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ABSTRACT This paper aims to utilize the core structure of linear programming technique for multidi-
mensional analysis of preference (LINMAP) to propose a parametric LINMAP methodology for addressing
multiple criteria group decision-making problems based on Pythagorean fuzzy sets. To compare Pythagorean
membership grades, this paper presents a Hamming distance-based approach for identifying closeness-based
order relations based on Pythagorean fuzzy closeness indices. The concept of comprehensive closeness mea-
sures is introduced to measure individual order consistency and inconsistency between subjective preference
relations and objective order relations. In the spirit of LINMAP, this paper determines individual goodness
of fit and poorness of fit and further constructs a novel parametric LINMAP model. The applicability of the
developed approach is explored by a practical application of railway project investment. Some comparative
analyses are conducted to demonstrate the usefulness and advantages of the proposed methodology.

INDEX TERMS Multiple criteria group decision making, Pythagorean fuzzy set, Pythagorean membership
grade, closeness-based order relation.

I. INTRODUCTION
The linear programming technique for multidimensional
analysis of preference (LINMAP), initiated by Srinivasan
and Shocker [1], is a well-known compromising model in
the decision-making field [2], [3]. LINMAP is capable of
handling preference information of alternatives, determining
objective weights of criteria, and making decisions through
identifying the best compromise alternative [4]–[7]. Based
on the decision matrix and a set of preference relations of
decision makers on pairwise comparisons of alternatives,
LINMAP defines the consistency and inconsistency indices
concerning each paired comparison for acquiring the poor-
ness of fit and the goodness of fit [3], [8]. LINMAP con-
structs a linear programming model to obtain an imaginary
ideal solution against each criterion and the optimal weights
of criteria [5], [6], [9]. Each alternative is compared with
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the others based on its Euclidean distance from the ideal
solution [9], [10], which is defined as the point on the Pareto
front that each criterion is optimized regardless of counting
the other criteria [2], [11]. The alternative that has the shortest
distance from the ideal solution is selected as the best com-
promise solution [2], [8].

In multiple criteria group decision-making (GDM) prob-
lems, LINMAP can be used to reflect decision mak-
ers’ preferences over alternatives more effectively. In this
regard, numerous LINMAP methods and techniques have
been proposed to solve GDM problems. For example,
Zhang et al. [12] employed the LINMAP to propose an
interval-valued intuitionistic fuzzy programming technique
for multiple criteria GDM based on Shapley values and
incomplete preference information. Similarly, Liu et al. [8]
investigated a double-hierarchy hesitant fuzzy linguistic
mathematical programming method to solve GDM problems
with Shapley values and incomplete preference information.
Quan et al. [6] employed the LINMAP to determine the
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optimal weights of criteria and presented a hybrid GDM
approach for large group green supplier selection with
interval-valued intuitionistic uncertain linguistic information.
Based on interval type-2 fuzzy sets, Haghighi et al. [4]
proposed a new GDM approach with the linear assignment
method, in which the weights of evaluation factors are deter-
mined based on a new developed version of LINMAP. Zuo
et al. [13] developed a large GDM method of generalized
multi-attribute and multi-scale based on LINMAP. It can
be observed that fuzzy sets are frequently utilized in the
extended LINMAPmethods and techniques because decision
makers tend to express ambiguous evaluations due to the
vagueness of human thinking [6]. Decision information
contained in GDM problems is incomplete and ambiguous
in most real-world cases [14], [15]. Thus, more general and
high-order fuzzy extensions of LINMAP should be capable
of providing an effective way to tackle GDM problems
within complex and uncertain environments. This is the first
motivation of this paper.

The concept of Pythagorean fuzzy (PF) sets, originally
developed by Yager [16]–[18] and Yager and Abbasov [19],
is useful to represent ambiguous and uncertain decision infor-
mation [20], [21]. As a valuable extension of intuitionistic
fuzzy sets, Pythagorean membership grades involved in a
PF set relax the condition that the sum of membership and
non-membership degrees is less than or equal to one with
the square sum is less than or equal to one [15], [22]–[24].
Accordingly, PF sets have been widely popular in handling
complex uncertainty involved in practical decision-making
problems, and they have attracted numerous scholars’
research interests in recent years. A series of methodologies
have been developed to handle a variety of decision-making
problems, such as PF techniques for order preference by
similarity to ideal solutions (TOPSIS) [23], [25], [26],
PF preference ranking organization methods for enrichment
evaluations (PROMETHEE) [27], [28], cubic PF weighted
averaging and weighted geometric operations [20], weighted
distance based approximation with new score functions [29],
and GDM approaches based on PF preference relations [14]
and based on order relations for PF numbers [15]. Because
PF sets provide a powerful and flexible tool in modeling
real-world uncertainty, the extension of the LINMAP struc-
ture can create a more promising research subject and capture
vagueness and incompleteness in human evaluations. This is
the second motivation of this paper.

Wan et al. [30] and Xue et al. [31] employed the core
concept of LINMAP to propose novel multiple criteria GDM
approaches within the PF environment. Wan et al. [30] devel-
oped a new PF mathematical programming method to solve
GDM problems with PF truth degrees. The main feature of
their approach is the utilization of the cross-entropy theory for
determining the weights of decision makers and the collec-
tive relative closeness degrees of alternatives. Xue et al. [31]
based on the consistency index and the PF entropy to estab-
lish a novel PF LINMAP model that could realize high
consistency index and acquire an amount of knowledge.

The prominent feature of their approach is the construction of
PF entropy and interval-valued PF entropy for measuring the
fuzziness and uncertainty of PF sets and interval-valued PF
sets. The aforesaid methods have solid theoretical bases and
possess comprehensive computation procedures. However,
the mathematical works and notations in Wan et al. [30] and
Xue et al. [31] are rather difficult for decision makers or
relevant practitioners. Furthermore, the technical aspects and
characters as well as their influences on the solution results
are not always well understood. To make sure the useful-
ness and flexibility of PF sets in characterizing uncertainty
and fuzziness, the LINMAP-based methodology should be
extended to the PF environment using a straightforward and
uncomplicated manner. This is the third motivation of this
paper.

According to the above discussions, the motivations of this
paper are summarized as follows:

(1) The core structure of LINMAP can be improved or
enriched to more general and high-order fuzzy environments
for handling GDM problems in intricate circumstances.

(2) Developing the extended LINMAP methods in PF
contexts can describe vagueness and incompleteness in
subjective assessments and accommodate more complex
uncertainties.

(3) A simple and effective LINMAP-based approach is
needed to enhance an understanding of the value and mer-
its of the PF extension in enriching the LINMAP-based
methodology.

To address the three motivational issues, this paper intends
to develop a novel PF LINMAP approach which is very sim-
ple and easily understood by decision makers. The purpose
of this paper is to utilize PF closeness-based order relations
via a recently developed Hamming distance measure and
construct a novel parametric PF LINMAP model to address
multiple criteria GDM problems. Instead of the popular
Euclidean distance-based approach in the classical LINMAP
procedure, this paper presents the PF closeness indices via a
Hamming distance-based approach to conduct criterion-wise
comparisons between PF evaluative ratings for the sake of
PF closeness-based order relations. The proposed Hamming
distance-based approach is based on the essential characteris-
tics of PF sets, i.e., membership, non-membership, strength,
and direction, which makes it a very useful technique for
general decision making in PF contexts. Next, this paper
introduces the concept of comprehensive closeness measures
to acquire synthetic effects over all evaluative criteria and
specify objective order relations. These comprehensive mea-
sures and relations can be used to identify individual indices
of order consistency and order inconsistency between the
preorders of the alternatives in the preference set for each
decision maker. The measurements of individual goodness
of fit and poorness of fit can then be acquired for each
decision maker. Based on a bi-objective optimization model
that aims to maximize the total collective comprehensive
closeness measure and minimize the collective poorness of
fit, this paper establishes a parametric PF LINMAP model

VOLUME 7, 2019 174109



T.-Y. Chen: Multiple Criteria GDM Using a Parametric Linear Programming Technique

for determining the optimal weight vector and individual
degrees of violation. An effective algorithmic procedure is
proposed to applying the PF LINMAPmethodology to handle
a GDM problem in PF contexts. Finally, this paper conducts
an illustrative application and some comparative analyses
concerning a GDM problem of railway project investment to
examine the usefulness and advantages of the proposed PF
LINMAP approach in the real world.

The main innovation and advantages of this paper are
highlighted as three aspects:

(1) Empowerment of decision makers to make group deci-
sions based on PF uncertainty

Complicated and volatile decision environments pose
severe challenges for decision makers in knowing how to
cope with vague or imprecise information in the GDM pro-
cess. PF sets empower decision makers to describe uncertain
evaluation information more flexibly than popular intuition-
istic fuzzy sets. This paper makes use of PF sets to model
inherent fuzziness and subjectivity within uncertain environ-
ments and resolve situations where decision makers hesitate
in assessing alternatives under complex uncertainty.

(2) Construction of an effective procedure for manipulating
PF information

In the light of the flexibility and complexity of PF
sets, the PF specification in GDM problems has evident
difficulty in handling sophisticated PF information, which
would reduce the quality of being practical. The natu-
ral quasi-ordering between Pythagorean membership grades
does not often appear in the PF context. Thus, the question
then arises about the comparison for PF information. To dif-
ferentiate the dominance relationships among PF informa-
tion, this paper advances a new order relation, named PF
closeness-based order relation, based on the concept of PF
closeness indices. In contrast to natural quasi-ordering of
PF sets, the proposed approach can differentiate the domi-
nance relationships among PF information more accurately
and convincingly. Although there are major doubts about the
practicality of the theory of Pythagorean fuzziness, this paper
puts forward a simple and noncomplex procedure to handle
PF data for enhancing the feasibility and practicability of the
PF set theory.

(3) Development of an easy-to-use PF LINMAP model
containing valuable concepts

This paper proposes a parametric PF LINMAP model
that is straightforward and simple to use. In contrast to the
current PF LINMAP methods [30], [31], this paper adopts
a straightforward way to deal with complex PF decision
information in uncertain GDM problems. The parametric PF
LINMAP model is built upon solid theoretical bases, includ-
ing several helpful concepts of the PF closeness-based order
relation via PF closeness indices, the objective order rela-
tion via comprehensive closeness measures, individual order
consistency/inconsistency indices, and new fitness measure-
ments. Unlike complicated and troublesome computation
procedures, this paper develops an effective PF LINMAP
methodology that is easy to implement and understand

for the sake of managing GDM problems within PF
environments.

The remainder of this paper is organized as fol-
lows. Section II briefly reviews some basic concepts of
Pythagorean membership grades and PF sets. Section III for-
mulates a multiple criteria GDM problem involving decision
makers’ force-choice ordered paired comparison judgments
over alternatives within the PF environment. Section IV
presents useful PF closeness indices based on a recently
developed Hamming distance measure for acquiring PF
closeness-based order relations. Section V constructs a novel
parametric PF LINMAP model to solve GDM problems
under uncertainty of Pythagorean fuzziness. Section VI
applies the proposed methodology to railway project invest-
ment decision making to validate its feasibility and practi-
cality. Moreover, four comparative studies and discussions
are conducted to show the usefulness and advantages of
the proposed methodology. Finally, Section VII presents the
conclusions.

