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ABSTRACT Recently, convolutional neural networks (CNNs) have been introduced for hyperspectral
image (HSI) classification and shown considerable classification performance. However, the previous CNNs
designed for spectral-spatial HSI classification lay stress on the learning for the spatial correlation of HSI
data and neglect the channel responses of feature maps. Furthermore, the lack of training samples remains
the major challenge for CNN-based HSI classification methods to achieve better performance. To address
the aforementioned issues, this paper proposes a new end-to-end pre-activation residual attention net-
work (PRAN) for HSI classification. The pre-activation mechanism and attention mechanism are introduced
into the proposed network, and a pre-activation residual attention block (PRAB) is designed, which allows
the proposed network to carry adaptively feature recalibration of channel responses and learn more robust
spectral-spatial joint feature representations. The proposed PRAN is equipped with two PRABs and several
convolutional layers with different kernel sizes, which enables the PRAN to extract high-level discriminative
features. Experimental results on three benchmark HSI datasets reveal that the proposed method is provided
with competitive performance over several state-of-the-art HSI classification methods, especially when the
training set size is relatively small.

INDEX TERMS Hyperspectral image classification, convolutional neural network, pre-activation mecha-
nism, attention mechanism.

I. INTRODUCTION
Hyperspectral images (HSIs) are composed of hundreds
of continuous spectral channels with spectral resolution
of nanometer order. Compared with ordinary remote sens-
ing images, HSIs contain more abundant spectral and spa-
tial information, which makes the accurate identification
of ground materials possible [1]. Therefore, hyperspectral
remote sensing technology has been widely used in many
fields, including agriculture [2], environmental earth sci-
ences [3], military surveillance [4]. Furthermore, HSI clas-
sification has become a very hot research topic in the remote
sensing analysis field.

Most traditional methods only incorporate spectral infor-
mation to achieve HSI classification, such as k-nearest
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neighbor [5], support vector machine (SVM) [6], [7],
multinomial logical regression [8], [9], extreme learning
machine [10] and so on. Although those methods can make
full use of spectral information, the final classification accu-
racy is unsatisfactory due to obvious intra-class differences
and unobvious inter-class differences of hyperspectral data
on the spectral domain. Besides, the curse of dimensionality,
namely the Hughes phenomenon [11], makes it a challenge
for those methods to achieve better classification perfor-
mance.

In order to enhance the classification performance, many
spectral-spatial classification methods have been proposed,
which can extract both spectral and spatial features of hyper-
spectral data. For instance, Benediktsson et al. [12] adopted
multiple morphological operations to design spectral-spatial
classifier. Yu et al. [13] integrated the subspace-based
SVM classification method with an adaptive Markov
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random field (MRF) approach to model the spectral and
spatial information. In [14], [15], sparse representation was
introduced to analyze and process HSI. Zhou et al. [16]
developed a spectral-spatial feature learning method, which
exploited spectral and spatial features in a hierarchical fash-
ion and adopted kernel-based extreme learning machine to
classify image pixels. In [17], the 3-dimensional (3-D) dis-
crete wavelet transform was combined with MRF for HSI
classification. A new discriminative low-rank Gabor filter
method [18] was proposed to classify hyperspectral data and
provided with excellent performance in terms of both accu-
racy and computation time.

