
formance. This can be reformulated by:

Le = −
1
B

B∑
j=1

C∑
c=1

Ic,yj log
(
softmax(z(e)j)

)
. (10)

3) THE OVERALL LOSS FUNCTION
Given the teacher’s logits on each training example, we distill
the knowledge from the teacher back to all the branches.
Followed by knowledge distillation [28], the soft probability
distributions between the teacher and each branch are aligned
to improve both the performance of the teacher and that of the
student models. Therefore, we first compute the distributions
with a temperature of τ for the teacher and individual branch
as follows:

p̂(e)(c|xj, λ,W)

= softmax(z(e)j /τ), c ∈ Y, (11)

p̂(i)(c|xj, λ(i),W (i))

= softmax(z(i)j /τ), c ∈ Y, i ∈ [1, · · · ,m], (12)

where λ = ∪mi=1λ
(i),W = {∪

m
i=1W

(i), θ} are the soft mask
and weights in the teacher model, respectively. The higher
the values of τ , the softer the distributions are. The detailed
setups are discussed in Section IV. Then, the loss based on
the Kullback Leibler divergence (KL-divergence) between
the softened distributions from the teacher and branches is

VOLUME 7, 2019 175707

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

Algorithm 1 FISTA to Minimize Eq. (14)
Input: Training dataD = {(xi, yi)}ni with n samples, sparsity

factor γ , temperature τ , branch number m, mini-batch
size number B, learning rate η, maximum iterations T .

Output: The weights W and their soft mask λ.
// Training

1: Randomly initializeW , λ ∼ N (1, 0.1), and t = 1.
2: repeat
3: t = t + 1
4: Randomly sample a batch size of B samples from x.
5: Forward Pass: Compute the predictions p(e) and p(i)

with τ = 1 by Eq. (11) and Eq. (12) and also the
softened predictions p̂(e) and p̂(i) with τ > 1 by
Eq. (11) and Eq. (12).

6: Backward Pass:Compute the gradients of weightsW
and λ via back-propagation.
Update: Alternatively update W and λ. We first
update W by:

W =W − η
∂L
∂W

. (15)

For λ, we update it by Eq. (20).
7: until convergence or t reaches the maximum iterations
T .
// Testing

8: Select the single model (W (i), λ(i)) with the best trade-off
between accuracy and speedup/compression rate.

introduced to quantify their alignment, which is written as:

Lkl = −
1
B

m∑
i=1

B∑
j=1

C∑
c=1

p̂(e)(c|xj, λ,W)

× log
p̂(e)(c|xj, λ,W)

p̂(i)(c|xj, λ(i),W (i))
. (13)

After we obtain Lb,Le and Lkl , the overall loss function
can be constructed for online distillation training by:

L = Lb + Le + τ 2Lkl . (14)

Note that we multiply Lkl by a factor of τ 2 to ensure the rela-
tive contributions of the ground truth and that the probability
distributions of the teacher remain roughly unchanged. The
optimization achieved byminimizing the overall loss function
in Eq. (14) is proposed in Section III-C.

C. OPTIMIZATION
Stochastic gradient descent (SGD) is a popular method for
directly solving the optimization problem in Eq. (14). How-
ever, SGD is less efficient in convergence.Moreover, by using
SGD, we have observed non-exact zero scaling factors in
the soft mask λ, as they are always jittering during SGD
training. We therefore need a threshold to remove the cor-
responding structures, the scaling factors of which are lower
than the threshold. By doing so, the accuracy of the target
network becomes significantly lower than the baseline, and

retraining is further required to improve the accuracy. It is
less efficient in pruning the deeper networks. To address this
problem, we introduce FISTA [5], [14] to effectively solve the
optimization problem of Eq. (14) via two alternating steps.
Algorithm 1 presents the optimization process.

First, we compute the predictions p(e), p(i), p̂(e) and p̂(i) by
forward-propagation. The gradients of weights W and λ are
then computed by back-propagation.We then updateW and λ
alternatively. For updating, we use SGD to update the weights
W via Eq. (15). For better illustration, to update λ, we shorten
the loss with weights W of Eq. (14) asH(W, λ), i.e.,

H(W, λ)

=

m∑
i=1

Lb(i) (λ(i),W (i))+ Le(W, λ)+ τ 2Lkl(W, λ).

(16)

Therefore, we have:

L(W, λ) = H(W, λ)+ γ ‖λ‖1. (17)

λ is then updated by FISTAwith the initialization of α(1) = 1:

α(t+1) =
1
2

(
1+

√
1+ 4α2(t)

)
, (18)

µ(t+1) = λ(t) +
α(t) − 1
α(t+1)

(
λ(t) − λ(t−1)

)
, (19)

λ(t+1) = proxη(t+1)γ ‖·‖1

(
µ(t+1) − η(t+1)

∂H(W, µ(t+1))
∂µ(t+1)

)
,

(20)

where η(t+1) is the learning rate at iteration t + 1 and
proxη(t+1)γ ‖·‖1 (vi) = sign(vi) ◦ (|vi| − η(t+1)γ)+. In practice,
we update the learning rate η with a fixed step. Details of the
setup are discussed in Section IV.