II. PRELIMINARIES
This section reviews basic definitions of Pythagorean mem-
bership grades and PF sets for facilitating the subsequent
study. The concept of a generalized PF distance measures is
introduced as well.
Definition 1 ([17], [21], [27], [32]): Let P be a PF set in

a finite universe of discourse X . Let p denote a Pythagorean
membership grade of the element x ∈ X belonging to P; it is
characterized by the degree of membership µP(x), the degree
of non-membership νP(x), the strength of commitment rP(x),
and the direction of commitment dP(x), as follows:

p = (µP(x), νP(x); rP(x), dP(x)) , (1)

where µP(x), νP(x), rP(x), dP(x) ∈ [0, 1] such that
(µP(x))2 + (νP(x))2 ≤ 1. The PF set P is expressed as the
collection of Pythagorean membership grades for all x ∈ X
as follows:

P = {〈x, (µP(x), νP(x); rP(x), dP(x))〉| x ∈ X} . (2)

Definition 2 ([17], [19]): Let θP(x) be expressed in radians
in the range [0, π/2]. For a Pythagorean membership grade p,
the parameters µP(x), νP(x), rP(x), and dP(x) are defined as
follows:

µP(x) = rP(x) · cos (θP(x)) , (3)

νP(x) = rP(x) · sin (θP(x)) , (4)

rP(x) =
√
(µP(x))2 + (νP(x))2, (5)

dP(x) = 1−
2 · θP(x)
π

. (6)

Definition 3 ([21], [27], [32]): For a PF set P in a finite
universe of discourse X , the degree of indeterminacy τP(x) of
the element x ∈ X to P is defined as follows:

τP(x) =
√
1− (µP(x))2 − (νP(x))2. (7)

where τP(x) ∈ [0, 1]. The duality property exists between
τP(x) and rP(x) because (τP(x))2 + (rP(x))2 = 1 for each x.
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FIGURE 1. Three-dimensional space represented by µP (x), νP (x), and
τP (x) for a Pythagorean membership grade p.

The Pythagorean membership grade p in a PF set P can
be geometrically described as a point in a three-dimensional
space by means of the three coordinates labeled by µP(x),
νP(x), and τP(x), as shown in Figure 1. It can be observed that
the relaxed constraint conditions (i.e., (µP(x))2 + (νP(x))2 ≤
1 and (τP(x))2 = 1− (µP(x))2 − (νP(x))2) make PF sets pos-
sess a significant advantage for a wider coverage of informa-
tion span [22].

Certain useful generalized distance measures have been
developed in PF contexts, such as the Minkowski distance
measures [30], [33], the generalized distance measures based
on four characteristics [34] and five characteristics [35], and
the generalized PF distance measure [27], [32]. In particu-
lar, Chen [27], [32] utilized the essential characteristics of
Pythagorean membership grades (i.e., membership degree,
non-membership degree, strength of commitment, and direc-
tion of commitment) to propose a novel generalized PF dis-
tance measure. Because Chen’s proposed measure has the
advantages of furnishing a suitable normalization approach,
addressing the double weighting issue, and utilizing the
square terms in Pythagorean membership degrees, this paper
attempts to utilize the special case of the generalized PF dis-
tance measure, i.e., the Hamming distance model, to measure
the separation between Pythagorean membership grades in
PF contexts.
Definition 4 ([27], [32]):Let p1 and p2 be two Pythagorean

membership grades in a PF set P on the universe of dis-
course X , where p1 = (µP1 (x), νP1 (x); rP1 (x), dP1 (x)) and
p2 = (µP2 (x), νP2 (x); rP2 (x), dP2 (x)). Let β denote a distance
parameter, where β ≥ 1. The generalized PF distance mea-
sure Dβ between p1 and p2 is defined as follows:

Dβ (p1, p2)=
[
1
3

(∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣β
+

∣∣∣(νP1 (x))2−(νP2 (x))2∣∣∣β+∣∣∣(rP1 (x))2
−
(
rP2 (x)

)2∣∣∣β+∣∣dP1 (x)−dP2 (x)∣∣β)] 1
β

. (8)

When β = 1, the generalized PF distance reduces to the
Hamming distance measure D (i.e., D1):

D(p1, p2) =
1
3

(∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(νP1 (x))2
−
(
νP2 (x)

)2∣∣∣+ ∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣
+
∣∣dP1 (x)− dP2 (x)∣∣) . (9)

Theorem 1: Let pi = (µPi (x), νPi (x); rPi (x), dPi (x)) (i =
1, 2, 3) be three Pythagorean membership grades in a PF set
P on the universe of discourse X . The Hamming distance
measure D satisfies the following properties:
(T1.1) D(p1, p1) = 0 (reflexivity);
(T1.2) D(p1, p2) = 0 if and only if p1 = p2 (separability);
(T1.3) D(p1, p2) = D(p2, p1) (symmetry);
(T1.4) 0 ≤ D(p1, p2) ≤ 1 (boundedness);
(T1.5) D(p1, p3) ≤ D(p1, p2) + D(p2, p3) (triangle

inequality).
Proof: Refer to the proof process in Chen [27], [32].

III. PROBLEM FORMULATION
This section attempts to describe a multiple criteria GDM
problem involving PF evaluation information and decision
makers’ force-choice ordered paired comparison judgments
over candidate alternatives.

Consider a multiple criteria GDM problem within the PF
environment. LetE = {e1, e2, · · · , eK } denote the set of deci-
sion makers involved in the group decision-making process.
Let A = {a1, a2, · · · , am} denote a discrete set ofm candidate
alternatives, wherem ≥ 2. Let C = {c1, c2, · · · , cn} denote a
finite set of n evaluative criteria, where n ≥ 2. In general,
the set C is divided into two disjoint sets, namely, the set
of benefit criteria CI and the set of cost criteria CII, where
CI ∩ CII = ∅ and CI ∪ CII = C . For each decision maker
ek ∈ E , the PF evaluative rating of an alternative ai ∈ A with
respect to a criterion cj ∈ C is represented as a Pythagorean
membership grade pkij = (µkij, ν

k
ij; r

k
ij , d

k
ij ), in which µkij =

rkij · cos(θ
k
ij ), ν

k
ij = rkij · sin(θ

k
ij ), r

k
ij = ((µkij)

2
+ (νkij)

2)0.5,

and dkij = 1− (2 · θkij
/
π ) for θkij ∈ [0, π/2]. For the decision

maker ek , the PF decision matrix Pk that involves PF evalua-
tive ratings is represented as follows:

c1

Pk =
[
pkij
]
m×n
=

a1
a2
...

am


(µk11, ν

k
11; r

k
11, d

k
11)

(µk21, ν
k
21; r

k
21, d

k
21)

...

(µkm1, ν
k
m1; r

k
m1, d

k
m1)

c2 · · · cn
(µk12, ν

k
12; r

k
12, d

k
12) · · · (µk1n, ν

k
1n; r

k
1n, d

k
1n)

(µk22, ν
k
22; r

k
22, d

k
22) · · · (µk2n, ν

k
2n; r

k
2n, d

k
2n)

...
. . .

...

(µkm2, ν
k
m2; r

k
m2, d

k
m2) · · · (µ

k
mn, ν

k
mn; r

k
mn, d

k
mn)

 .
(10)
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According to the decision maker’s knowledge, expertise,
and decision-making experience, the preference relations
between alternatives can be conveniently expressed using
force-choice ordered paired comparison judgments. Let the
symbol ‘‘�∼ ’’ denote a preference relation provided by the
decision maker. More specifically, the preference relation
ai′�∼ai′′ indicates that either the decision maker prefers the
alternative ai′ to the alternative ai" or the decision maker feels
indifferent between ai′ and ai". Let�k denote a preference set
provided by the decision maker ek . The set �k contains the
ordered pairs (i′, i′′) in line with the decision maker’s paired
preference relations for the alternatives in Z and is defined as
follows:

�k
=

{
(i′, i′′)

∣∣∣ai′�∼ai′′ , i′, i′′ ∈ {1, 2, · · · ,m}} . (11)

It is worthy to note that incomplete and inconsistent infor-
mation exists among some paired preference relations in the
sets �k for k ∈ {1, 2, · · · ,K }. There are at most m(m− 1)/2
paired preference relations in the preference set �k . How-
ever, the decision makers often provide incomplete prefer-
ence information about alternatives in practice. Furthermore,
inconsistent preference relations may be found among some
ordered pairs provided by different decision makers.

Let w = (w1,w2, · · · ,wn) denote the weight vector of n
criteria which is unknown a priori and must be determined.
The weight wj satisfies the normalization conditions, namely,
wj ∈ [0, 1] for all j ∈ {1, 2, · · · , n} and

∑n
j=1 wj = 1. How-

ever, it is anticipated that non-zero weights can be derived
through the LINMAP procedure because the n evaluative
criteria are salient attributes in the group decision-making
process. In a similar way to Li [36], this paper considers a
non-zero boundary condition and assumes that wj ≥ ε for all
cj ∈ C , where ε is a sufficiently small positive number and
ε ∈ (0, 1].

IV. PF CLOSENESS-BASED ORDER RELATIONS
This section attempts to employ a Hamming distance-based
approach to define PF closeness indices and identify PF
closeness-based order relations that can furnish a basis for
measuring order consistency and inconsistency.

For a benefit criterion cj ∈ CI, a higher PF evaluative rating
pkij indicates a stronger preference. Conversely, for a cost
criterion cj ∈ CII, a lower pkij indicates a stronger preference.
Following the rationale, this paper specifies the positive-ideal
PF evaluative rating pk

∗j = (µk
∗j, ν

k
∗j; r

k
∗j, d

k
∗j) and the

negative-ideal PF evaluative rating pk#j = (µk#j, ν
k
#j; r

k
#j, d

k
#j)

for anchored judgments, in which θk
∗j = cos−1(µk

∗j/r
k
∗j) =

sin−1(νk
∗j/r

k
∗j) and θ

k
#j = cos−1(µk#j/r

k
#j) = sin−1(νk#j/r

k
#j).

Let the symbols ‘‘∧’’ and ‘‘∨’’ denote the minimum and
maximum operators, respectively.
Definition 5: For a PF decision matrix Pk , the positive- and

negative-ideal PF evaluative ratings pk
∗j and p

k
#j, respectively,

with respect to each benefit criterion cj ∈ CI are defined as

follows:

pk
∗j=

m
∨
i=1
µkij,

m
∧
i=1
νkij;

√(
m
∨
i=1
µkij

)2

+

(
m
∧
i=1
νkij

)2

, 1−
2 · θk
∗j

π

,
(12)

pk#j=

m
∧
i=1
µkij,

m
∨
i=1
νkij;

√(
m
∧
i=1
µkij

)2

+

(
m
∨
i=1
νkij

)2

, 1−
2 · θk#j
π

.
(13)

Definition 6: For a PF decision matrix Pk , the positive- and
negative-ideal PF evaluative ratings pk

∗j and p
k
#j, respectively,

with respect to each cost criterion cj ∈ CII are defined as
follows:

pk
∗j=

m
∧
i=1
µkij,

m
∨
i=1
νkij;

√(
m
∧
i=1
µkij

)2

+

(
m
∨
i=1
νkij

)2

, 1−
2 · θk
∗j

π

,
(14)

pk#j=

m
∨
i=1
µkij,

m
∧
i=1
νkij;

√(
m
∨
i=1
µkij

)2

+

(
m
∧
i=1
νkij

)2

, 1−
2 · θk#j
π

.
(15)

Theorem 2: For the PF decision matrix Pk , there is a natural
quasi-ordering between pki′j and p

k
i′′j, namely, pki′j≺∼Q

pki′′j if and

only if µki′j ≤ µ
k
i′′j and ν

k
i′j ≥ ν

k
i′′j. The PF evaluative ratings

pkij, p
k
∗j, and p

k
#j satisfy the following quasi-orderings:

(T2.1) pk#j≺∼Q
pkij≺∼Q

pk
∗j for cj ∈ CI;

(T2.2) pk
∗j≺∼Q

pkij≺∼Q
pk#j for cj ∈ CII.