The above-mentioned methods only extract hand-crafted
features and highly depend on domain knowledge, though
they can improve the accuracy of HSI classification. On the
contrary, deep learning methods can automatically learn hier-
archical feature representation from the raw data in an end-
to-end manner, thus avoiding the process of hand-crafted
features extraction. In recent years, deep learning has
attracted increased attention for its remarkable performance
in many fields, such as image classification [19], [20], target
detection [21], [22], and natural language processing [23].
Motivated by these successful applications, many efforts have
been made to classify hyperspectral data based on the deep
learning. Chen et al. [24] first introduced the stacked autoen-
coder, a deep learning framework, to extract spectral and
spatial features of the HSI. After that, Liu et al. [25] com-
bined the stacked denoising autoencoders and superpixel-
based spatial constraints to improve the HSI classification
performance. In [26], a stacked sparse autoencoder was pro-
posed to adaptively construct features from unlabeled data
by learning a feature mapping function. Moreover, the ref-
erence [27] proposed a compact and discriminative stacked
autoencoder for HSI classification. In [28] and [29], the deep
belief network was also introduced for HSI classification.
Li et al. [30] adopted 1-D convolution layers and proposed an
adaptive spatial-spectral feature learning network. Although
the aforementioned deep models [24]–[30] can extract deep
hierarchical features, the input sample must be flattened into
a 1-D vector in order to satisfy the input requirement, which
results in that they cannot make full use of the spatial infor-
mation of HSIs. Moreover, limited labeled samples of the
HSI make those deep learning models be plagued by small
sample size problem, which causes great challenges for HSI
classification.

To solve the above problems, many researchers designed
2-D CNN model to extract discriminative spatial features
from 3-D image cubes [31]–[38]. For instance, to learn
the joint spectral-spatial features from HSI, Yang et al. [33]
proposed a two-branch CNN and trained the model through
transfer learning. Lee et al. [35] proposed a contextual deep
CNN (DCNN), where a multi-scale filter bank was uti-
lized to achieve the joint exploitation of the spatial-spectral
information. The [36] combined CNN with MRF to clas-
sify HSIs. Song et al. [37] adopted residual connection and
proposed a deep feature fusion network (DFFN), which can

fuse the outputs from different hierarchical layers. To learn
the spectral-spatial features, Ma et al. [38] designed a deep
deconvolution network with skip architecture. Though those
CNN-based HSI classification methods can utilize the spatial
context information, they only convolve feature maps on the
spatial dimension and neglect the spectral correlations, which
are very important for HSI classification. For the reason that
all the convolutional layers in their architectures applied 2-D
convolutional operations.

Considering the limitation of 2-D convolution layers, some
3-D CNN models were proposed to classify hyperspectral
data [39]–[41]. The 3-D convolutional operations can con-
volve feature maps on both spatial dimension and spectral
dimension simultaneously, and then enables the 3-D CNN
extract spectral correlation and joint spectral-spatial corre-
lation information. Paoletti et al. [42] proposed a deep 3-D
CNNarchitecture and obtained high classification accuracies.
In [43], a spectral-spatial residual network (SSRN)was devel-
oped and the SSRN can consecutively learn discriminative
features from abundant spectral signatures and spatial con-
texts in an HSI. A pyramidal residual network [44] were also
developed to capture the spectral and spatial features simul-
taneously. Wang et al. [45] proposed a fast dense spectral-
spatial convolution framework, which extracted spectral
and spatial features separately by designing dense spectral
block, dense spatial block and reducing dimension layer.
Furthermore, a multiscale deep middle-level feature fusion
network [46] was proposed to extract more discriminative
features by fusingmultiscale deepmiddle-level features. Very
recently, Chen et al. [47] explored the automatic design
of CNN for HSI classification for the first time and devel-
oped a 3D Auto-CNN model. Those CNN-based methods
effectively improve the classification accuracy of HSIs and
perform well on small training set. However, they attach
importance to learn the spatial correlation of HSI data and
neglect the channel responses of features, which are also
crucial for the HSI classification. Moreover, to deal with the
gradient vanishing/explosion problem and mitigate the over-
fitting problem caused by limited training samples, residual
connection is widely used in many existing CNN-based HSI
classification methods such as the DCNN [35], DFFN [37]
and SSRN [43]. However, the residual blocks in their network
adopt post-activation mechanism, which means the activation
function ReLU is after convolutional operation. The ReLU
will forcibly convert the signal to 0 if the signal is nega-
tive, which may cause the loss of some informative residual
features.