IV. EXPERIMENTS
To evaluate the performance of the proposed OED method,
we conduct comprehensive experiments on three widely
used datasets, CIFAR-10 [38], CIFAR-100 [38] and Ima-
geNet [67]. CIFAR-10/100 contains 50,000 training images
and 10,000 test images with a size of 32 × 32 from
10/100 classes. ImageNet ILSVRC 2012 contains 1.28M
training images from 1,000 classes, as well as 50,000 val-
idation images. For ImageNet, training images are rescaled
to a size of 256 × 256, with a 224 × 224 crop randomly
sampled from each image and its horizontal flip. We test
the model on the validation set using the single-view testing
as the classification error. We also evaluate the performance
on different kinds of network architectures: ResNets [24],
MobileNet V2 [68] and ResNeXts [77].
Implementation: We implement the proposed OED by

PyTorch [62]. We minimize the overall objective function by
running on four NVIDIA GTX 1080Ti GPUs. The weight
decay is set to 0.0002, and the momentum is set to 0.9.
The hyperparameter γ is selected by cross-validation in the
range [0.001, 0.1] for block pruning. On CIFAR-10 and

175708 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

FIGURE 3. Comparison of different temperatures by OED on CIFAR-10.
Baseline presents the original ResNet-56 for 300 epochs training, which
achieves an error of 6.03% when the number of parameters is 8.5× 1e5
and FLOPs is 12.549× 1e7. τ = α denotes OED training by setting
temperature τ to α. Value means the different evaluation values,
including the error, FLOPs and number of Parameters.

CIFAR-100, we use the same training parameters, in which
the mini-batch size is set to 128 for 300 epochs and the initial
learning rate is set to 0.01. The learning rate is scaled by
0.1 at 50% and 75% of the total number of training epochs.
On ImageNet, the mini-batch size is set to 64 for 90 epochs.
The learning rate is set to 0.01 initially, and is divided by
10 over 20 epochs. For the branch numberm and temperature
τ , we discuss their setups in Section IV-A.

A. ABLATION STUDY
In this section, we select ResNet-56 for an ablation study to
obtain the suitable branch number and temperature, and also
evaluate the effectiveness of the FISTA optimizer. We train
ResNet-56 from scratch for 300 epochs as a baseline and
obtain an error of 6.03% when the number of parameters is
0.85M and FLOPs is 125.49M.

1) EFFECT ON THE TEMPERATURES
To evaluate the effect of the temperatures, we first fix the
branch number m and γ to 3 and 0.02, respectively. With the
same training setting, we train the OED method at different
temperatures: 4, 10 and 20. As shown in Fig. 3, the tempera-
ture has an effect on the performance of OED, especially on
the FLOPs and parameter number. Compared to temperatures
τ of 4 and 10, the number of FLOPs significantly increases
when the temperature is τ 20, while its corresponding accu-
racy is just on par with that of the result when the temperature
τ is 10. This result is due to the fact that high temper-
atures affect the softened distributions of the teacher and
branches, providing limited knowledge that allows learning
all networks in OED. In fact, OED with a temperature of 4
achieves a comparable result to that at a temperature of 10.
To reduce the increase in classification error and simplify the
experiments, we set the temperature to 4 in all the following
experiments.

TABLE 1. Pruning results for different branch numbers. In all tables and
figures, PR represents the pruning rate, T/S refers to the model belonging
to the teacher/student and M/B means million/billion.

2) EFFECT ON THE BRANCH NUMBER
To evaluate the effect of the branch number, we fix γ to
0.03 and train OED with 4 groups of branch numbers: 1,
2, 3 and 4. The teacher model is the same as the stu-
dent model when the branch number is set to 1. In other
words, we prune the network without knowledge distillation.
As shown in Table 1, with the increase in branch number,
the error of the teacher model gradually decreases, becoming
lower than the baseline (see the model where m is set to
3 or 4). We can also see that OED achieves better student
models as the number of branches increases. Thus, OED
achieves the best performance when the branch number is
set to 4. For example, compared to the result when m is set
to 1, 2 and 3, the model with m set to 4 achieves the highest
number of FLOPs and parameter pruning rates of 56.4% and
49.4% and the lowest error of 7.11%. As discussed above,
do these results indicate that we can increase the number
of branches endlessly to pursue the higher performance?
Actually, increasing the number of branches will slow down
the training speed and increase theGPURAMoverhead.With
the limited number of GPUs in our implementation platform,
it is impossible to increase the number of branches endlessly.
To obtain the best trade-off between training speed and per-
formance, we set the branch number to 4 in the following
experiments, which also matches the number of GPUs in our
heterogeneous computing platform.