Proof: (T2.1) and (T2.2) can be easily proven using
Definitions 5 and 6, respectively. This completes the proof.

The important point to note is the natural quasi-ordering
between PF evaluative ratings does not often appear
in the PF context. For example, assume that pki′j =
(0.70, 0.60; 0.9220, 0.5489) and pki′′j = (0.50, 0.40; 0.6403,
0.5704). One can observe that the quasi-ordering does not
exist between pki′j and p

k
i′′j because µ

k
i′j(= 0.70) > µki′′j(=

0.50) and νki′j(= 0.60) > νki′′j(= 0.40). That is, neither
pki′j≺∼Q

pki′′j nor p
k
i′′j≺∼Q

pki′j holds in this example. The question

then arises about the comparison for PF information, because
the use of natural quasi-ordering cannot effectively differenti-
ate the dominance relationships among PF evaluative ratings.
To overcome this difficulty, this paper advances a new order
relation based on the concept of PF closeness indices to
facilitate effective comparisons for PF evaluative ratings.

In classical LINMAP, the square of the weighted Euclidean
distance between alternatives has been commonly used to
determine the consistency and inconsistency measurements
between the subjective and objective ranking orders. How-
ever, the Euclidean distance measure is costly as there involve
expensive square and square root operations. Moreover,
the squared Euclidean distance is not a metric, as it does not
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satisfy the triangle inequality. In contrast, the Hamming dis-
tance measureD is a metric, because it satisfies the properties
of reflexivity, separability, symmetry, and triangle inequality,
as demonstrated in Theorem 1. Compared to the Euclidean
distance model, the Hamming distance model is uncom-
plicated and easy to implement. Instead of the Euclidean
distance-based approach, this paper utilizes the Hamming
distance measure D to define the useful PF closeness indices
and studies some important properties.
Definition 7: The PF closeness index of a PF evaluative

rating pkij in the PF decision matrix Pk is defined as follows:

CI (pkij) =
D(pkij, p

k
#j)

D(pkij, p
k
∗j)+ D(p

k
ij, p

k
#j)
. (16)

Theorem 3: For each PF evaluative rating pkij in the PF
decision matrix Pk , the PF closeness index CI (pkij) satisfies
the following properties:

(T3.1) 0 ≤ CI (pkij) ≤ 1;
(T3.2) CI (pkij) = 0 if and only if pkij = pk#j;
(T3.3) CI (pkij) = 1 if and only if pkij = pk

∗j;

(T3.4) CI (pkij) ≤ D(p
k
ij, p

k
#j)
/
D(pk
∗j, p

k
#j).

Proof: First, (T3.1) is inferred directly because of the
boundedness property in (T1.4) (i.e., 0 ≤ D(pkij, p

k
#j) ≤ 1

and 0 ≤ D(pkij, p
k
∗j) ≤ 1). Next, for the necessity in (T3.2),

the condition of CI (pkij) = 0 implies that D(pkij, p
k
#j) = 0.

Thus, one has pkij = pk#j according to the separability property
in (T1.2). For the sufficiency in (T3.2), if pkij = pk#j, then
D(pkij, p

k
#j) = 0 using the reflexivity property in (T1.1),

which follows that CI (pkij) = 0. Similarly, for the neces-
sity in (T3.3), the condition of CI (pkij) = 1 indicates that
D(pkij, p

k
#j) = D(pkij, p

k
∗j) + D(pkij, p

k
#j), which follows that

D(pkij, p
k
∗j) = 0. Thus, the equality pkij = pk

∗j is fulfilled
based on (T1.2). For the sufficiency in (T3.3), if pkij =
pk
∗j, then D(pkij, p

k
∗j) = 0 based on (T1.1), which leads to

CI (pkij) = 1. For (T3.4), it is known that D(pk
∗j, p

k
#j) ≤

D(pkij, p
k
∗j) + D(pkij, p

k
#j) based on the symmetry property in

(T1.3) and the triangle inequality in (T1.5). It is easy to
see that 1

/
(D(pkij, p

k
∗j)+ D(p

k
ij, p

k
#j)) ≤ 1

/
D(pk
∗j, p

k
#j), which

implies that CI (pkij) ≤ D(pkij, p
k
#j)
/
D(pk
∗j, p

k
#j). Therefore,

(T3.1)–(T3.4) are valid, which completes the proof.
Theorem 4: Let pkij, p

k
i′j, and p

k
i′′j be three PF evaluative rat-

ings in the PF decision matrix Pk , in which pk
∗j and p

k
#j denote

the ideal PF evaluative ratings. If (rk#j ∧ r
k
∗j) ≤ rkij , r

k
i′j, r

k
i′′j ≤

(rk#j ∨ rk
∗j) for cj ∈ C , then the following properties are

satisfied:
(T4.1) D(pkij, p

k
∗j)+ D(p

k
ij, p

k
#j) = D(pk

∗j, p
k
#j);

(T4.2) CI (pkij) = D(pkij, p
k
#j)
/
D(pk
∗j, p

k
#j);

(T4.3) CI (pki′j) ≤ CI (p
k
i′′j) in case of p

k
i′j≺∼Q

pki′′j for cj ∈ CI;

(T4.4) CI (pki′j) ≥ CI (p
k
i′′j) in case of p

k
i′j≺∼Q

pki′′j for cj ∈ CII.

Proof: For (T4.1), either rk#j ≤ rkij ≤ rk
∗j or r

k
∗j ≤ rkij ≤ rk#j

holds according to the assumption rk#j ∧ r
k
∗j ≤ r

k
ij ≤ r

k
#j ∨ r

k
∗j.

When rk#j ≤ rkij ≤ rk
∗j, |(r

k
ij )

2
− (rk

∗j)
2
| + |(rkij )

2
− (rk#j)

2
| =

(r∗j)2−(rk#j)
2. When rk

∗j ≤ r
k
ij ≤ r

k
#j, |(r

k
ij )

2
−(rk
∗j)

2
|+|(rkij )

2
−

(rk#j)
2
| = (rk#j)

2
− (rk

∗j)
2. Taking a cost criterion cj ∈ CII for

example, the following results are correct:

D(pkij, p
k
∗j)

=
1
3

(
(µkij)

2
− (µk

∗j)
2
+ (νk

∗j)
2
− (νkij)

2

+

∣∣∣(rkij )2 − (rk
∗j)

2
∣∣∣+ dkij − dk∗j) ,

D(pkij, p
k
#j)

=
1
3

(
(µk#j)

2
− (µkij)

2
+ (νkij)

2
− (νk#j)

2

+

∣∣∣(rkij )2 − (rk#j)
2
∣∣∣+ dk#j − dkij) ,

D(pkij, p
k
∗j)+ D(p

k
ij, p

k
#j)

=
1
3

(
(µk#j)

2
− (µk

∗j)
2
+ (νk

∗j)
2
− (νk#j)

2
+

∣∣∣(rkij )2 − (rk
∗j)

2
∣∣∣

+

∣∣∣(rkij )2 − (rk#j)
2
∣∣∣+ dk#j − dk∗j)

=
1
3

(∣∣∣(µk#j)2 − (µk
∗j)

2
∣∣∣+ ∣∣∣(νk#j)2−(νk∗j)2∣∣∣+ ∣∣∣(rk#j)2−(rk∗j)2∣∣∣

+

∣∣∣dk#j − dk∗j∣∣∣) = D(pk#j, p
k
∗j).

The above result can be analogously obtained in case of
cj ∈ CI. Therefore, D(pkij, p

k
∗j) + D(pkij, p

k
#j) = D(pk

∗j, p
k
#j)

holds for all cj ∈ C , i.e., (T4.1) is valid. Accordingly, (T4.2)
is correct based on (T4.1) and Definition 7. Next, according
to the premise assumption in (T4.3) and the property in
(T2.1), it is known that pk#j≺∼Q

pki′j≺∼Q
pki′′j for cj ∈ CI. This

implies that D(pki′j, p
k
#j) ≤ D(pki′′j, p

k
#j). By applying (T4.2),

it is obtained that CI (pki′j) = D(pki′j, p
k
#j)
/
D(pk
∗j, p

k
#j) and

CI (pki′′j) = D(pki′′j, p
k
#j)
/
D(pk
∗j, p

k
#j). Therefore, CI (p

k
i′j) ≤

CI (pki′′j) for cj ∈ CI, i.e., (T4.3) is valid. Based on the
assumption in (T4.4) and (T2.1), one has pki′j≺∼Q

pki′′j≺∼Q
pk#j for

cj ∈ CII, which follows that D(pki′j, p
k
#j) ≥ D(pki′′j, p

k
#j). Thus,

it can be inferred that CI (pki′j) ≥ CI (p
k
i′′j). This completes the

proof.
Definition 8: For two PF evaluative ratings pki′j and pki′′j

in the PF decision matrix Pk , the PF closeness-based order
relation between pki′j and p

k
i′′j is specified via PF closeness

indices as follows:
(D8.1) If CI (pki′j) > CI (pki′′j), then p

k
i′j is superior to p

k
i′′j,

denoted by pki′j �C pki′′j;
(D8.2) If CI (pki′j) = CI (pki′′j), then p

k
i′j is indifferent to p

k
i′′j,

denoted by pki′j ∼C pki′′j;
(D8.3) If CI (pki′j) < CI (pki′′j), then p

k
i′j is inferior to p

k
i′′j,

denoted by pki′j ≺C pki′j.
As demonstrated in the aforementioned theorems and dis-

cussions, the PF closeness indices possess several impor-
tant and desirable properties and can facilitate conducting
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criterion-wise comparisons between PF evaluative ratings.
Accordingly, the proposed PF closeness-based order rela-
tions, i.e.,�C,∼C, and≺C, can be fully utilized to determine
the measurements of order consistency and inconsistency
between the subjective preference relations and objective
order relations in the PF LINMAP methodology.

V. PROPOSED PARAMETRIC PF LINMAP MODELS
This section employs the PF closeness indices and PF
closeness-based order relations to measure the amount of
order consistency and order inconsistency and to establish
a parametric PF LINMAP methodology for solving multiple
criteria GDM problems based on PF sets.

To determine a synthetic effect of PF closeness-based order
relations across all evaluative criteria, this paper combines
the weights of criteria and PF closeness indices to define a
comprehensive closeness measure.
Definition 9: Let w = (w1,w2, · · · ,wn) be the weight

vector of n criteria. The comprehensive closeness measure of
the alternative zi ∈ Z for the decision maker ek ∈ E are
defined as follows:

CM k
i =

n∑
j=1

wj · CI (pkij). (17)

Theorem 5: The comprehensive closeness measure CM k
i

for each zi ∈ Z and ek ∈ E satisfies the following properties:
(T5.1) 0 ≤ CM k

i ≤ 1;
(T5.2) If pkij = pk#j for all cj ∈ C , then CM

k
i = 0;

(T5.3) If pkij = pk
∗j for all cj ∈ C , then CM

k
i = 1.