To address the above issues, this paper builds a novel resid-
ual network with attention mechanism for spectral-spatial
HSI classification. The main contributions of this paper can
be summarized as follows.

1) To deal with the gradient vanishing/explosion problem
and enhance the classification performance of pro-
posed network, residual connections and batch nor-
malization (BN) are adopted in the proposed network.
Different from the previous networks used in
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FIGURE 1. Framework of proposed HSI classification method.

HSI classification, we introduce the pre-activation
mechanism into the residual block to learn more robust
spectral and spatial feature representation, thus achieve
better generalization performance.

2) To learn more robust spectral-spatial feature represen-
tations from input image patches, we introduce atten-
tion mechanism into the residual block and construct a
pre-activation residual attention block (PRAB), which
can adaptively recalibrate channel feature responses by
explicitly modelling interdependencies between chan-
nels.

3) A pre-activation residual attention network (PRAN)
is proposed to improve HSI classification outcomes
on small training sample size. The proposed PRAN
contains two PRABs, which allow the network to better
learn hierarchical features. Note that the experimental
results on three real HSIs demonstrate the competitive
advantage of proposed PRAN in terms of accuracy over
several state-of-the-art HSI classification methods.

The remainder of this paper is organized as follows. Section 2
introduces the proposed HSI classification method in detail.
In section 3, the performance of proposedmethod is evaluated
by carrying comparisons with several state-of-the-art HSI
classification method, and the experimental results on three
benchmark HSI datasets are analyzed and discussed. Finally,
section 4 concludes this paper and suggests some future
works.

II. PROPOSED METHOD
The framework of proposed method is showed in Figure 1.
As can be observed, the PRAN includes three convolutional
layers, two PRABs, a global average pooling (GAP) layer and
a fully connection (FC) layer.

HSI dataset can be denoted as D ∈ RH×W×B, where H ,
W and B denote the height, width and band number of the
HSI, respectively. In order to extract spectral-spatial features,
we adopt 3-D image patches centered on labeled pixels as
the input samples of the proposed PRAN, and the label of
image patch is the label of corresponding center pixel. The
size of the image patch is S×S×B, where S×S denotes the
neighborhood spatial size. Suppose the HSI dataset contains
N labeled pixels, then the image patch set can be denoted

as X = {x1, x2, . . . , xN } ∈ RS×S×B, where xi is the ith
image patch. The corresponding ground-truth label set can
be denoted as Y = {y1, y2, . . . , yN }, where yi ∈ {1, 2, . . . ,Q}
is the label of xi and Q is the number of land-cover classes.
The patch set X is divided into training set, validation set and
test set. Correspondingly, the Y is divided into three groups.
Before training the PRAN, hyperparameters (such as learning
rate, batch size, and patch size) are configured. The PRAN
is trained for 200 epochs. In each epoch, the training set is
divided into some mini-batches and the mini-batch data is fed
into the network one by one. In the training process, the pre-
diction label vectors of training set are obtained through
forward propagation of the model, then cross entropy loss
function is adopted to compute the difference between pre-
dicted label vectors and the corresponding one-hot label vec-
tors which converted by the ground-truth labels. After that,
the learned parameters of the PRAN are updated through back
propagation algorithm. In addition, during training stage, the
validation set is classified and the classification accuracy
is computed every few epochs, so as to monitor the model
performance. In this way, we can select the trained model
with the highest accuracy. Finally, the test set is adopted for
evaluating the performance of trained PRAN.

A. RESIDUAL CONNECTION AND PRE-ACTIVATION
MECHANISM
The residual block is adopted as the key component
of proposed PRAN, the architecture of which is shown
in Figure 2(a). As can be seen, the residual block is com-
posed of two convolutional layers and a residual connection
(also known as skip connection). Through skip connection,
the low-level features and high-level features can be aggre-
gated in an addition manner. In this way, the residual block
can mitigate the gradient vanishing/explosion problem which
usually exist in deep network. Each residual block can be
calculated as follows:

H (x) = f (F(x)+ x) (1)

where x and H (·) denote the input and output of residual
block, respectively, F refers to a residual learning function
and F(x) denotes the output of convolutional layer before
summation operation, f denotes the activation function.
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FIGURE 2. Architecture of normal residual block (a) and pre-activation
residual block (b).