3) OED vs. DARK KNOWLEDGE AND ATTENTION TRANSFER
Dark knowledge (DK) [28] and attention transfer (AT) [83]
use class posterior probabilities and feature representation of
the hidden layers from a pre-trained teacher model to train
the student model, respectively. The soft mask is also added
after each residual block of the target network in both DK and
AT. Therefore, we can employ FISTA to prune the redundant
blocks at once. For a fair comparison, we choose ResNet-
56 as their teachers. Moreover, we train OED, DK and AT
with the same training settings, including temperature τ = 4
and hyperparameter γ = 0.04. As shown in Table 2, our
OED achieves the best performance compared to DK and AT.

VOLUME 7, 2019 175709

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

TABLE 2. Comparison of different knowledge distillation methods on
CIFAR-10. DK*/AT* is the result of method DK/AT based on our
implementation, which uses ResNet-56 as its teacher, while
ResNet-110-DK*/ResNet-110-AT* is the result of method DK/AT based on
our implementation where the pruned network structure of the OED
method is regarded as the student and ResNet-110 is regarded as the
teacher.

TABLE 3. Results of the different optimizers. PN/PN-FT denotes the
pruned networks without/with fine-tuning.

This outcome is due to the cooperative learning between the
teacher and individual student models in OED, which is used
to improve their performances. Furthermore, we also evaluate
the performance of DK and AT by distilling the knowledge
from the deeper pre-trained ResNet-110 to the pruned net-
work structure of OED. As shown in Table 2, AT achieves a
slightly lower error than that of OED by pre-training ResNet-
110 for 300 epochs and distilling the knowledge back to
the student network for 300 epochs. However, it requires a
significantly large number of training epochswithmulti-stage
training. In contrast, we can train both the teacher and stu-
dent network by cooperative learning in a one-shot manner,
which significantly reduces the number of training epochs.
Compared to DK, OED achieves a better performance with
fewer training epochs.

4) FISTA vs. SGD
To evaluate the effectiveness of the FISTA optimizer in OED,
we compare it with the SGD optimizer. As discussed in
Section III-B, we cannot obtain the soft mask with an exact
scaling factor of 0 by SGD. Therefore, we introduce a thresh-
old to guide the pruning after stable training. We set the
threshold to 0.001 in our experiments. As shown in Table 3,
the accuracy drops significantly after pruning with threshold-
ing by SGD (see the Error and PN columns), as the small
near-zero scaling factors in the soft mask might have a large
impact on the final network output. After fine-tuning the
pruned network, the accuracy can be improved substantially.
Advantageously, our FISTA can safely remove the redundant
residual blocks during training and achieves better perfor-
mance without any fine-tuning than that of SGD.

B. COMPARISON WITH THE STATE-OF-THE-ART
1) CIFAR-10
We evaluate the performance of the proposed OED on
CIFAR-10 in four widely used networks: ResNet-56 [24],
ResNet-110 [24], ResNeXt-29 [77] and MobileNet V2 [68].

TABLE 4. Results for pruning ResNet-56 and ResNet-110 on CIFAR-10.
In all tables, OED−γ refers to the model where OED is trained with the
sparsity factor γ .

TABLE 5. Results for pruning ResNeXt-29 on CIFAR-10.

a: ResNet-56 and ResNet-110
ResNet-56 and ResNet-110 have 27 and 54 residual blocks,
respectively. Each block contains two 3 × 3 convolutional
layers. We prune the residual block in both ResNet-56 and
ResNet-110, which are summarized in Table 4. For ResNet-
56, when γ is set to 0.04, we obtain two of the four stu-
dent models, with the best trade-off between the classifica-
tion error and FLOP pruning rate. For example, compared
to L1 [44] and NISP [81], either one of them with OED-
0.04 achieves the lowest error of 6.71% by removing 11 resid-
ual blocks with the highest FLOP pruning rates (i.e., 41.4%
vs. 27.6% in L1 and 35.5% in NISP). Furthermore, compared
to He et al. [27] and GAL [53], the other thinner model
pruned by OED-0.04 achieves the highest FLOP pruning rate
of 67.7% by removing 18 residual blocks and achieves the
lowest classification error of 7.71%. For ResNet-110, Block-
Drop [76] dynamically prunes the network based on each
image, achieving a low error of 6.4% with a higher average
FLOP savings of 31.6% compared those of L1. However, for
BlockDrop, the model size is difficult to reduce, as the blocks
are not pruned permanently. Compared to all baselines, OED
also achieves the best result after pruning 29 residual blocks
when γ is set to 0.01. Compared to L1, GAL and BlockDrop,
OED-0.01 achieves an error of 6.4% with the highest savings
of 54.1% and 48.8% in terms of the FLOPs and parameters,
respectively.

b: ResNeXt-29
We use ResNeXt-29 (8 × 64d) to evaluate the performance
of OED. It has 9 residual blocks with a cardinality of 8 and

175710 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

FIGURE 4. Error vs. pruning rate of FLOPs and parameters by OED for ResNet-110 and ResNet-164 on CIFAR-100.