Proof: (T5.1) is easily proven because 0 ≤ CI (pkij) ≤ 1 in
(T3.1) and 0 ≤ wj ≤ 1 based on the normalization condition.
(T5.2) is obvious according to the property in (T3.2). (T5.3)
is valid based on (T3.3) and

∑n
j=1 wj = 1. This completes the

proof.
Theorem 6: For two PF evaluative ratings pki′j and pki′′j,

assume that (rk#j ∧ rk
∗j) ≤ rki′j, r

k
i′′j ≤ (rk#j ∨ rk

∗j) holds
for cj ∈ C . If pki′j≺∼Q

pki′′j and pki′′j≺∼Q
pki′j for cj ∈ CI and

cj ∈ CII, respectively, then the comprehensive closeness
measures CM k

i′ ≤ CM
k
i′′ .

Proof: For cj ∈ CI, it is known that CI (pki′j) ≤ CI (pki′′j)
from the premise condition pki′j≺∼Q

pki′′j based on (T4.3). For

cj ∈ CII, the premise condition pki′′j≺∼Q
pki′j implies that

CI (pki′j) ≤ CI (pki′′j) by applying (T4.4). Thus, it can be
inferred that wj · CI (pki′j) ≤ wj · CI (pki′′j) for cj ∈ C , which
follows that CM k

i′ ≤ CM
k
i′′ . This completes the proof.

Based on the desirable properties in Theorems 5 and 6,
the concept of comprehensive closenessmeasures can be used
to determine the objective order relations over the alternatives
for each decision maker. Specifically, the comprehensive
closeness measures CM k

i′ and CM
k
i′′ can be employed to rank

the alternatives ai′ and ai", which can be viewed as a kind of
objective ranking order based on evaluation information in
the PF decision matrix Pk .

Definition 10: For two alternatives ai′ and ai" in a GDM
problem involving the PF decision matrix Pk , the objective
order relation between ai′ and ai" is specified via comprehen-
sive closeness measures as follows:

(D10.1) IfCM k
i′ > CM k

i′′ , then ai′ is superior to ai", denoted
by ai′ �C ai′′ ;

(D10.2) If CM k
i′ = CM k

i′′ , then ai′ is indifferent to ai",
denoted by ai′ ∼C ai′′ ;
(D10.3) If CM k

i′ < CM k
i′′ , then ai′ is inferior to ai", denoted

by ai′ ≺C ai′′ .
In contrast, the ordered pair (i′, i′′) ∈ �k given by the

decision maker ek belongs to subjective preference rela-
tions. In practical situations, there exists somewhat devia-
tions between the subjective and objective order relations.
To measure such deviations, the objective order relations
would be contrasted with the subjective preference relations
in the preference set �k .

For each ordered pair (i′, i′′) ∈ �k , if CM k
i′ ≥ CM k

i′′ ,
the alternative ai′ is closer to the positive-ideal point of ref-
erence and farther from the negative-ideal point of reference
than the alternative ai". Based on Definition 10, the objec-
tive order relation ai′�∼C

ai′′ is obtained, which is consistent
with the subjective preference relation given by the decision
maker ek . On the contrary, if CM k

i′ < CM k
i′′ , then the obtained

objective order relation ai′ ≺C ai′′ is inconsistent with the
ordered pair (i′, i′′). In other words, for each ordered pair
(i′, i′′) ∈ �k , no error can be attributed to the paired prefer-
ence relation between alternatives ai′ and ai" ifCM k

i′ ≥ CM
k
i′′ ,

whereas errors exist if CM k
i′ < CM k

i′′ . In this regard, this
paper introduces the concepts of individual order consistency
and inconsistency indices for each (i′, i′′) ∈ �k to measure
consistency and inconsistency, respectively, between the sub-
jective preference relations and objective order relations.
The individual order consistency index (CM k

i′ − CM k
i′′ )
+

and inconsistency index (CM k
i′ − CM k

i′′ )
− between the pre-

orders of the alternatives ai′ and ai" for each (i′, i′′) ∈ �k are
defined as follows:

(
CM k

i′ − CM
k
i′′

)+
=

{
CM k

i′ − CM
k
i′′ if ai′�∼C

ai′′ in P
k ,

0 if ai′ ≺C ai′′ in P
k ,

=max
{
0,CM k

i′ − CM
k
i′′

}
, (18)(

CM k
i′ − CM

k
i′′

)−
=

{
CM k

i′′ − CM
k
i′ if ai′ ≺C ai′′ in P

k ,

0 if ai′�∼C
ai′′ in P

k ,

=max
{
0,CM k

i′′ − CM
k
i′

}
, (19)

where (CM k
i′ − CM

k
i′′ )
+
≥ 0 and (CM k

i′ − CM
k
i′′ )
−
≥ 0.

To determine the measurements of individual goodness
of fit and poorness of fit, this paper combines individual
order consistency and inconsistency indices, respectively,
over all ordered pairs in each preference set. This paper sums
the indices (CM k

i′ − CM k
i′′ )
+ and (CM k

i′ − CM k
i′′ )
− for all

(i′, i′′) ∈ �k to determine the individual goodness of fit Gk
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and individual poorness of fit Bk , respectively, as follows:

Gk =
∑

(i′,i′′)∈�k

(
CM k

i′ − CM
k
i′′

)+
, (20)

Bk =
∑

(i′,i′′)∈�k

(
CM k

i′ − CM
k
i′′

)−
, (21)

where Gk ≥ 0 and Bk ≥ 0.
In general, each decision maker ek anticipates a solution

of which the individual goodness of fit Gk is higher than the
individual poorness of fit Bk to some degree. To this end,
this paper designates a non-negative number h that represents
the lowest acceptable level towards the difference between
Gk and Bk . Then, the conditions of Gk − Bk ≥ h for
all k ∈ {1, 2, · · · ,K } are incorporated into the proposed
PF LINMAP model. As mentioned earlier, motivated by
Li [36], this paper modifies the normalization conditions of
the weight vector w = (w1,w2, · · · ,wn) to ensure that the
obtained weights are not zero. Furthermore, this paper con-
siders the number of evaluative criteria n to be an upper bound
of the weight. Namely, it is suggested that the weights are not
larger than 1/n. Therefore, the constraints about the weight
wj contain

∑n
j=1 wj = 1 and wj ≥ ε for all j ∈ {1, 2, · · · , n}

in the proposed PF LINMAP model, where ε is a sufficiently
small number and 0 < ε ≤ 1/n. To minimize the collective
poorness of fit

∑K
k=1 B

k , the following linear programming
model is established:

Model(I) min

{
K∑
k=1

Bk
}

s.t.


Gk − Bk ≥ h(k = 1, 2, · · · ,K ),
n∑
j=1

wj = 1, wj ≥ ε(j = 1, 2, · · · , n). (22)

On the other side, preference conflicts sometimes occur
among some ordered pairs provided by different decision
makers. For example, a decision maker prefers the alternative
ai′ to the alternative ai", whereas another decision maker
prefers ai" to ai′ . Thus, more or less degrees of violation exist
for the ordered pairs given by K decision makers. To acquire
individual degrees of violation for each decision maker’s
paired preference relations, this paper denotes a non-negative
variable Z ki′i′′ that is defined as the maximum of 0 and CM k

i′′−

CM k
i′ for each (i′, i′′), as follows:

Z ki′i′′ = max
{
0,CM k

i′′ − CM
k
i′

}
, (23)

where Z ki′i′′ ≥ 0 and Z ki′i′′ ≥ CM k
i′′ − CM

k
i′ . It is obvious that

Z ki′i′′ = (CM k
i′ − CM k

i′′ )
−. Therefore, the collective poorness

of fit becomes:
K∑
k=1

Bk =
K∑
k=1

∑
(i′,i′′)∈�k

Z ki′i′′ . (24)

Employing the individual degree of violation Z ki′i′′ , Model
(I) can be transformed into the following linear programming

model:

Model(II) min


K∑
k=1

∑
(i′,i′′)∈�k

Z ki′i′′



s.t.



∑
(i′,i′′)∈�k

(
CM k

i′ − CM
k
i′′

)
≥ h(k = 1, 2, · · · ,K ),
CM k

i′ − CM
k
i′′ + Z

k
i′i′′ ≥ 0 and Z ki′i′′ ≥ 0

((i′, i′′) ∈ �k and k = 1, 2, · · · ,K ),
n∑
j=1

wj = 1, wj ≥ ε(j = 1, 2, · · · , n).

(25)
It is worthwhile to mention that Model (II) only con-

siders the minimal objective of the collective poorness of
fit
∑K

k=1 B
k that represents the lowest extent of violation

with respect to the conditions in the preference relationships
over all preference sets �k (k ∈ {1, 2, · · · ,K }). The col-
lective comprehensive closeness measure of the alternative
ai is calculated by

∑K
k=1 CM

k
i . The decision makers are

generally conceived to accept a GDM solution that enjoys
the highest collective comprehensive closeness measure. The
larger the sum of collective comprehensive closeness mea-
sures, the higher degree of satisfaction towards the solution
result perceived by the decision makers. For these rea-
sons, the total collective comprehensive closeness measure,
namely,

∑m
i=1

∑K
k=1 CM

k
i , should be designated as a max-

imal objective in the PF LINMAP model. Accordingly, the
following bi-objective optimization model can be established
to maximize the total collective comprehensive closeness
measure and minimize the collective poorness of fit:

Model(III) max

{
m∑
i=1

K∑
k=1

CM k
i

}
,min


K∑
k=1

∑
(i′,i′′)∈�k

Z ki′i′′



s.t.



∑
(i′,i′′)∈�k

(
CM k

i′ − CM
k
i′′

)
≥ h(k = 1, 2, · · · ,K ),
CM k

i′ − CM
k
i′′ + Z

k
i′i′′ ≥ 0 and Z ki′i′′ ≥ 0

((i′, i′′) ∈ �k and k = 1, 2, · · · ,K ),
n∑
j=1

wj = 1, wj ≥ ε(j = 1, 2, · · · , n).

(26)
To reduce the computation complexity of Model (III),

this paper combines the two objectives by use of
a weighting parameter. First, the minimal objective∑K

k=1
∑

(i′,i′′)∈�k Z
k
i′i′′ is equivalent to the maximal objec-

tive −
∑K

k=1
∑

(i′,i′′)∈�k Z
k
i′i′′ . Next, let a parameter η

that denotes the weight of the ‘‘total collective com-
prehensive closeness measure’’ objective, while 1 − η

denotes the weight of the ‘‘collective poorness of fit’’
objective, where η ∈ [0, 1]. Recall that CM k

i =∑n
j=1 CI (p

k
ij) · wj from Definition 9. This follows that
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∑m
i=1

∑K
k=1 CM

k
i =

∑K
k=1

∑m
i=1

∑n
j=1 CI (p

k
ij) · wj and

CM k
i′ − CM

k
i′′ =

∑n
j=1

(
CI (pki′j)− CI (p

k
i′′j)
)
· wj. This paper

employs the parameter η to coordinate the two objectives
in Model (III) and transforms the bi-objective model into a
simple linear programming model. To determine the optimal
weight vector and individual degrees of violation, the follow-
ing parametric PF LINMAP model is constructed for solving
the GDM problem within the PF environment:

Parametric PF LINMAP Model

max

η
K∑
k=1

m∑
i=1

n∑
j=1

CI (pkij)wj−(1−η)
K∑
k=1

∑
(i′,i′′)∈�k

Z ki′i′′



s.t.