To obtain better performance, we apply BN and pre-
activation mechanism in the residual block of proposed net-
work. As shown in Figure 2(b), the pre-activation architecture
is implemented by moving BN and ReLU activation func-
tion before convolution operation. The pre-activation residual
block can be calculated as

H (x) = F(x)+ x (2)

As shown in Figure 2(a), the activation function f in (1) is
ReLU, which means

f (x) = max (0, x) (3)

The ReLU will forcibly converts the signal to 0 if the signal
is negative, which may cause the loss of some informative
residual features in normal residual block. If make the f an
identity mapping, the (1) will be equivalent to (2). The iden-
tity mapping enables signals be propagated directly between
any two units, which means the features learned by the resid-
ual learning function will not be lost. In this way, the pre-
activation mechanism makes it easier to train the network,
and enhances the generalization performance of the network.

B. PRE-ACTIVATION RESIDUAL ATTENTION BLOCK
Due to that the data with all spectral bands are directly used
as the inputs of proposed network, it is inevitable to carry
redundant information which may degrade the classification
accuracy. To address this issue, we adopt the Squeeze-and-
Excitation (SE) block [48] to adaptively recalibrate channel
feature responses by explicitly modelling interdependencies
between channels, thus it can be regarded as a channel atten-
tion mechanism. We add the attention mechanism into the
pre-activation residual block and propose a pre-activation
residual attention block (PRAB).

The details of PRAB are depicted in Figure 3. The attention
mechanism is added after convolution operation, but before
summation operation. It allows the PRAB to perform fea-
ture recalibration, thus selectively emphasizes informative

FIGURE 3. Architecture of pre-activation residual attention block.

features and suppress the less important features. Assume
the size and number of the input feature maps of attention
mechanism is s × s × d and c, where c and d denote the
size of channel dimension and depth dimension, respectively.
Each feature map is first processed by a 3-D global average
pooling (GAP) layer to squeeze global spatial information,
thus c 1× 1× 1 channel feature tensors are generated. Then,
the feature tensors are input into a 1×1×1 3-D convolutional
layer to reduce the channel dimensionality. Specifically, after
convolution operation, the channel dimension of the feature
tensor becomes c/r , where r is a reduction ratio. In the pro-
posed network, r is set to 4. Next, a ReLU function is applied
to improve nonlinearity of channel responses and another
1 × 1× 1 3-D convolutional layer is adopted to increase the
channel dimension and generates c feature tensors. Lastly,
a sigmoid function is employed, and the output is multiplied
with the feature maps from pre-activation residual to rescale
the final output of attention mechanism to cs× s× d feature
maps. In this way, channel weights are assigned to each
feature map, thus achieve adaptively recalibrating features.
Furthermore, an attention mechanism is provided with 2∗c2/r
parameters, which are derived from the two 3-D convolu-
tional layers within it. Note that the proposed PRAN only
contains two attention blocks, which cause increasing very
few parameters for the network.

C. ARCHITECTURE OF PROPOSED NETWORK
Taking Indian Pines dataset as an example and the 7×7×200
image patches are used as the input samples, the details of
proposed PRAN are shown in Figure 4. Each convolutional
layer is followedwith BN and ReLU except that in the PRAB.
Referring to SSRN, the proposed PRAN first puts particular
emphasis on learning spectral features from raw input data,
then puts particular emphasis on learning spatial features,
thus extracts discriminative spectral-spatial joint features.
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FIGURE 4. Architecture of proposed pre-activation residual attention network. The cuboids in mainstream refer to features, other cuboids refer to
convolution kernels. ‘‘1 × 1 × 7, 24’’ means 24 convolution kernels with size 1 × 1 × 7, and ‘‘7 × 7 × 97, 24’’ means 24 feature cuboids with size
7 × 7 × 97. Other parameters have similar meanings, and no further elaboration is needed.