TABLE 6. Modified MobileNet V2 on CIFAR-10. We modify only the stride
s to adapt to CIFAR-10: the other settings (t, c,n) are same as those in
the original one on ImageNet. For a detailed introduction, refer to [68].

bottleneck width of 64. The pruning results of ResNeXt-
29 are shown in Table 5. By adding edge sparsity regular-
ization, edge-level pruning [84] achieves an increase in error
of 0.16% with 55.4% and 28.4% pruning rates in terms of the
FLOPs and parameters, respectively. Compared to edge-level
pruning, our OED removes 5 out of 9 residual blocks, achiev-
ing a higher parameter pruning rate of 58.5% (vs. 28.4%),
with a slightly lower classification error of 4.08% (vs. 4.11%).

c: MobileNet V2
We also evaluate the effectiveness of OED in pruning a
compact network, MobileNet V2 [68], used in mobile or
embedded devices.We simply modify the originalMobileNet
V2 on ImageNet to adapt to CIFAR-10 by reducing the stride,
as their input image sizes are different, i.e., 224 × 224 on
ImageNet vs. 32×32 on CIFAR-10. The modifiedMobileNet
V2 architecture on CIFAR-10 is summarized in Table 6.
We report two selected student models pruned by training
them on OED with the same γ , as shown in Table 7. Com-
pared to GAL [53], with the same pruning rate, both of
them with OED achieve a lower error of 6.3% (vs. 6.93%),
which is also lower than that of MobileNet V2. This result

TABLE 7. Results of pruning MobileNet V2 on CIFAR-10. GAL* is the result
based on our implementation.

indicates that there are redundancies in inverted residual
blocks on MobileNet V2. Compared to MobileNet V2,
the other modified one with OED achieves a negligible error
increase, and higher pruning rates of 48.2% and 19.9% in
terms of FLOPs and parameters, respectively. This outcome
is due to the strong teacher achieved by online ensembling
multiple student networks.

2) CIFAR-100
We further evaluate the performance of OED on
CIFAR-100 in two popular networks: ResNet-110 [24] and
ResNet-164 [24].

a: ResNet-110 and ResNet-164
Both ResNet-110 and ResNet-164 consist of 54 residual
blocks. Each block in ResNet-110 has two convolutional lay-
ers, while each block in ResNet-164 has a bottleneck structure
with three convolutional layers. We first evaluate the different
performances for five groups of γ , as shown in Fig. 4. We can
see that OED achieves a slight increase in error when the
parameter pruning rate is lower than 40% on both ResNet-
110 and ResNet-164. When the parameter pruning rate is
higher than 40% (especially above 50%), the error signifi-
cantly increases. This outcome is due to the excessive block
pruning decreasing the accuracy of the teacher model, which
in turn affects the learning of each student model.

We further compare OED to different state-of-the-art
structured pruning methods, such as BlockDrop [76], Liu
et al. [56] and SSS [31]. Table 8 and Table 9 summarize the
comparisons of ResNet-110 and ResNet-164 on CIFAR-100,

VOLUME 7, 2019 175711

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

TABLE 8. Comparison for pruning ResNet-110 on CIFAR-100.

TABLE 9. Comparison for pruning ResNet-164 on CIFAR-100.

respectively. For ResNet-110, compared to BlockDrop [76],
our OED use a smaller number of residual blocks (17 vs.
18 in BlockDrop). Although BlockDrop achieves a lower
error, it prunes the blocks dynamically based on each input
image without permanently removing them, which leads to
a large number of blocks still being kept in offline memory
storage. In contrast, OED permanently removes the redun-
dant blocks to reduce both the computation and memory
cost. For ResNet-164, compared to Liu et al., our OED with
setting γ to 0.005 achieves higher pruning rates both in
terms of the FLOPs (37.8% vs. 33.3%) and the parameters
(17.9% vs. 15.5%), and a lower error (22.71% vs. 22.87%).
Moreover, compared to SSS with high parameter reduction,
OED-0.01 achieves a lower error of 23.87% (vs. 25.5%) with
a higher parameter pruning rate of 29.8% (vs. 22.6%).

3) IMAGENET ILSVRC 2012
We also evaluate OED on ImageNet using ResNet-50. The
results of four branches pruned by training them on OED are
presented in Fig. 5. In Fig. 5(a) and Fig. 5(b), we can see that
OED learnsmultiple student models and a teacher model with
online ensembling together, which significantly decreases the
error of all networks. The teacher model however achieves
almost the same error as that of ResNet-50. Note that the sec-
ond branch achieves the highest error in all models, which
is due to the partially important blocks being pruned during
training. In Fig. 5(c), after 25 epochs, the number of blocks
pruned away remains generally stable, which means that all
networks aim at decreasing the classification error in the
following epochs. We also found that the third branch prunes
the largest number of blocks.