∑
(i′,i′′)∈�k

n∑
j=1

(
CI (pki′j)− CI (p

k
i′′j)
)
· wj ≥ h

(k = 1, 2, · · · ,K ),
n∑
j=1

(
CI (pki′j)− CI (p

k
i′′j)
)
· wj + Z ki′i′′ ≥ 0 and

Z ki′i′′ ≥ 0((i′, i′′) ∈ �k and k = 1, 2, · · · ,K ),
n∑
j=1

wj = 1, wj ≥ ε(j = 1, 2, · · · , n).

(27)

The optimal weight w̄j of each criterion cj ∈ C and the
optimal individual degree of violation Z̄ ki′i′′ for each ordered
pair (i′, i′′) ∈ �k provided by the decision maker ek can be
obtained by solving the parametric PF LINMAP model using
the Simplex method. Based on the optimal weight vector
w̄ = (w̄1, w̄2, · · · , w̄n), the optimal collective comprehensive
closeness measure for each alternative ai ∈ A is determined
as follows:

K∑
k=1

CM
k
i =

K∑
k=1

n∑
j=1

w̄j · CI (pkij). (28)

Finally, the ultimate priority ranking orders of the m alter-
natives can be obtained according to the decreasing order
of the

∑K
k=1 CM

k
i values. The best compromise solution is

ranked the best by the
∑K

k=1 CM
k
i values among all ai ∈ A.

In a nutshell, the general framework and relevant core con-
cepts of the proposed methodology are depicted in Figure 2.
There are four phases in the parametric PF LINMAPmethod-
ology, consisting of ascertainment of PF closeness-based
order relations, resolution of objective order relations, con-
struction of the PF LINMAP models, and the final ranking
phase.

The procedural steps of the proposed parametric PF
LINMAP methodology for addressing a multiple criteria
GDM problem within the PF uncertain environment can be
summarized as the following algorithm:
Step 1 Problem Formulation: Construct a GDM problem

with the set of candidate alternatives A = {a1, a2, · · · , am},
the set of evaluative criteria C = {c1, c2, · · · , cn}, and the
set of decision makers E = {e1, e2, · · · , eK }. The set C is

FIGURE 2. The framework of the parametric PF LINMAP methodology.

divided into CI (set of benefit criteria) and CII (set of cost
criteria).
Step 2 Preference Judgment Over Alternatives: Inquire

each decision maker ek to express the subjective preference
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relations between alternatives. After that, specify the prefer-
ence set �k

= {(i′, i′′)|ai′�∼ai′′ , i
′, i′′ ∈ {1, 2, · · · ,m}}.

Step 3 Rating by Pythagorean Membership Grades: Build
a PF decision matrix Pk , which is composed of the PF eval-
uative rating pkij of each alternative ai ∈ A with respect to
criterion cj ∈ C for the decision maker ek ∈ E .
Step 4 Establishment of Ideal Ratings: Employ (12) and

(13) to identify the positive-ideal PF evaluative rating pk
∗j and

the negative-ideal PF evaluative rating pk#j, respectively, with
respect to cj ∈ CI. Identify pk∗j and p

k
#j in terms of cj ∈ CII

using (14) and (15), respectively.
Step 5 Computation of PF Closeness Indices: Apply (16)

to calculate the PF closeness index CI (pkij) for each PF eval-
uative rating pkij in the PF decision matrix Pk .
Step 6 Setting of Parameter Values: Designate the lowest

acceptable level h, the non-zero boundary condition ε, and
the weighting parameter η, where h ≥ 0, 0 < ε ≤ 1/n, and
0 ≤ η ≤ 1.
Step 7 Construction of the PF LINMAPModel:Denote the

weight vector w = (w1,w2, · · · ,wn) such that
∑n

j=1 wj = 1
and wj ≥ ε for all j. Denote the individual degree of violation
Z ki′i′′ of the ordered pair (i

′, i′′) ∈ �k . Establish the parametric
PF LINMAP model using (27).
Step 8 Ranking of Alternatives: Solve for the optimal

weight w̄j and the optimal Z̄ ki′i′′ . Employ (28) to derive
the optimal collective comprehensive closeness measure∑K

k=1 CM
k
i of each ai for acquiring the ultimate priority

ranking of alternatives and the best compromise solution.
An essential issue on how the PF data are obtained

should be further addressed in Step 3. Because decision
makers often express subjective assessments or judgments
by means of linguistic terms in practice, this paper suggests
an approach via an appropriate linguistic rating system to
effectively estimate the PF evaluative ratings. Table 1 presents
some useful linguistic rating scales for evaluating candi-
date alternatives, consisting of commonly used five-point,
seven-point, and nine-point scales. By applying these lin-
guistic variables, decision makers can provide the perfor-
mance evaluations of alternatives with respect to criteria in
a simple and direct manner. Based on the linguistic scales
in Table 1, decision makers’ linguistic evaluations can be
easily transformed into suitable Pythagorean membership
grades for the sake of forming the PF decision matrix in
Step 3. By means of the linguistic rating system in this
table, decision makers can describe their opinions about the
ratings of the alternatives with respect to each criterion more
conveniently.

VI. APPLICATION AND COMPARISON ANALYSIS
This section applies the proposed methodology to investi-
gate a real-world GDM problem concerning railway project
investment decision making for validating the practicability
and usefulness of the parametric PF LINMAP model. Fur-
thermore, this section conducts four comparative analyses

TABLE 1. PF linguistic rating scales.

and discussions to demonstrate the advantages of the devel-
oped techniques in solving complicated GDM problems
within PF uncertain environments.

A. PRACTICAL APPLICATION
The GDM problem of railway project investment comes from
Xue et al. [31]. To examine the feasibility of the PF LINMAP
method based on PF entropymeasures, Xue et al. [31] address
a practical GDM problem about the railway project selec-
tion in China’s ‘‘One Belt One Road’’ strategy that a global
development strategy launched by the Chinese government.
To enhance regional connectivity, the initial focus of the
One Belt One Road is to improve the physical infrastructure
along land corridors that roughly equate to the old silk road.
In particular, the railway investment is an essential part of
the infrastructure investment in this initiative. In the practical
example provided by Xue et al. [31], four countries con-
sisting of Germany, Russia, Singapore, and Malaysia were
selected for further evaluation, because of their high cooper-
ation intentions with China in the railway field. Three experts
employed an indicator system of railway project selection
from the perspectives of financial evaluation and noneco-
nomic evaluation to provide each alternative’s ratings in terms
of criteria. Moreover, there are six evaluative criteria in the
indicator system.

In Step 1, the set of candidate alternatives A = {a1
(Germany), a2 (Russia), a3 (Singapore), a4 (Malaysia)}. The
set of evaluative criteria C = {c1 (financial internal rate
of return), c2 (net present value), c3 (investment recovery
period), c4 (debt ratio and current ratio), c5 (repayment period
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of loan), c6 (public benefit and diplomatic influence)}, where
CI = C and CII = ∅. The set of decision makers E =
{e1, e2, e3}. Here, m = 4, n = 6, and K = 3.
In Step 2, based on the surveyed data in Xue et al. [31],

the three experts expressed their subjective preference
judgments between alternatives. The three preference sets
were obtained as follows: �1

= {(3, 2), (4, 1), (3, 1)}
for e1, �2

= {(2, 1), (4, 3), (2, 4), (3, 1)} for e2, and
�3
= {(3, 1), (3, 4), (2, 3), (2, 4)} for e3. It can be observed

that incomplete and inconsistent information exists in the
three preference sets. Theoretically, there are at most 6
(i.e., (4×3)/2) paired preference comparisons over the
four alternatives in the three preference sets. Nonetheless,
the numbers of preference relations are 3, 4, and 4 in
�1, �2, and �3, respectively, which demonstrates incom-
plete information. Moreover, some preference information
is inconsistent, such as (3,2) (i.e., a3�∼a2) in �

1 vs. (2,3)

(i.e., a2�∼a3) in �
3 and (4,3) (i.e., a4�∼a3) in �

2 vs. (3,4)

(i.e., a3�∼a4) in �
3.

In Step 3, the assessment information given by the three
experts is expressed as the degrees of satisfaction and dissat-
isfaction of an alternative ai ∈ A with respect to a criterion
cj ∈ C . Such an assessment approach implies that all
elements in C belong to benefit criteria. Based on the
representation of Pythagorean membership grades, the PF
evaluative rating pkij in the PF decision matrices P1 (=
[p1ij]4×6), P

2 (= [p2ij]4×6), and P3 (= [p3ij]4×6) were indicated
in Table 2.

In Step 4, because the six criteria belong to CI, this paper
employed (12) and (13) to identify the positive- and negative-
ideal PF evaluative ratings, respectively, with respect to each
criterion. The determination results of pk

∗j and p
k
#j are revealed

in Table 3.
In Step 5, this paper employed (16) to derive the PF

closeness index CI (pkij) for each PF evaluative rating pkij. The
computation results are indicated in Table 4.

In Step 6, this paper designated the lowest acceptable level
h = 0.4, the non-zero boundary condition ε = 0.025, and the
weighting parameter η = 0.2. In particular, the weight of the
‘‘total collective comprehensive closeness measure’’ objec-
tive was 0.2, while the weight of the ‘‘collective poorness of
fit’’ objective was 0.8.

In Step 7, let w = (w1,w2, · · · ,w6) denote the weight
vector of criteria such that

∑6
j=1 wj = 1 and wj ≥ ε = 0.025

for each cj ∈ C . The individual degrees of violation were
denoted as Z1

32, Z
1
41, and Z

1
31 based on the preference set �1,

Z2
21, Z

2
43, Z

2
24, and Z

2
31 based on �2, and Z3

31, Z
3
34, Z

I,3
23 , and

Z I,3
24 based on�3. Applying (27), the parametric PF LINMAP

model was constructed as follows:

max
{
0.2 · (6.4773w1 + 5.8649w2 + 6.3193w3 + 7.8502w4

+ 6.5943w5+6.1464w6)−0.8 ·
(
Z1
32+Z

1
41+Z

1
31+Z

2
21

+Z2
43 + Z

2
24 + Z

2
31 + Z

3
31 + Z

3
34 + Z

3
23 + Z

3
24

)}

TABLE 2. PF evaluative ratings in the PF decision matrices.

TABLE 3. Positive- and negative-ideal PF evaluative ratings.

subject to:

0.6957w1−0.1616w2+1.4282w3+1.5187w4 − 1.4811w5

+ 0.4109w6 ≥ 0.4,
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TABLE 4. Results of PF closeness indices.