Finally, the joint features are processed by GAP and FC
operation. The FC operation can adaptively generate feature
vector, the length of which is equal to the number of land-
cover classes in the HSI data. Because there are 16 land-cover
classes in Indian Pines dataset, the length of output vector is
16 in Figure 4. In addition, it is noted that the stride of the
first convolutional layer is (1, 1, 2), so the channel dimension
of the input samples is reduced from 200 to 97. All the other
convolutional layers in the proposed PRAN is equipped with
the stride of (1, 1, 1). In PRAB, all convolutional layers
use padding to keep the sizes of feature cuboids unchanged.
Due to without using padding, the spatial size or channel
dimension is reduced when feature cuboids are processed by
the convolutional layers outside the PRAB.

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATA SETS
1) INDIAN PINES
This image was captured by Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) over the Indian Pines test site in
North-western Indiana in 1992. It contains 16 classes and
145 × 145 pixels with the spatial resolution of 20m per
pixel. There are 224 spectral bands in the wavelength range
from 400 to 2500 nm. After discarding 20 water absorption
bands, the remaining 200 bands are adopted for classification.
Figure 5 shows the pseudo color image and ground-truth
image of this data. As reported in Table 1, 20%, 10%, and
70% of labeled samples are randomly selected for training,
validation (val), and test sets, respectively.

2) PAVIA UNIVERSITY
This image was captured by Reflective Optics System Imag-
ing Spectrometer in Northern Italy in 2001. It contains

FIGURE 5. Pseudo color image and ground-truth map of Indian Pines
data.

9 land-cover classes and 610 × 340 pixels with the spatial
resolution of 1.3m per pixel. After discarding the noisy bands,
the remaining 103 bands are adopted for experiments, which
covers the wavelength range from 430 to 860 nm. Figure 6
shows the pseudo color image and ground-truth image of this
data. As reported in Table 2, 10%, 10%, and 80% of labeled
samples are randomly selected for training, validation, and
test sets, respectively.

3) SALINAS
This image was collected by the AVIRIS sensor over Sali-
nas Valley, California. It contains 16 land-cover classes and
512 × 217 pixels with the spatial resolution of 3.7m per
pixel. We discarded the 20 water absorption bands and only
204 bands are persevered for experiments. The pseudo color
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TABLE 1. Number of training, validation and test samples in Indian Pines
dataset.

FIGURE 6. Pseudo color image and ground-truth map of Pavia University
data.

TABLE 2. Number of training, validation and test samples in Pavia
University dataset.

image and ground-truth image are shown in Figure 7. For this
dataset, the ratio of training samples, validation samples, and
test samples is 1:1:8, the details are reported in Table 3.

FIGURE 7. Pseudo color image and ground-truth map of Salinas data.

TABLE 3. Number of training, validation and test samples in Salinas
dataset.

B. EXPERIMENTAL SETUP
The overall accuracy (OA), average accuracy (AA), and
kappa coefficient (κ) are used to evaluate the classification
performance of proposed method. Among them, OA denotes
the ratio of the number of samples correctly classified to the
total number of all labeled samples. AA denotes the average
of classification accuracy of all classes. The kappa coefficient
is used to assess the agreement of classification for all the
classes. The greater the κ value is, the better the overall
classification effect is.

We repeat all experiments for 10 times with randomly
selected training samples so as to obtain the mean and stan-
dard deviation of OA, AA, and κ . In the training process, for
all three datasets, learning rate, batch size and total epochs
are 0.0003, 32 and 200, respectively. The RMSProp optimizer
is adopted to optimal the learnable parameters of proposed
network. All experiments are conducted on a computer with
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TABLE 4. Classification results (OA) of proposed method with different
patch size.