We further compare OED with several state-of-the-art
pruning methods, as shown in Table 10. Compared to He
et al. [27], the first branch achieves a better performance
with a lower Top-1 error of 26.45% (vs. 27.7%) and lower
computational cost (2.56B FLOPs vs. 2.73B FLOPs in [27]).
Additionally, compared to the block pruning methods (i.e.,
SSS [31] andGAL [53]), the third branch achieves the highest
compression rate of 1.9× yet with a comparable accuracy.
The third branch also achieves a comparable result to that

TABLE 10. Pruning results for ResNet-50 on ImageNet.

TABLE 11. Training and testing time for ResNet-50 and OED.
OED-0.05-all/b3 represents all the ensemble models or the third branch.

of ThiNet-50 [58] and GDP-0.6 [52]. In fact, OED is estab-
lished based on simultaneous multi-branch training without
iterative training and fine-tuning, which is significantly effi-
cient against filter pruning methods with multi-stage training,
such as the iteratively layer-wise pruning and retraining in
ThiNet and the two-stage pruning in GDP. Furthermore, it is
convenient that the corresponding branch can be selected
in OED for practical applications, also including a strong
teacher model.

We further measure the training and testing time of the
original ResNet-50 and OED, as shown in Table 11. For
training, we use four GTX 1080Ti GPUs with a batch size
of 64. For testing, we use Intel i7-6900K CPU and one GTX
1080Ti GPU both with the batch sizes of 64 to measure
the realistic running time of different models on CPU and
GPU, respectively. We need about 306 hours to train all the
ensemble models including all the branches and the teacher
model. Compared to ResNet-50, the third branch by OED
(i.e., OED-0.05-b3) achieves 1.62× and 1.6× actual speedup
in GPU andCPU formodel inference. It exist the gap between
theoretical and realistic model, which may come from and the
limitation of IO delay, buffer switch and efficiency of BLAS
libraries.

C. ROBUSTNESS AGAINST ADVERSARIAL ATTACKS
OED has demonstrated its effectiveness to simultaneously
accelerate and compress CNNs on CIFAR-10/100 and
ImageNet classification tasks. We further investigate the
robustness of the pruned networks in resisting adversarial
attacks.

We select ResNet-56 and its model pruned by OED with
γ setting to 0.04 on CIFAR-10 as the two models for evalu-

175712 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

FIGURE 5. Error vs. Top-1 error, Top-5 error and the number of blocks pruned away by OED for ResNet-50 on ImageNet.

TABLE 12. Attack results of ResNet-56 and OED-0.04 on CIFAR-10. α pixel represents the change in the number of α pixels from the initial value for each
original testing image.

ation. To generate adversarial examples, we consider three
algorithms: fast gradient sign method (FGSM) [16],
single-step least-likely class method (One-Step-LL) [40] and
iterative attack (Iter-LL) [40]. The results are summarized
in Table 12. Compared to ResNet-56, with the same change
in the number of pixel in the three adversarial attacking
methods, the network pruned using OED achieves a lower
classification error. This result indicates that the pruned
network is more robust to adversarial attacks.

V. CONCLUSION
In this paper, we developed an online ensemble distilla-
tion (OED) approach to effectively prune the blocks of
CNNs without any iterative pruning and retraining. We first
introduced a soft mask to scale the output of each block
in the target network, upon which `1-regularization on
the mask is designed to enforce its sparsity. To improve
the performance of the target network, we constructed
online a strong teacher network by replicating the target
network to form a multi-branch network, in which each
branch presents a target network. The cooperative learning

in a closed loop between the teacher network and mul-
tiple target networks was then proposed to enhance their
discriminability. Moreover, by forcing more scaling fac-
tors in the soft mask to zero and pruning the target net-
work in a one-shot manner, we leveraged the fast itera-
tive shrinkage-thresholding algorithm to fast and reliably
remove the redundant blocks. We have comprehensively
evaluated the performance of OED on a variety of CNN
architectures over different datasets, which not only demon-
strated the superior performance gains over the state-of-the-
art methods but also enhanced the robustness of the pruned
networks.

ACKNOWLEDGMENT
We would like to thank Prof. Linkai Luo at Xiamen Univer-
sity for his helpful feedback and discussions.

REFERENCES
[1] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai, ‘‘Variational

information distillation for knowledge transfer,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2019, pp. 9163–9171.

VOLUME 7, 2019 175713

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

[2] J. M. Alvarez and M. Salzmann, ‘‘Learning the number of neurons in deep
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 2270–2278.

[3] R. Anil, G. Pereyra, A. Passos, R. Ormandi, G. E. Dahl, and
G. E. Hinton, ‘‘Large scale distributed neural network training through
online distillation,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–12.

[4] J. Ba and R. Caruana, ‘‘Do deep nets really need to be deep?’’ in Proc. Adv.
Neural Inf. Process. Syst., 2014, pp. 2654–2662.

[5] A. Beck and M. Teboulle, ‘‘A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,’’ SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[6] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, ‘‘Model compression,’’ in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2006,
pp. 535–541.