0.8934w1+1.4320w2+0.0740w3+0.3569w4+2.0000w5

+ 1.3843w6 ≥ 0.4,

1.0015w1+0.9940w2+1.7744w3+1.7458w4+0.4441w5

+ 0.5459w6 ≥ 0.4,

−0.5540w1−0.1844w2+0.6262w3−0.1091w4−0.3365w5

− 0.5000w6 + Z1
32 ≥ 0,

1.0000w1 + 0.2071w2+0.0973w3+0.8227w4−0.7776w5

+ 0.4109w6 + Z1
41 ≥ 0,

0.2497w1−0.1844w2+0.7046w3+0.8051w4−0.3670w5

+ 0.5000w6 + Z1
31 ≥ 0,

0.4467w1 + 0.7160w2 + 0.0370w3+0.1784w4+1.0000w5

+ 0.6922w6 + Z2
21 ≥ 0,

−0.5840w1 − 0.1741w2 − 1.0000w3−1.0000w4

− 0.0946w5−0.3818w6 + Z2
43 ≥ 0,

1.0000w1 + 0.2803w2 + 0.5044w3+0.9298w4+0.4659w5

+ 1.0000w6 + Z2
24 ≥ 0,

0.0307w1 + 0.6098w2 + 0.5326w3+0.2487w4+0.6287w5

+ 0.0740w6 + Z2
31 ≥ 0,

−0.2397w1 + 0.0000w2 + 0.2124w3+1.0000w4

+ 0.1198w5 + 0.5459w6 + Z3
31 ≥ 0,

−0.0456w1 − 0.5030w2+0.4205w3+0.3729w4−0.1271w5

− 0.4541w6 + Z3
34 ≥ 0,

0.6663w1 + 1.0000w2 + 0.3605w3+0.0000w4+0.2893w5

+ 0.4541w6 + Z3
23 ≥ 0,

0.6206w1 + 0.4970w1 + 0.7810w3+0.3729w4+0.1622w5

+ 0.0000w6 + Z3
24 ≥ 0,

Z1
32,Z

1
41,Z

1
31,Z

2
21,Z

2
43,Z

2
24,Z

2
31,Z

3
31,Z

3
34,Z

3
23,Z

3
24 ≥ 0,

6∑
j=1

wj = 1, wj ≥ 0.025 for j = 1, 2, · · · , 6.

In Step 8, this paper solved the above model and acquired
the optimal weight vector w̄ = (w̄1, w̄2, · · · , w̄6) =
(0.0250, 0.3019, 0.2633, 0.2050, 0.1798, 0.0250) and the
optimal individual degrees of violation Z̄2

43 = 0.5620 and
Z̄1
32 = Z̄1

41 = Z̄1
31 = Z̄2

21 = Z̄2
24 = Z̄2

31 = Z̄3
31 =

Z̄3
34 = Z̄3

23 = Z̄3
24 = 0. Apply (28), the optimal col-

lective comprehensive closeness measures were determined
as follows:

∑3
k=1 CM

k
1 = 0.9149,

∑3
k=1 CM

k
2 = 2.4003,∑3

k=1 CM
k
3 = 1.9437, and

∑3
k=1 CM

k
4 = 1.2862. The

ultimate priority ranking of the four candidate alternatives
was a2 � a3 � a4 � a1. Moreover, the best compromise
solution was a2. The obtained results are in conformity with
those yielded by Xue et al.’s developed approach [31].

B. COMPARISON ANALYSIS
This subsection attempts to conducts four comparative stud-
ies and discussions to examine the usefulness and advantages
of the proposed PF LINMAP methodology.

1) FIRST COMPARATIVE STUDY
The first comparative analysis focuses on the influences of
distinct points of reference on the solution results yielded by
the parametric PF LINMAP model. It is known that (1,0;1,1)
and (0,1;1,0) are the largest and smallest Pythagorean mem-
bership grades, respectively. In this regard, this paper con-
siders (1,0;1,1) and (0,1;1,0) as the benchmark points of
reference and redefines the PF closeness index with respect
to the two benchmark points.

For a PF evaluative rating pkij in the PF decision matrix Pk ,
the benchmark-based PF closeness index CI0(pkij) is defined
as follows:

CI0(pkij) =
D(pkij, (0, 1; 1, 0))

D(pkij, (1, 0; 1, 1))+ D(p
k
ij, (0, 1; 1, 0))

. (29)

The parametric PF LINMAP model based on the
benchmark-based PF closeness indices can be established as
follows:

Benchmark−based PF LINMAP Model

max

η
K∑
k=1

m∑
i=1

n∑
j=1

CI0(pkij)wj−(1−η)
K∑
k=1

∑
(i′,i′′)∈�k

Z ki′i′′



s.t.



∑
(i′,i′′)∈�k

n∑
j=1

(
CI0(pki′j)− CI

0(pki′′j)
)
· wj ≥ h

(k = 1, 2, · · · ,K ),
n∑
j=1

(
CI0(pki′j)− CI

0(pki′′j)
)
· wj + Z ki′i′′ ≥ 0 and

Z ki′i′′ ≥ 0((i′, i′′) ∈ �k and k = 1, 2, · · · ,K ),
n∑
j=1

wj = 1, wj ≥ ε(j = 1, 2, · · · , n).

(30)
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Based on the optimal weight vector w̄ and the CI0(pkij)
values, the benchmark-based collective comprehensive close-
ness measure

∑K
k=1 CM

0,k
i of each alternative ai ∈ A is

determined as follows:
K∑
k=1

CM
0,k
i =

K∑
k=1

n∑
j=1

w̄j · CI0(pkij). (31)

Consider the sameGDMproblem of railway project invest-
ment under the parameter settings of h = 0.4, ε = 0.025, and
η = 0.2. Applying (30), the following linear programming
model was constructed:

max
{
0.2 · (6.8893w1 + 6.6206w2 + 6.9587w3 + 8.5161w4

+ 7.5751w5 + 6.4875w6)− 0.8 ·
(
Z1
32 + Z

1
41 + Z

1
31 + Z

2
21

+Z2
43 + Z

2
24 + Z

2
31 + Z

3
31 + Z

3
34 + Z

3
23 + Z

3
24

)}
subject to:

0.1161w1−0.1029w2+0.7675w3+0.7603w4−0.5286w5

+ 0.2346w6 ≥ 0.4,

0.5577w1+0.9664w2+0.0371w3+0.1077w4+1.0198w5

+ 0.5409w6 ≥ 0.4,

0.5696w1+0.2328w2+0.7450w3+0.6530w4+0.2494w5

+ 0.2495w6 ≥ 0.4,

−0.1908w1−0.0878w2+0.3659w3−0.0579w4−0.1244w5

− 0.2888w6 + Z1
32 ≥ 0,

0.2630w1+0.0727w2+0.0356w3+0.4238w4−0.2504w5

+ 0.2346w6 + Z1
41 ≥ 0,

0.0438w1 − 0.0878w2+0.3659w3+0.3944w4−0.1538w5

+ 0.2888w6 + Z1
31 ≥ 0,

0.2789w1 + 0.4832w2+0.0186w3+0.0539w4+0.5099w5

+ 0.2705w6 + Z2
21 ≥ 0,

−0.3714w1 − 0.1102w2−0.4513w3−0.5319w4−0.1130w5

− 0.1350w6 + Z2
43 ≥ 0,

0.6345w1 + 0.2030w2+0.2215w3+0.5086w4+0.2885w5

+ 0.3671w6 + Z2
24 ≥ 0,

0.0158w1 + 0.3904w2+0.2484w3+0.0771w4+0.3345w5

+ 0.0384w6 + Z2
31 ≥ 0,

−0.1415w1 + 0.0000w2+0.0851w3+0.3659w4+0.0782w5

+ 0.2495w6 + Z3
31 ≥ 0,

0.0176w1 − 0.1416w2+0.1941w3+0.1435w4−0.0683w5

− 0.2018w6 + Z3
34 ≥ 0,

0.3379w1 + 0.2580w2+0.1359w3+0.0000w4+0.1539w5

+ 0.2018w6 + Z3
23 ≥ 0,

0.3555w1 + 0.1164w1+0.3300w3+0.1435w4+0.0856w5

+ 0.0000w6 + Z3
24 ≥ 0,

Z1
32,Z

1
41,Z

1
31,Z

2
21,Z

2
43,Z

2
24,Z

2
31,Z

3
31,Z

3
34,Z

3
23,Z

3
24 ≥ 0,

6∑
j=1

wj = 1, wj ≥ 0.025 for j = 1, 2, · · · , 6.

Solving the above benchmark-based PF LINMAP model,
the following results were acquired: the optimal weight vector
w̄ = (w̄1, w̄2, · · · , w̄6) = (0.0250, 0.1957, 0.1918, 0.4357,
0.1268, 0.0250), the optimal individual degrees of violation
Z̄2
43 = 0.3668 and Z̄1

32 = Z̄1
41 = Z̄1

31 = Z̄2
21 = Z̄2

24 =

Z̄2
31 = Z̄3

31 = Z̄3
34 = Z̄3

23 = Z̄3
24 = 0, and the optimal col-

lective comprehensive closeness measures
∑3

k=1 CM
0,k
1 =

1.5426,
∑3

k=1 CM
0,k
2 = 2.2541,

∑3
k=1 CM

0,k
3 = 2.1459,

and
∑3

k=1 CM
0,k
4 = 1.6931. The ultimate priority ranking

was a2 � a3 � a4 � a1, and the best compromise solution
was a2. It can be observed that the ranking results yielded by
the proposed methodology and the benchmark-based version
are identical. Additionally, these results are consistent with
those rendered by Xue et al.’s PF LINMAP method [31]
based on PF entropy measures.

2) SECOND COMPARATIVE STUDY
The second comparative analysis focuses on a comprehensive
study of the solution outcomes under various settings of the
weighting parameter η.
As mentioned before, the parameter η combines the two

objectives in Model (III) for enhance computation effi-
ciency; it can adjust the relative proportion of the two objec-
tives. More specifically, the objective in the parametric PF
LINMAP model reduces to

∑K
k=1

∑m
i=1

∑n
j=1 CI (p

k
ij) · wj

and −
∑K

k=1
∑

(i′,i′′)∈�k Z
k
i′i′′ in the cases of η = 1 and

η = 0, respectively. In particular, when η = 0, the max-
imal objective −

∑K
k=1

∑
(i′,i′′)∈�k Z

k
i′i′′ is equivalent to the

minimal objective
∑K

k=1
∑

(i′,i′′)∈�k Z
k
i′i′′ inModel (II), which

inherits the merits of LINMAP-based methods. Because the
proposed methodology originates from classical LINMAP,
an appropriate range [0, 0.5] is suggested for the parameter η,
i.e., 0 ≤ η ≤ 0.5, to make sure that the weight of the
‘‘collective poorness of fit’’ objective is larger than or equal
to the weight of the ‘‘total collective comprehensive closeness
measure’’ objective.

This paper designates the η values varying from 0 to 0.5
under the settings of h = 0.4 and ε = 0.025 in this
comparative study. The proposed parametric PF LINMAP
model and its benchmark-based version were utilized to solve
the GDM problem concerning railway project investment in
the eleven scenarios of η = 0.00, 0.05, · · · , 0.50. The com-
parison results of the optimal collective comprehensive close-
ness measures for four candidate alternatives are revealed
in Figure 3. More precisely, Figure 3(a) and Figure 3(b)
demonstrate the contrasts among the obtained

∑3
k=1 CM

k
i

and
∑3

k=1 CM
0,k
i , respectively, for each ai ∈ A. Even though
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FIGURE 3. Comparison results of the optimal collective comprehensive
closeness measures under various settings of the weighting parameter.

the same ultimate priority ranking of alternatives (i.e., a2 �
a3 � a4 � a1) was determined using the two comparative
models, the proposedmethodology can provide a goodway to
distinguish between better choices and worse ones. As shown
in Figure 3(a), the relative advantages of alternatives a2 and
a3 are evidently higher than a1 and a4, especially in the
cases of η ≥ 0.25. However, the contrasts of the better
choices (i.e., a2 and a3) and theworse choices (i.e., a1 and a4)
are not significant based on Figure 3(b) regardless of the η
values. As a result, the proposed methodology can effectively
identify and differentiate different alternatives, which can
facilitate decision aiding for GDM problems.