RAM 8G and NVIDIA GeForce GTX 1050Ti GPU (4G
of ROM). The experimental results are divided into three
parts. First, we analyze the effect of size of input image
patches on the performance of proposed method. Second, the
effectiveness of PRAB is verified. Finally, the performance
of proposed method is evaluated by comparing with other
classification methods.

C. EFFECT OF PATCH SIZE
To analyze the effect of patch size for the performance of
proposed method, we carried the experiments on all three
datasets and compared the classification results of proposed
method with different patch size, as shown in Table 4. It can
be observed that, as the patch size increases, the OA value
first increases rapidly and then decreases slightly for Indian
Pines dataset. And for the other two datasets, the OA value
first increases rapidly and then becomes stable. The reason is
that small patch size (3 × 3) makes the spatial information
is not fully utilized, thus causes unsatisfactory classifica-
tion accuracies. And larger patch size enables the proposed
method to extract more discriminative features and achieve
better classification results. However, when the image patch
exceeds a certain size, it will lead to redundant information
or noise, which cannot cause the improvement on accuracy
and may even degrade the accuracy. The optimal patch size is
7× 7, 7× 7 and 9× 9 for Indian Pines, Pavia University and
Salinas datasets, respectively. Considering the larger patch
size leads to higher computational cost, the patch size is to
7× 7 for all the three datasets.

D. EFFECT OF PRE-ACTIVATION RESIDUAL ATTENTION
BLOCK
To verify the effectiveness of the attention mechanism and
PRAB, we compare the proposed PRAN with the deep
residual network (DRN) and pre-activation residual network
(PRN). Among them, the DRN is obtained by replacing
the PRABs in PRAN with normal residual blocks, and the
difference between PRN and PRAN is that the PRN does not
adopt attention mechanism, while the PRAN is provided with
attention mechanism. Table 5 reports the classification results
of the DRN, PRN and PRAN on all three datasets. It is obvi-
ous that proposed PRAN achieved better classification results
than the DRN for all three datasets, which demonstrates the
superiority of the PRAB. Furthermore, compared with the
PRN, the PRAN improves the classification accuracies of all
three datasets, because the attention mechanism selectively

TABLE 5. Effect of prab on all three datasets.

strengthens informative channels and suppresses less useful
channels, thus results in the proposed PRAN can learn dis-
criminative spectral and spatial features simultaneously. For
the reason that the accuracy is very high (higher than 99%),
the improvements of accuracy caused by the PRAN are not so
obvious. Note that all the accuracies are the averaged results
over 10 repeated experiments with randomly selected training
samples, small improvements demonstrate the effectiveness
of PRAB to some extent.

E. COMPARISON OF DIFFERENT CLASSIFICATION
METHODS
We compare our method with the SVM [7] and several
state-of-the-art CNN-based methods, including DCNN [35],
DFFN [37] and SSRN [43]. For SVM-based method, only
single RBF kernel is adopted, the optimal kernel parameter γ
and the penalty parameterC are tuned by grid search method.
Additionally, the original data is processed by principal com-
ponent analysis (PCA), then training patches (patch size is
25 × 25) centered with labeled pixels are extracted. The
patches are transformed into one-dimension data to training
the SVM. The DCNN and DFFN are 2-D CNN, and the
SSRN is a 3-D CNN. All of them used residual connections
to design deep architectures and improve their performance
in HSI classification. The architectures of those three CNN
models are deeper than PRAN. Among them, the number
of layers with weights in DCNN and SSRN is 10 and 12,
respectively. In DFFN, there is more than 20 layers with
weights. In addition, both the DCNN and SSRN adopt 3D
image patches extracted from original HSI as the inputs.
As for the DFFN, PCA is applied over the hyperspectral
data to reduce the dimensions and obtain major spectral
information, then input image patches are extracted from
the dimension-reduced data. The optimal hyperparameters
of DCNN, DFFN and SSRN are set as corresponding refer-
ences. For fair comparison, the local response normalization
in DCNN is replaced by BN. The division of datasets is
according to Tables 1-3.