[7] Z. Chen, Y. Li, S. Bengio, and S. Si, ‘‘You look twice: GaterNet for
dynamic filter selection in CNNs,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2019, pp. 9172–9180.

[8] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, ‘‘Bina-
rized neural networks: Training deep neural networks with weights and
activations constrained to +1 or −1,’’ 2016, arXiv:1602.02830. [Online].
Available: https://arxiv.org/abs/1602.02830

[9] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Binaryconnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[10] J. Dai, Y. Li, K. He, and J. Sun, ‘‘R-FCN: Object detection via region-
based fully convolutional networks,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 379–387.

[11] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, ‘‘Exploiting
linear structure within convolutional networks for efficient evaluation,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[12] X. Gao, Y. Zhao, L. Dudziak, R.Mullins, and C.-Z. Xu, ‘‘Dynamic channel
pruning: Feature boosting and suppression,’’ in Proc. Int. Conf. Learn.
Represent., 2019, pp. 1–14.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 580–587.

[14] T. Goldstein, C. Studer, and R. Baraniuk, ‘‘A field guide to
forward-backward splitting with a FASTA implementation,’’ 2014,
arXiv:1411.3406. [Online]. Available: https://arxiv.org/abs/1411.3406

[15] Y. Gong, L. Liu, M. Yang, and L. Bourdev, ‘‘Compressing deep con-
volutional networks using vector quantization,’’ 2014, arXiv:1412.6115.
[Online]. Available: https://arxiv.org/abs/1412.6115

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harness-
ing adversarial examples,’’ 2014, arXiv:1412.6572. [Online]. Available:
https://arxiv.org/abs/1412.6572

[17] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi,
‘‘MorphNet: Fast & simple resource-constrained structure learning of deep
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 1586–1595.

[18] Y. Guo, A. Yao, and Y. Chen, ‘‘Dynamic network surgery for efficient
DNNs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1379–1387.

[19] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, andW. J. Dally,
‘‘EIE: Efficient inference engine on compressed deep neural network,’’ in
Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 243–254.

[20] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[21] S. Han, J. Pool, J. Tran, and W. Dally, ‘‘Learning both weights and con-
nections for efficient neural network,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 1135–1143.

[22] B. Hassibi and D. G. Stork, ‘‘Second order derivatives for network pruning:
Optimal brain surgeon,’’ in Proc. Adv. Neural Inf. Process. Syst., 1993,
pp. 164–171.

[23] K. He, G. Gkioxari, P. Dollár, and R. Girshick, ‘‘Mask R-CNN,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 2980–2988.

[24] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[25] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, ‘‘Soft filter pruning for
accelerating deep convolutional neural networks,’’ in Proc. Int. Joint Conf.
Artif. Intell., 2018, pp. 2234–2240.

[26] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, ‘‘AMC: AutoML
for model compression and acceleration on mobile devices,’’ in Proc. Eur.
Conf. Comput. Vis., Sep. 2018, pp. 784–800.

[27] Y. He, X. Zhang, and J. Sun, ‘‘Channel pruning for accelerating very
deep neural networks,’’ in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017,
pp. 1389–1397.

[28] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge
in a neural network,’’ 2015, arXiv:1503.02531. [Online]. Available:
https://arxiv.org/abs/1503.02531

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: https://arxiv.org/abs/1704.04861

[30] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trimming:
A data-driven neuron pruning approach towards efficient deep
architectures,’’ 2016, arXiv:1607.03250. [Online]. Available:
https://arxiv.org/abs/1607.03250

[31] Z. Huang and N. Wang, ‘‘Data-driven sparse structure selection for
deep neural networks,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2018,
pp. 304–320.

[32] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer parame-
ters and< 0.5 MBmodel size,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–13.

[33] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167

[34] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, ‘‘Quantization and training of neural networks for
efficient integer-arithmetic-only inference,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 2704–2713.

[35] M. Jaderberg, A. Vedaldi, and A. Zisserman, ‘‘Speeding up convolu-
tional neural networks with low rank expansions,’’ 2014, arXiv:1405.3866.
[Online]. Available: https://arxiv.org/abs/1405.3866

[36] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, ‘‘Compression
of deep convolutional neural networks for fast and low power mobile
applications,’’ in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–15.

[37] A. Koratana, D. Kang, P. Bailis, and M. Zaharia, ‘‘LIT: Learned intermedi-
ate representation training for model compression,’’ inProc. 36th Int. Conf.
Mach. Learn., 2019, pp. 3509–3518.

[38] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep. TR-2009
2009.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[40] A. Kurakin, I. Goodfellow, and S. Bengio, ‘‘Adversarial examples in the
physical world,’’ 2016, arXiv preprint arXiv:1607.02533.

[41] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky, ‘‘Speeding-up convolutional neural networks using
fine-tuned CP-decomposition,’’ in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–10.