Furthermore, the comparison results of the optimal com-
prehensive closeness measures for the decision makers e1, e2,
and e3 are presented in Figures 4–6, respectively. Consider the
contrast outcomes generated by the parametric PF LINMAP
model. Based on Definition 9 and the optimal weight vec-
tor w̄, the optimal comprehensive closeness measures for
each decision maker ek ∈ E can be calculated as follows:
CM

k
i =

∑6
j=1 w̄j · CI (p

k
ij) for each alternative ai ∈ A.

In regard to each decisionmaker, the contrast patterns ofCM
1
i

(for e1), CM
2
i (for e2), and CM

3
i (for e3) among the four

alternatives are depicted in Figures 4(a)–6(a), respectively.
In a similar manner, when the benchmark-based PF LINMAP

FIGURE 4. Optimal comprehensive closeness measures for the decision
maker e1 under various settings of the weighting parameter.

model was employed, the optimal comprehensive closeness
measures for each ek can be derived as follows: CM

0,k
i =∑6

j=1 w̄j · CI
0(pkij) for all ai. The contrast patterns of CM

0,1
i

(for e1), CM
0,2
i (for e2), and CM

0,3
i (for e3) among the four

alternatives are sketched in Figures 4(b)–6(b), respectively.
Based on the results in these figures, the contrasts of theCM

k
i

values among the four alternatives are more obvious than
the CM

0,k
i values regardless of the decision makers e1, e2,

and e3. Moreover, the patterns of CM
0,1
i , CM

0,2
i , and CM

0,3
i

are moderately steady under distinct settings of the weighting

parameter η. In contrast, the patterns of CM
1
i , CM

2
i , and

CM
3
i can appropriately reflect the influences of various η

values on the optimal comprehensive closeness measures.
The findings have also shown flexibility in adapting to the
changeable proportion of the two objectives in the parametric
PF LINMAP model. Moreover, the proposed methodology
possesses greater capability than the comparative benchmark-
based model in differentiating relatively better candidate
alternatives and worse ones.

Consider the comparison results of the optimal compre-
hensive closeness measures for the decision maker e1 in
Figure 4. Based on Figure 4(a), the parametric PF LINMAP
model rendered the priority rankings of the four alternatives
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as follows: a3 � a2 � a4 � a1, a2 � a3 � a4 � a1, and
a2 � a4 � a3 � a1 in the cases of η = 0.00, 0.05, · · · , 0.30,
η = 0.35, and η = 0.40, 0.45, 0.50, respectively. In contrast,
as revealed in Figure 4(b), the benchmark-based PF LINMAP
model generated the following priority rankings of the alter-
natives: a3 � a2 � a4 � a1, a4 � a3 � a2 � a1, and
a2 � a4 � a3 � a1 in the cases of η = 0.00, 0.05, 0.15, 0.20,
η = 0.10, and η = 0.25, 0.30, · · · , 0.50, respectively. It is
noted that an abnormal ranking a4 � a3 � a2 � a1 was
obtained via the benchmark-based model. When η = 0.10,
the best compromise solution was a4, which is unreasonable
and unacceptable for the decision maker e1 because a4 is a
worse choice in most situations.

FIGURE 5. Optimal comprehensive closeness measures for the decision
maker e2 under various settings of the weighting parameter.

Figure 5(a) demonstrates the comparison results of the
optimal comprehensive closeness measures for the deci-
sion maker e2. The parametric PF LINMAP model pro-
duced the priority ranking a2 � a3 � a1 � a4 in
both cases of η = 0.00 and 0.35. Moreover, the rank-
ing a3 � a2 � a1 � a4 was acquired in the remain-
ing cases (i.e., η = 0.05, 0.10, · · · , 0.30, 0.40, 0.45, 0.50).
Based on the results in Figure 5(b), the benchmark-based
PF LINMAP model yielded the two priority rankings a2 �
a3 � a1 � a4 and a3 � a2 � a1 � a4 when η =
0.00, 0.05, 0.25, 0.30, · · · , 0.50 and η = 0.10, 0.15, 0.20,
respectively. As a whole, the two rankings of the alternatives

rendered by the parametric PF LINMAP model and the
benchmark-based version are the same for the decision
maker e2.

FIGURE 6. Optimal comprehensive closeness measures for the decision
maker e3 under various settings of the weighting parameter.

According to the contrast results of the optimal compre-
hensive closeness measures for the decision maker e3 in
Figure 6 (a), the parametric PF LINMAP model rendered
the two priority rankings a2 � a4 � a3 � a1 and
a2 � a3 � a4 � a1 when η = 0.00, 0.05, · · · , 0.20 and
η = 0.25, 0.30, · · · , 0.50, respectively. Based on the contrast
results in Figure 6(b), the benchmark-based PF LINMAP
model acquired the priority rankings a2 � a4 � a3 � a1
and a2 � a3 � a4 � a1 when η = 0.00, 0.05 and
η = 0.10, 0.15, · · · , 0.50, respectively. Obviously, the two
PF LINMAP models yielded the identical ranking results of
the four alternatives. Moreover, for the decision maker e3,
the best compromise solution was a2 for all eleven cases of
η = 0.00, 0.05, · · · , 0.50.

3) THIRD COMPARATIVE STUDY
The third comparative analysis focuses on a discussion of
the feasible ranges of relevant parameters. Moreover, some
discussions based on the original preference data between
alternatives are carried out by use of the optimal individual
degrees of violation.
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TABLE 5. Optimal solutions via the parametric PF LINMAP model.

First, the designation of the lowest acceptable level h is
essential for making sure of practical feasibility of the lin-
ear program in our proposed methodology. If the h value
is too high, the parametric PF LINMAP model and the
benchmark-based version would be infeasible because no
solution satisfies all of the constraints. To address the issue
that no feasible solution is constructed via the PF LINMAP
model, this paper conducts computational experiments and
investigates appropriate feasible ranges for the parameter h
under various settings of the weighting parameter η. Consider
the scenarios of ε = 0.025 and η = 0.00, 0.05, · · · , 0.50.
Table 5 presents the computational results yielded by the
parametric PF LINMAP model, consisting of the optimal
weight w̄j, the optimal individual degree of violation Z̄ ki′i′′ ,
and the feasible ranges of the h value for each η setting. The
admissible filed of the lowest acceptable level is suggested as
0 ≤ h < 0.9 because feasible solutions can be found in this
range.

When employing the benchmark-based PF LINMAP
model, the determination results of w̄j, Z̄ ki′i′′ , and the feasi-
ble ranges of h under various settings of η are summarized
in Table 6. In particular, the admissible filed of the lowest
acceptable level is suggested as 0 ≤ h < 0.5 in the cases
of ε = 0.025 and η = 0.00, 0.05, · · · , 0.50. Comparing the
obtained 0 ≤ h < 0.5 with the feasible range 0 ≤ h < 0.9
in Table 5, the parametric PF LINMAP model possesses
greater feasibility and flexibility because of wider ranges

TABLE 6. Optimal solutions via the benchmark-based PF LINMAP model.

in the admissible filed. Moreover, the proposed model can
enhance the quality of solution results because a higher lowest
acceptable level h can be designated within the range [0, 0.9)
in this GDM problem, while the designation range is [0, 0.5)
using the benchmark-based approach.

There are other things to note. The optimal individual
degrees of violation can also demonstrate the better quality of
solution results produced by the proposed model in compared
to the comparative approach. As mentioned before, some
preference conflicts exist for the ordered pairs given by three
decision makers, i.e., (3,2) in �1 vs. (2,3) in �3 and (4,3)
in �2 vs. (3,4) in �3. Accordingly, it is anticipated that
some optimal individual degrees of violation cannot be equal
to zero in the solution results. Consider that the collective
poorness of fit is determined by the aggregation of individual
degrees of violation. In this regard, the solution quality of
application results can be examined with the use of the Z̄ ki′i′′
values.

The results of the Z̄ ki′i′′ values yielded by the proposed
model and the benchmark-based approach are revealed in
the below right parts of Tables 5 and 6, respectively.
From Table 5, it is known that Z̄2

43 > 0 when η =

0.00, 0.05, · · · , 0.30 and Z̄1
32 > 0 and Z̄2

43 > 0 when η =
0.35, 0.40, 0.45, 0.50. Based on Table 6, one has Z̄2

43 > 0
when η = 0.00, 0.05, · · · , 0.20 and Z̄1

32 > 0 and Z̄2
43 > 0

when η = 0.25, 0.30, · · · , 0.50. As noted, the decision mak-
ers generally anticipate the obtained solution that possesses
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the lowest extent of violation in regard to the preference
relationships in the preference sets (i.e., to minimize the
collective poorness of fit

∑K
k=1 B

k ). Consider the two cases
of η = 0.25 and 0.30. According to Table 5, only one conflict
(i.e., Z̄2

43 > 0) exists between subjective preference relations
and objective order relations. Namely, the obtained objective
order relation a4 ≺C a3 is inconsistent with the preference
relation a4�∼a3 in �2 provided by the decision maker e2.

Nonetheless, from Table 6, two conflicts (i.e., Z̄1
32 > 0

and Z̄2
43 > 0) have been found when η = 0.25 and 0.30.

By employing the benchmark-based approach, the obtained
objective order relations a3 ≺C a2 and a4 ≺C a3 are
inconsistent with the preference relations a3�∼a2 in �1 and

a4�∼a3 in �
2, respectively. It is easy to see that the proposed

model performs better than the comparative approach in the
quality of solution results.

FIGURE 7. Comparison results of the optimal weights of criteria under
various settings of the weighting parameter.

Furthermore, the comparison results of the optimal weights
of criteria under various settings of the weighting parameter η
are sketched in Figure 7. The six evaluative criteria in the set
C belong to the salient factors in the GDM problem. Thus,
it is reasonable and acceptable that the PF LINMAP model
can render non-degenerate weights for the sake of reflecting
the relative importance of each criterion. Figure 7(a) and
Figure 7(b) reveal the patterns of the optimal weights yielded
by the parametric PF LINMAP model and the benchmark-
based version, respectively. As demonstrated in Figure 7(a),

the issue of degenerate weights was not noticeable in the
cases of η = 0.00, 0.05, · · · , 0.35. Nevertheless, the spe-
cialized degenerate weighting issue has become obvious in
the cases of η = 0.40, 0.45, and 0.50. In such cases,
the highest importance has been assigned to the criterion c4
(i.e., debt ratio and current ratio), in which w̄4 = 0.8750.
On the contrary, based on Figure 7(b), the issue of degen-
erate weights was apparent in the obtained weighting pat-
terns generated by the benchmark-based PF LINMAPmodel.
As noted, the degenerate weighting problem has been found
to a certain extent in the cases of η = 0.15 and 0.20.
In particular, when η = 0.25, 0.30, · · · , 0.50, the special-
ized degenerate weighting issue has become significant via
the benchmark-based approach. Analogously, in the cases of
η = 0.25, 0.30, · · · , 0.50, the highest importance has been
assigned to c4, in which w̄4 = 0.6179. As a whole, the pro-
posed parametric PF LINMAP model can yield more reason-
able and acceptable results than the comparative approach
because of non-degenerate weighting results in most cases.

4) FOURTH COMPARATIVE STUDY
The fourth comparative analysis focuses on the comparisons
of the application results yielded by the PF TOPSIS method
and the proposed model. TOPSIS is a renowned and widely
used compromising model in the field of multiple criteria
decision analysis, and it plays an important role in many
practical applications. Because LINMAP belongs to the com-
promising model, this paper employs the core structure of
TOPSIS to conduct the final comparative study.