Tables 6-8 report the classification results of different
methods on three datasets. As we can see, the accuracies
obtained by SVM classifier are the lowest for all three
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TABLE 6. Classification results of different methods on Indian Pines dataset.

TABLE 7. Classification results of different methods on Pavia University dataset.

datasets. Because it requires 1-D input data, which causes
the loss of spatial information. In addition, it cannot extract
deep hierarchical features due to its shallow structure. All
CNN-based comparison methods achieve high classification
accuracies. The main reason is that they are equipped with
deep architecture, which enables them to learn high-level
discriminative features of HSIs. In addition, the residual con-
nection adopted in those methods effectively alleviates the
overfitting of deep architecture. However, most convolutional
layers in the DCNN are composed of 1 × 1 convolutional
kernels, which leads to the limited ability to extract spatial
correlation features. Instead, many 3×3 convolutional layers
are stacked in the DFFN, SSRN and PRAN, thus these meth-
ods can extract more informative spatial correlation features
and achieve higher accuracies.

Compared with the DFFN, the PRAN consistently pro-
vides excellent performance for all three datasets. For exam-
ple, the PRAN achieves 1.44% and 0.69% increase of mean
OA for Indian Pines and Pavia University data, respectively.
For Salinas data, the OA/AA/κ obtained by the DFFN are
slightly higher than those obtained by the PRAN, but the
gap is extremely small (only 0.03% in mean OA). Note
that samples of the classes Asphalt, Grass-pasture-mowed,
Oats, Wheat in Indian Pines datasets are very few, the PRAN
performs obviously better in these classes than the DFFN.
It demonstrates that the PRAN can extract discriminative
features more robustly than the DFFN. As for the SSRN,
the PRAN performs marginally better than it for all three
datasets, but the improvements are not that clear, simply
because the classification accuracy is very high (higher than
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TABLE 8. Classification results of different methods on Salinas dataset.

FIGURE 8. Classification maps of different methods on Indian Pines data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN. (e) PRAN.

99.8% in both OA and AA). Moreover, the SSRN is equipped
with deeper architecture than PRAN, which means the com-
putational cost of the former is higher than that of the latter.
From another point of view, though the architecture of PRAN
is shallower, it does not cause the PRAN to possess worse
generalization performance than the SSRN. Not only that,
it makes the PRAN easier to train and faster in HSI classi-
fication.

Figures 8-10 visualize the classification results of different
methods which close to the corresponding mean OA on all
three datasets. For all three datasets, there exist many mis-
classified pixels in the classification maps generated by the
SVM and DCNN. And the SVM causes more misclassified
pixels, which is consistent with the above quantitative results.
The DFFN, SSRN and our proposed methods bring about
very little noise in the corresponding classification maps
especially for Pavia University and Salinas datasets.

In order to further evaluate the robustness and general-
ization ability of proposed method, the classification results

obtained by proposed method are compared with those
obtained by comparison methods under different training set
size. Figure 11 displays the OA obtained by different meth-
ods on Indian Pines, Pavia University, and Salinas datasets,
respectively. Note that the percentages of training samples
are reported in Figure 11, and 10% of all samples are used for
validation set, the rest samples are used for test set. All results
are the average over 10 repeated experiments with randomly
selected training samples. As we can see, the accuracies of all
methods increase as the numbers of training samples increase.
Moreover, the proposed PRAN consistently provides compet-
itive performances over the other compared methods under
all different training set size. In particular, the smaller the
training set is, the more obvious the superiority of proposed
method over all compared methods is.

Furthermore, we select 4/8 training samples per class for
each dataset and classify all three datasets with the PRAN,
DFFN and SSRN. It should be noted that 4 training samples
per class means only 64, 36, and 64 samples are used for
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FIGURE 9. Classification maps obtained by different methods for Pavia University data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN. (e) PRAN.