[42] V. Lebedev and V. Lempitsky, ‘‘Fast convnets using group-wise brain
damage,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016,
pp. 2554–2564.

[43] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
‘‘Optimal brain damage,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 2,
1989, pp. 598–605.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning
filters for efficient convnets,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–9.

[45] J. Li, Q. Qi, J. Wang, C. Ge, Y. Li, Z. Yue, and H. Sun, ‘‘OICSR:
Out-in-channel sparsity regularization for compact deep neural net-
works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2019,
pp. 7046–7055.

[46] L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and
Y. Xie, ‘‘Crossbar-aware neural network pruning,’’ IEEE Access, vol. 6,
pp. 58324–58337, 2018.

[47] J. Lin, Y. Rao, J. Lu, and J. Zhou, ‘‘Runtime neural pruning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 2181–2191.

[48] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400. [Online]. Available: https://arxiv.org/abs/1312.4400

[49] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, ‘‘Holistic CNN com-
pression via low-rank decomposition with knowledge transfer,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 2889–2905,
Dec. 2019.

175714 VOLUME 7, 2019

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

[50] S. Lin, R. Ji, X. Guo, and X. Li, ‘‘Towards convolutional neural networks
compression via global error reconstruction,’’ inProc. Int. Joint Conf. Artif.
Intell., 2016, pp. 1753–1759.

[51] S. Lin, R. Ji, Y. Li, C. Deng, and X. Li, ‘‘Toward compact convnets via
structure-sparsity regularized filter pruning,’’ IEEE Trans. Neural Netw.
Learn. Syst., to be published.

[52] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, ‘‘Accelerating
convolutional networks via global & dynamic filter pruning,’’ in Proc. Int.
Joint Conf. Artif. Intell., 2018, pp. 2425–2432.

[53] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and
D. Doermann, ‘‘Towards optimal structured cnn pruning via generative
adversarial learning,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2019, pp. 2790–2799.

[54] Y.-H. Lin, C.-N. Chou, and E. Y. Chang, ‘‘MBS: Macroblock scaling
for CNN model reduction,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2019, pp. 9117–9125.

[55] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, ‘‘Sparse con-
volutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 806–814.

[56] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis., Oct. 2017, pp. 2755–2763.

[57] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, T. K.-T. Cheng,
and J. Sun, ‘‘Metapruning: Meta learning for automatic neural net-
work channel pruning,’’ 2019, arXiv:1903.10258. [Online]. Available:
https://arxiv.org/abs/1903.10258

[58] J. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level pruning method for
deep neural network compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 2790–2799.

[59] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, ‘‘ShuffleNet V2: Practical
guidelines for efficient cnn architecture design,’’ in Proc. Eur. Conf. Com-
put. Vis., Sep. 2018, pp. 116–131.

[60] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, ‘‘Pruning convolu-
tional neural networks for resource efficient inference,’’ in Proc. Int. Conf.
Learn. Represent., 2017, pp. 1–17.

[61] V. Nair and G. Hinton, ‘‘Rectified linear units improve restricted Boltz-
mann machines,’’ in Proc. Int. Conf. Mach. Learn., 2010, pp. 807–814.

[62] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation
in pytorch,’’ in Proc. Adv. Neural Inf. Process. Syst. Workshops, 2017,
pp. 1–4.

[63] Y. Rao, J. Lu, J. Lin, and J. Zhou, ‘‘Runtime network routing for efficient
image classification,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 41,
no. 10, pp. 2291–2304, Oct. 2019.

[64] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, ‘‘XNOR-Net:
Imagenet classification using binary convolutional neural networks,’’ in
Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[65] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[66] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio,
‘‘Fitnets: Hints for thin deep nets,’’ in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–15.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, and M. Bernstein, ‘‘ImageNet large scale visual
recognition challenge,’’ Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252,
Dec. 2015.

[68] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 4510–4520.

[69] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks for
semantic segmentation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640–651, Apr. 2017.

[70] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ inProc. Int. Conf. Learn. Represent., 2015,
pp. 1–10.

[71] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, ‘‘Efficient processing of
deep neural networks: A tutorial and survey,’’ Proc. IEEE, vol. 105, no. 12,
pp. 2295–2329, Dec. 2017.

[72] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolu-
tions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1–9.

[73] A. Veit and S. Belongie, ‘‘Convolutional networks with adaptive
inference graphs,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2018,
pp. 3–18.

[74] A. Veit, M. J. Wilber, and S. Belongie, ‘‘Residual networks behave like
ensembles of relatively shallow networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2016, pp. 550–558.

[75] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016,
pp. 2074–2082.

[76] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman,
and R. Feris, ‘‘Blockdrop: Dynamic inference paths in residual net-
works,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 8817–8826.

[77] S. Xie, R. Girshick, and P. Dollár, Z. Tu, and K. He, ‘‘Aggregated residual
transformations for deep neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jul. 2017, pp. 5987–5995.