TOPSIS is an individual decision-making procedure that
specifies how multidimensional characterization information
is to be processed in order to arrive at a choice that is closest
to the ideal solution. Because TOPSIS cannot directly deal
with multiple decision matrices, this comparative study first
fuses decision information to form an aggregated decision
matrix. By utilizing the ordered weighted averaging (OWA)
operator [42], this paper aggregates evaluation information in
the PF decision matrix Pk for all k ∈ {1, 2, · · · ,K } to con-
struct the collective PF decision matrix P

_
. This paper defines

the following OWA operators that represent the mapping
OWA: RK → R that has an associated weight vector $ =
($1,$2, · · · ,$K ) such that$k ∈ [0, 1] and

∑K
k=1$k = 1,

as follows:

_
µij =

K∑
k=1

$k µ̇
k
ij, (32)

_
ν ij =

K∑
k=1

$k ν̇
k
ij, (33)

where µ̇kij and ν̇
k
ij are the k-th largest ofµ

k
ij and ν

k
ij , respectively

(k = 1, 2, · · · ,K ). The collective PF decision matrix P
_
that

involves the collective PF evaluative rating _pij is represented
as follows:

P
_

=

[
_pij
]
m×n
=

[
(_µij,

_
ν ij;

_r ij,
_

d ij)
]
m×n

. (34)
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Here, _r ij = ((_µij)
2
+ (_ν ij)2)0.5 and

_

d ij = 1− (2 ·
_

θ ij

/
π ),

where
_

θ ij = cos−1(_µij/
_r ij) = sin−1(_ν ij/

_r ij).
Analogous Definitions 5 and 6, the positive- and negative-

ideal collective PF evaluative ratings _p∗j and
_p#j with respect

to each cj ∈ C can be identified as follows:
_p∗j

=



m
∨
i=1

_
µij,

m
∧
i=1

_
ν ij;

√(
m
∨
i=1

_
µij

)2

+

(
m
∧
i=1

_
ν ij

)2

, 1−
2 ·

_

θ∗j

π


ifcj ∈ CI,m
∧
i=1

_
µij,

m
∨
i=1

_
ν ij;

√(
m
∧
i=1

_
µij

)2

+

(
m
∨
i=1

_
ν ij

)2

, 1−
2 ·

_

θ∗j

π


ifcj ∈ CII;

(35)
_p#j

=



m
∧
i=1

_
µij,

m
∨
i=1

_
ν ij;

√(
m
∧
i=1

_
µij

)2

+

(
m
∨
i=1

_
ν ij

)2

, 1−
2 ·

_

θ #j

π


ifcj ∈ CI,m
∨
i=1

_
µij,

m
∧
i=1

_
ν ij;

√(
m
∨
i=1

_
µij

)2

+

(
m
∧
i=1

_
ν ij

)2

, 1−
2 ·

_

θ #j

π


ifcj ∈ CII.

(36)

Combining the weight vector w = (w1,w2, · · · ,wn),
the closeness coefficient CCi of each alternative ai ∈ A is
determined as follows:

CCi =

n∑
j=1

D(_pij,
_p#j) · wj

n∑
j=1

(
D(_pij,

_p∗j)+ D(
_pij,

_p#j)
)
· wj

. (37)

Let ε denote a sufficiently small number, in which
0 < ε ≤ 1/n. By aggregating the closeness coefficient CCni
for all ai ∈ A as the maximal objective, the following PF
TOPSIS model is constructed to solve the unknown weights
as follows:

PF TOPSIS Model

max

{
m∑
i=1

CCi

}

s.t.



CCi =

n∑
j=1

D(_pij,
_p#j) · wj

n∑
j=1

(
D(_pij,

_p∗j)+ D(
_pij,

_p#j)
)
· wj

(i = 1, 2, · · · ,m),
n∑
j=1

wj = 1,

wj ≥ ε(j = 1, 2, · · · , n).

(38)

It is noted that the above problem is a nonlinear program-
ming model. Based on the optimal weight vector w̄ and the
Hamming distances D(_pij,

_p∗j) and D(
_pij,

_p#j), the optimal
closeness coefficient CC i for each alternative ai is derived
as follows:

CC i =

n∑
j=1

D(_pij,
_p#j) · w̄j

n∑
j=1

(
D(_pij,

_p∗j)+ D(
_pij,

_p#j)
)
· w̄j

. (39)

The priority ranking of the alternatives is acquired based on
the decreasing order of the CC i values.
Consider the GDM problem of railway project investment.

To establish the collective PF decision matrix P
_
, this paper

employed the OWA operator to fuse the three PF decision
matrices P1, P2, and P3. Here, $ = ($1,$2,$3) =
(0.2429, 0.5142, 0.2429) that is derived by the normal distri-
bution basedmethod proposed by Xu [42]. The determination
results of the collective PF evaluative rating _pij are indicated
in Table 7. This table also presents the positive-ideal rating
_p∗j and the negative-ideal rating _p#j for each criterion.

TABLE 7. Collective PF evaluative ratings based on OWA operators.

This paper computed the Hamming distances D(_pij,
_p∗j)

and D(_pij,
_p#j) and designated the non-zero boundary con-

dition ε = 0.025. Based on the PF TOPSIS model in (38),
the following nonlinear programmingmodel was established:

max {CC1 + CC2 + CC3 + CC4}

subject to:

CC1 = (0.2470w1 + 0.1116w2 + 0.1481w3 + 0.0000w4

+ 0.1064w5 + 0.0000w6)
/
(0.6008w1 + 0.5403w2

+ 0.5515w3 + 0.3416w4 + 0.4197w5 + 0.5519w6) ,

CC2 = (0.3982w1 + 0.3849w2 + 0.3904w3 + 0.3056w4
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+ 0.3509w5 + 0.5519w6)
/
(0.3982w1 + 0.5401w2

+ 0.5608w3 + 0.3418w4 + 0.3509w5 + 0.5519w6) ,

CC3 = (0.1821w1 + 0.3214w2 + 0.5478w3 + 0.3407w4

+ 0.2731w5 + 0.2720w6)
/
(0.5508w1 + 0.6866w2

+ 0.5478w3 + 0.3704w4 + 0.5520w5 + 0.6191w6) ,

CC4 = (0.1035w1 + 0.4258w2 + 0.0218w3 + 0.0725w4

+ 0.1625w5 + 0.2774w6)
/
(0.4694w1 + 0.6857w2

+ 0.5654w3 + 0.3416w4 + 0.4556w5 + 0.5519w6) ,
6∑
j=1

wj = 1, wj ≥ 0.025 for j = 1, 2, · · · , 6.

Solving the above PF TOPSIS model, the optimal weight
vector was acquired as follows: w̄ = (w̄1, w̄2, · · · , w̄6) =
(0.0250, 0.0250, 0.0250, 0.0250, 0.8750, 0.0250). More-
over, the optimal closeness coefficients were derived as fol-
lows: CC1 = 0.2449, CC2 = 0.9753, CC3 = 0.5079, and
CC4 = 0.3550, which yields the ultimate priority ranking
a2 � a3 � a4 � a1 and the best compromise solution a2.
The ranking results generated by the PF TOPSIS model

are concordant with those by the proposed model and the
other comparative approaches. However, the model in (38)
is a nonlinear programming model that is inherently much
more difficult to optimize. Furthermore, the solution results
of the optimal weights (i.e., w̄1 = w̄2 = w̄3 = w̄4 =

w̄6 = ε) are undesirable and dissatisfactory and cannot
be easily accepted by the decision makers. Recall that the
parametric PF LINMAP model and the benchmark-based
approach rendered the optimal weight vectors (0.0250,
0.3019, 0.2633, 0.2050, 0.1798, 0.0250) and (0.0250, 0.1957,
0.1918, 0.4357, 0.1268, 0.0250), respectively, under the
parameter settings of h = 0.4, ε = 0.025, and η = 0.2.
Nevertheless, except for w̄5 = 0.8750, the PF TOPSIS
model yielded the identical weights of the remaining criteria,
i.e., w̄j = ε = 0.0250 for j ∈ {1, 2, 3, 4, 6}. The three
decision makers may be dissatisfied by these inactive optimal
weights because these weights are equal to the non-zero
boundary condition. Thus, the solution quality generated by
the PF TOPSIS model is lower than those produced by the
parametric PF LINMAP model and the benchmark-based
version. In addition, the PF TOPSIS model belongs to non-
linear problems and is intrinsically more difficult to solve.
Therefore, the usefulness and superiority of the proposed
parametric PF LINMAPmethodology has been demonstrated
through the comparisons with the well-known and widely
used TOPSIS approach in PF contexts.

In the nutshell, the merits of applying the parametric PF
LINMAP model over the PF TOPSIS approach have been
examined and explained in the final comparative analysis.
On the whole, this paper has conducted the four compara-
tive studies consisting of the influences of distinct reference
points on the application results, the effects of application
outcomes under various settings of the weighting parame-
ter, the contrasts among the feasible ranges about relevant
parameters, and the comparisons of the application results

with the PF TOPSIS method. The comparative results have
validated the effectiveness and advantages of the proposed
methodology in solving multiple criteria GDM problems
within complex PF environments.

VII. CONCLUSION
This paper has developed a novel parametric PF LINMAP
methodology to manage GDM problems in the PF context.
This paper has presented the PF closeness index to identify
the PF closeness-based order relation between PF evaluative
ratings. Combining the weight vector of criteria, this paper
has proposed the comprehensive closeness measure for the
sake of the objective order relation between alternatives.
According to the contrast results between subjective pref-
erence relations and objective order relations, the individ-
ual order consistency and inconsistency indices have been
defined to determine individual goodness of fit and poorness
of fit, respectively. To formulate a PF LINMAP model, this
paper has introduced some useful parameters, including the
lowest acceptable level towards the difference between good-
ness and poorness of fit, the non-zero boundary condition
for criterion weights, and the weighting parameter for trans-
forming a bi-objective optimization model into an effective
linear programming model. To maximize the total collective
comprehensive closeness measure and minimize the collec-
tive poorness of fit, this paper has established the parametric
PF LINMAPmodel to solve for the optimal weight vector and
individual degrees of violation. Correspondingly, the optimal
collective comprehensive closeness measures can be acquired
to determine the ultimate priority ranking of alternatives and
the best compromise solution. The proposed PF LINMAP
methodology has the capability to adjust the optimal col-
lective comprehensive closeness measures with the control-
ling parameters. Furthermore, the practical application and
comparative analyses have demonstrated the potentials on the
real-world GDM problems with information uncertainties.

This paper provides two recommendations for future
research: an integration with data envelopment analy-
sis (DEA) and an extension to interval-valued PF deci-
sion environments. First, Liu et al. [43] employed DEA
cross-efficiency with intuitionistic fuzzy preference relations
to propose a novel GDM approach. In a similar manner,
Liu et al. [44] established an integrated GDM approach
with interval fuzzy preference relations using DEA and
stochastic simulation. Based on their results, the DEA-based
approach can avoid information distortion during GDM pro-
cesses and acquire more credible decision-making results.
Motivated by Liu et al. [43], [44], this paper suggests
an integrated approach by combining DEA and the pro-
posed parametric PF LINMAP model to avoid possible
information loss and distortion issues in GDM practices.
Second, the proposed methodology focuses on the PF deci-
sion environment. By extending developed concepts and
techniques to interval-valued PF contexts, another prospec-
tive research direction can be made on the development of
an interval-valued PF LINMAP methodology. That is, this
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paper suggests to propound a parametric interval-valued PF
LINMAPmodel to cope with more sophisticated information
characterized by interval-valued Pythagorean membership
grades.
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