FIGURE 10. Classification maps obtained by different methods for Salinas data: (a) SVM. (b) DCNN. (c) DFFN. (d) SSRN.
(e) PRAN.

TABLE 9. Classification results of 4 training samples per class.

training for Indian Pines, Pavia University and Salinas
datasets, respectively. In other words, the number of training
samples is less than 1% of the total number of all labeled
samples. In the same way, the percentage of validation set is
10% and the rest samples are adopted to evaluate the model
performance. Tables 9 and Table 10 display the corresponding

classification results in detail. Here, we take the classification
results (OA) of Pavia University as an example. When 4 sam-
ples per class are selected to train the network, compared with
DFFN and SSRN, the PRAN improves 10.11% and 9.37% in
OA (see Table 9), respectively. And in Table 10, when 8 sam-
ples per class are used for training, the OA obtained by PRAN
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FIGURE 11. Classification results (OA) obtained by different methods under different training set sizes on: (a) Indian Pines image; (b) Pavia
University image; (c) Salinas image.

TABLE 10. Classification results of 8 training samples per class.

is 2.30% and 6.67% higher than that obtained by DFFN and
SSRN, respectively. In the other two datasets, compared with
the DFFN and SSRN, the PRAN also obviously improves the
classification results of both 4 training samples per class and
8 training samples per class. The above experimental results
further demonstrate the superiority of the proposed method
under small training sample size.

Table 11 reports the training time (s) of proposed PRAN
and comparison methods. As can be observed, both the
DCNN and DFFN take less time for training than SSRN and
PRAN. It is because the DCNN and DFFN adopt the 2-D
convolutional layer as the basic element while the SSRN and
PRAN adopt the 3-D convolutional layer as the basic element.
Although the computational cost of the DFFN is lower than
the PRAN, the DFFN requires input image patches with large
size (such as 25 × 25 for Indian Pines dataset), otherwise
the classification will degrade. Larger patch size means more
noise may appear in the image patches, thus causes worse
classification performance. Therefore, it may face challenges
to adopt DFFN for HSI classification, especially when the
spatial distribution of land cover is complicated and confused.
Fortunately, the PRAN is almost free from this constraint.
Despite the classification accuracy of the DFFN is pretty
close to PRAN when training set is relatively large, the supe-
riority of PRAN gradually increases as the training samples
decreases (see Figure 11). The training time of SSRN is
roughly 2 times longer than the PRAN due to its deeper

TABLE 11. Training time of different methods on all three datasets.

architecture. Therefore, the PRAN is evidently faster than
SSRN when used for HSI classification.

To sum up this section, in terms of classification accu-
racy and classification speed, the PRAN is able to provide
competitive performance over these compared state-of-the-
art methods.

IV. CONCLUSION
In this paper, we propose a pre-activation residual atten-
tion network, that incorporates both spectral and spatial
information, for hyperspectral image classification. Specif-
ically, different from previous CNN-based HSI classifica-
tion methods, the proposed method adopts pre-activation
mechanism to enhance the generalization performance of
the network. Moreover, to extract more robust spectral-
spatial features, attention mechanism is introduced to build
a pre-activation residual block, which allows the proposed
network to adaptively recalibrate channel feature responses
and effectively exploit discriminative features. Experimental
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results on three benchmark HSI datasets demonstrate that the
competitive advantage of proposed method when compared
with SVM and several state-of-the-art methods (including
DCNN, DFFN and SSRN), especially under small training
set.

Despite the superiority of the proposed method, it has large
number of parameters needed to be learned due to the use
of 3-D convolution kernels, thus results in high computational
cost. Therefore, the future research will try to develop new
approach, such as replacing 3-D convolution with octave con-
volution, to decrease the computational cost without degrad-
ing the classification accuracy. Furthermore, on account of
insufficient training samples in HSIs, we will combine the
proposedmethodwith advanced data augmentation technique
to further improve classification performance.
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