[78] J. Ye, X. Lu, Z. Lin, and J. Z. Wang, ‘‘Rethinking the smaller-norm-less-
informative assumption in channel pruning of convolution layers,’’ in Proc.
Int. Conf. Learn. Represent., 2018, pp. 1–11.

[79] J. Yim, D. Joo, J. Bae, and J. Kim, ‘‘A gift from knowledge dis-
tillation: Fast optimization, network minimization and transfer learn-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2017,
pp. 4133–4141.

[80] J. Yoon and S. J. Hwang, ‘‘Combined group and exclusive sparsity for deep
neural networks,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017,
pp. 3958–3966.

[81] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron impor-
tance score propagation,’’ in Proc. IEEEConf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 9194–9203.

[82] S. Zagoruyko and N. Komodakis, ‘‘Wide residual networks,’’ 2016,
arXiv:1605.07146. [Online]. Available: https://arxiv.org/abs/1605.07146

[83] S. Zagoruyko and N. Komodakis, ‘‘Paying more attention to atten-
tion: Improving the performance of convolutional neural networks
via attention transfer,’’ in Proc. Int. Conf. Learn. Represent., 2017,
pp. 1–13.

[84] Q. Zhang, M. Zhang, M. Wang, W. Sui, C. Meng, J. Yang, W. Kong,
X. Cui, and W. Lin, ‘‘Efficient deep learning inference based on model
compression,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 1695–1702.

[85] X. Zhang, X. Zhou, M. Lin, and J. Sun, ‘‘Shufflenet: An extremely
efficient convolutional neural network for mobile devices,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 2074–2082.

[86] X. Zhang, J. Zou, X. Ming, K. He, and J. Sun, ‘‘Efficient and accurate
approximations of nonlinear convolutional networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1984–1992.

[87] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, ‘‘Deep mutual learn-
ing,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4320–4328.

[88] W. Zhou, Y. Niu, and G. Zhang, ‘‘Sensitivity-oriented layer-wise acceler-
ation and compression for convolutional neural network,’’ IEEE Access,
vol. 7, pp. 38264–38272, 2019.

ZONGYUE WANG received the B.E. and M.S.
degrees in computer science from the Wuhan Uni-
versity of Technology, Wuhan, China, and the
Ph.D. degree in photogrammetry and remote sens-
ing from Wuhan University, Wuhan. He is cur-
rently an Associate Professor with the School of
Computer Engineering, Jimei University, Xiamen,
China. His research interests include computer
vision, pattern recognition, and remote sensing
data processing.

VOLUME 7, 2019 175715

Z. Wang et al.: Pruning Blocks for CNN Compression and Acceleration via Online Ensemble Distillation

SHAOHUI LIN received the Ph.D. degree from
Xiamen University, Xiamen, China, in 2019. He is
currently a Research Fellow in computer science
with the National University of Singapore, Singa-
pore. He has authored about ten scientific articles
at top venues, including IEEE TPAMI, TNNLS,
CVPR, IJCAI, and AAAI. His research interests
include machine learning and computer vision.
He serves as a Reviewer for IEEE TNNLS, IJCV,
TMM, and PR.

JIAO XIE received the M.S. degree from Jimei
University, Fujian, China, in 2014. She is cur-
rently pursuing the Ph.D. degreewith the School of
Aerospace Engineering, Xiamen University. Her
research interests include computer vision and
deep learning.

YANGBIN LIN received the B.Sc., M.Sc., and
Ph.D. degrees in computer science from Xiamen
University, Xiamen, China, in 2008, 2011, and
2016, respectively. He was a Research Assistant
with Hong Kong City University, in 2010 and
was also a Software Engineer with Google Com-
pany (Shanghai), from 2011 to 2012. He is
currently a Lecturer with the Computer Engi-
neering College, Jimei University, Xiamen, China.
His current research interests include point cloud,
graphics, and optimization.

175716 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	NETWORK PRUNING
	KNOWLEDGE DISTILLATION
	OTHER ORTHOGONAL METHODS

	PROPOSED METHOD
	NOTATIONS AND PRELIMINARIES
	ONLINE ENSEMBLE DISTILLATION FOR RESIDUAL BLOCK PRUNING
	SOFT MASKS IN A MULTI-BRANCH NETWORK
	A STRONG TEACHER IS CONSTRUCTED ONLINE
	THE OVERALL LOSS FUNCTION

	OPTIMIZATION

	EXPERIMENTS
	ABLATION STUDY
	EFFECT ON THE TEMPERATURES
	EFFECT ON THE BRANCH NUMBER
	OED vs. DARK KNOWLEDGE AND ATTENTION TRANSFER
	FISTA vs. SGD

	COMPARISON WITH THE STATE-OF-THE-ART
	CIFAR-10
	CIFAR-100
	IMAGENET ILSVRC 2012

	ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

	CONCLUSION
	REFERENCES
	Biographies
	ZONGYUE WANG
	SHAOHUI LIN
	JIAO XIE
	YANGBIN LIN

